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Abstract: The integration of advanced technologies is revolutionizing classrooms, significantly
enhancing their intelligence, interactivity, and personalization. Central to this transformation are
sensor technologies, which play pivotal roles. While numerous surveys summarize research progress
in classrooms, few studies focus on the integration of sensor and AI technologies in developing
smart classrooms. This systematic review classifies sensors used in smart classrooms and explores
their current applications from both hardware and software perspectives. It delineates how different
sensors enhance educational outcomes and the crucial role AI technologies play. The review highlights
how sensor technology improves the physical classroom environment, monitors physiological and
behavioral data, and is widely used to boost student engagements, manage attendance, and provide
personalized learning experiences. Additionally, it shows that combining sensor software algorithms
with AI technology not only enhances the data processing and analysis efficiency but also expands
sensor capabilities, enriching their role in smart classrooms. The article also addresses challenges
such as data privacy protection, cost, and algorithm optimization associated with emerging sensor
technologies, proposing future research directions to advance educational sensor technologies.
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1. Introduction

With the rapid development of information technology, the smart classroom, as an
emerging educational model, is gradually becoming an important part of modern edu-
cation. Smart classrooms are defined as technology-assisted, closed environments that
enhance the teaching and learning experience [1]. The emergence of the “smart classroom”
represents a paradigm shift in educational environments, merging traditional teaching
and learning methods with advanced technological integration. As a model for contem-
porary educational settings, smart classrooms are often characterized by the use of digital
tools, information and communication technologies (ICT), and interactive learning systems.
Smart classrooms are designed to bridge the gap between students and teachers, to help
teachers teach more effectively, and to make the environment more conducive to teaching
and learning [2].

In recent years, smart sensor technologies have emerged as pivotal tools in education
transformation. Sensor technology is an indispensable basic part of the application of many
advanced technologies such as AI (Artificial Intelligence), intelligent learning technology,
the Internet of Things, information technology, and big data in the classroom. In smart
classrooms, the presence of sensors provides a way to naturally collect learning data during
the learning process, forming the data foundation of intelligent systems, and providing
educators with unprecedented opportunities to deepen students’ learning experience and
improve the teaching efficiency.

The progress of Artificial Intelligence technology in recent years has been remarkable,
and the tremendous impact of this technology is undoubtedly being introduced into smart
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classrooms. The introduction of AI combined with emerging technologies having the form
of interactive, remote, and mobile computing in physical and/or virtual environments
constitutes an evident trend in the development of the concept of the smart classroom [3].
There are also integrated applications of AI technology with sensor technology, where data
collected by sensors can be processed and analyzed by AI algorithms. Spikol et al. points
out that computer systems have been widely used with the delivery of instructional content,
which are ideal systems for assisting in teaching and learning analytics [4]. Therefore, AI
technologies such as big data analytics and machine learning methods can be deployed to
help understand and categorize learning outcomes. Further integration and application of
artificial intelligence and sensor technologies are foreseen.

The smart classroom is a research topic that extends multiple disciplines, and there is
a considerable number of studies reviewing the progress of research in this area, whether
from a technological dimension, pedagogical perspective, or sociological perspective.

Saini and Goel [2] described an interdisciplinary research on smart classroom tech-
nologies, dividing smart classrooms into “Smart Content”, “Smart Engagement”, “Smart
Assessment”, and “Smart Physical Environment” to describe and review the technological
research progress in smart classrooms. Saini and Goel also present potential challenges and
future perspectives and recommendations, summarizing the technological development
and applications of smart classrooms in a more comprehensive way. Alfoudari et al. [5],
employing the systematic review approach, focus on the social and technological challenges
faced by smart classrooms as well as future research directions at the macro level. For a
more specific field of research, Wang et al. [6] presented a review of sensor technology in
the classroom, focusing on devices and systems that use eye-tracking sensors to monitor
student attention in smart classrooms. The advantages, characteristics and limitations
of different eye-tracking devices and systems were illustrated in this review, providing
a detailed introduction to the current technology of eye-tracking sensor systems. From
the perspective of artificial intelligence, Zawacki-Richter et al. [7] summarized the appli-
cation areas of AI technologies in academic support services, institutional services, and
administrative services in higher education. In addition to a general overview of artificial
intelligence in smart classrooms, Dimitriadou and Lanitis [3] conducted a comprehensive
SWOT analysis of the advantages, disadvantages, opportunities, and threats of applying
artificial intelligence in smart classrooms.

The research on the technology of smart classrooms and the application of AI technol-
ogy in education (AIEd) has aroused greater interest in the research community; however,
the research on the technology for sensors in smart classrooms is scattered and lacks system-
atic review and organization. Additionally, research for the integration of AI technology
and sensor technology in smart classrooms is also insufficient. Few studies have been
conducted to review and summarize the significant enhancements that AI technology
brings to sensors.

Compared to the previous survey [2,5–7], this paper brings a multifaceted contribution
by systematically narrating the research: (1) We present the technological applications and
progress of smart classrooms from the perspective of sensor technology, comprehensively
reviewing its applications and classifications in contexts such as monitoring students’
attention, taking attendance, and teaching assessment analysis in smart classrooms. (2) At
the software technology level, we review the advancements in AI technology and introduce
various applications of combining AI technology with sensors in smart classrooms. We
explore how AI technology can support smart learning through its integration with sensors,
and analyze and compare the roles and functions of different AI technologies in sensor
technology. (3) We explore the potential challenges and risks associated with integrating
sensor and AI technologies, and discuss possible future research directions. Our aim is to
provide upcoming researchers with the necessary domain knowledge by illustrating the
current state of the art and research trends in the application of sensors and their integration
with AI technologies in smart classrooms, and to provide inspiration for future research.
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The rest of this paper is organized as follows. In Section 2, we summarize the cat-
egories and trends of sensors in smart classrooms, and specify how environmental and
biometric sensors can support smart classrooms, respectively. Section 3 analyzes and com-
pares different AI technologies and describes how different AI technologies can enhance
the performance and enrich the functionality of sensors. Section 4 discusses the current
problems and challenges, as well as emerging directions for future research. Finally, the
review paper is concluded with Section 5.

2. Smart Sensor Technologies and Applications

In the field of education, the application of sensor technology focuses on all aspects of
learning and teaching. Shown in Figure 1 is a representative example of a smart classroom
sensor system. This system includes sensors for multiple modality data collection, such as
cameras, temperature and thermal sensors, light sensors, air quality, personnel recognition
cameras, sound level meters, etc., which can capture human behavior and environmental
characteristics as data reference opinions to create a good learning experience. This section
delves into smart sensors’ diverse applications, highlighting the novel ways in which
they contribute to education. This survey categorizes the sensors into environmental and
biometric sensors, covering the breadth of sensor types and their direct applications in
smart classrooms.
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Figure 1. A representative example of a smart classroom sensor system consisting of (1) sensors
that collect classroom environment and biological data, (2) processors that process data and make
instructions (usually cloud computing, edge computing, human–computer collaborative processing,
AI processors, etc.), and (3) actuators that receive instructions and respond to classroom feedback in
the form of sound or indicator lights.
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2.1. Environmental Sensors

Sensor technologies have been deployed to collect real-time measurements of physical
environmental conditions. Table 1 summarizes typical studies of environmental sensors
in smart classrooms. These systems are normally equipped with micro controllers to
control actuators and data displays, making invisible phenomena visible and actionable. A
Raspberry Pi-based Weather Management System (WMS) proposed by Hu and Huang [8]
can be used to collect numerous weather data including temperature, humidity, and wind
direction, and is a typical sensor system used in educational environments. Mendell and
Heath [9] pointed out that the deployment of environmental sensors is able to help to
regulate and control the indoor classroom environment in order to create a comfortable
physical environment, which is necessary for efficient learning.

Table 1. Environmental sensors in smart classrooms.

Sensor Type Monitored Feature Monitoring Purpose Typical Studies

Thermal sensor Temperature Classroom climate temperature [10]

Acoustic sensor Sound level meter Detecting noise levels [11,12]

Infrared radio sensor Infrared energy Scouting for student activity in the classroom [13]

Carbon dioxide sensors Carbon dioxide content Monitoring of carbon dioxide levels in the air [10,14]

Photosensitive sensor Lighting conditions Monitoring light levels and uniformity [15,16]

Infrared camera Infrared image Student body temperature [17]

Saini and Goel [2] comprehensively categorized the elements of a typical classroom
physical environment into the following areas: temperature, humidity, radiation, VOCs,
NO2 (from burning fuel items), CO2 (mainly emitted by humans), airborne particles (such
as coarse dust particles (PM10) and fine particles (PM2.5)), carbon monoxide (CO), sound
level, audio noise level, and lighting. In this subsection, we divided the application
of environmental sensors in smart classrooms into the following parts: climate control,
lighting, and noise control.

2.1.1. Climate Control

The climate factor refers primarily to the suitability of the air, specifically the temper-
ature and humidity of the air and the level of pollutants in the air. The study by Chiou
and Tseng [18] proposed a smart classroom management system deployed in a lab class-
room environment. In this study, a Wireless Sensor Network (WSN) was created using
Zigbee technology to enable the regulation of the physical environment of the classroom
(temperature, humidity, lighting, etc.). A field experiment was conducted to verify the
effectiveness of the proposed system. The experimental results showed that the system
had good accuracy and robustness in a real-time environment. Stazi et al. [10] proposed
a smart window opening and closing to improve air quality and thermal comfort in the
classroom, using a PT100 thermistor sensor to measure the temperature and a CO2 sensor
to monitor the air quality. The results of a comparative study in two adjacent classrooms
showed that this system provided good quality in terms of indoor air quality, thermal
comfort and user satisfaction. Twumasi et al. [13] utilized a passive infrared radio sensor
to automatically start and turn off the fan in the classroom. When a student enters the
classroom, the infrared energy emitted activates the PIR sensor and provides it to the
microcontroller, which triggers a relay to “turn on” the fan, and ten minutes later “turn off”
the fan when no motion is detected. The fan will only ‘turn on’ when the room temperature
reaches 25 degrees Celsius to 30 degrees Celsius. In the research by Pastor et al. [14], the
proposed system allows simultaneous real-time monitoring of multi-dimensional indicators
including CO2, temperature, humidity, and particulate matter in shared public spaces in
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higher education settings. This system is able to automatically control the corresponding
ventilation or air conditioner to regulate the air conditions.

To reduce the risk of infection to students, maintaining a healthy classroom envi-
ronment during the COVID-19 pandemic is even more necessary. Infrared cameras are
employed in [17] to monitor students for fever and can help regulate the temperature of the
classroom. In addition, Deepaisarn et al. [19] proposed an end-to-end camera-based human
physical distance recording system for indoor environments (especially classrooms). The
recording system automatically tracks the location of students and the direction of their
movement in the classroom. It also records the movement of students to and from their
seats, helping to maintain physical distance between students indoors and reducing the
risk of disease transmission.

2.1.2. Lighting

In terms of classroom lighting, lighting in educational settings is no longer static now.
Adaptive lighting systems, which adjust based on natural light and classroom activities,
have been found to improve student alertness and reduce eye strain, thereby enhancing
the learning experience. According to a study proposed by Du et al. [20], in terms of the
psychological state of learning, the more comfortable the light environment is, the stronger
the willingness to learn and the higher the enthusiasm for learning. After research, we
found that current mainstream research focuses on several issues including reducing the
waste of lighting resources and automatically adjusting indoor light intensity to enhance
the lighting experience and effect.

The lighting on the surface of the desk calculations is noticeably uneven, which nega-
tively affects the physical and mental state of the students. Amelkina and Duplenkova [15]
developed a lighting control system with smooth control function, light sensors, and pres-
ence sensors, which provided a three-zone lighting intensity adjustment for each row of
lighting equipment in the classroom. This arrangement would maintain the level and
uniformity of lighting under combined lighting conditions and will greatly save energy.
This article also found that, in the case of combined lighting, there is a significant non-
uniformity in the calculated lighting on the desk surface, which can have a negative impact
on students’ physical and mental states, which is consistent with the views of Du et al. [20].

Zola Cruz et al. [21] presented a prototype for automated lighting control and validated
its effectiveness in a Mexican higher education setting. This system utilized a combination
of PIR (Pyroelectric Infrared Sensors) and LDR (Light Dependent Resistors) within the
IoT paradigm to automate lighting based on room occupancy and ambient light levels,
thereby reducing energy consumption, management costs, and environmental impact.
Furthermore, Chen et al. [16] proposed a classroom sub-area multi-mode lighting control
system in higher education settings. In the design, an RS-485 communication network
was employed to establish the lighting of each region. The program employed lighting
sensors, vibration sensors, and infrared sensors to automatically gather information about
the classroom lighting and work status and personnel distribution and to form a program
controlled by this chip to realize the automatic switching of lights and achieve a good
energy saving effect.

2.1.3. Noise Control

Marques and Pitarma [11] pointed out that environmental noise had a direct impact on
well-being and productivity. On one hand, high volume is associated with various health
symptoms, such as high blood pressure and stress. On the other hand, sound comfort
can improve concentration, communication, and productivity. This paper also introduced
“iSoundIoT”, an IoT-based technology real-time noise monitoring system for indoor envi-
ronments such as classrooms, comprising a calibrated sound sensor, a DFRobot gravity
analog sound level meter, and a FireBeetle ESP8266 microcontroller system (DFRobot,
Shanghai, China) to measure the sound level and to provide visual and audio alerts when
predefined thresholds are exceeded. The system was also tested in the lab for two months
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using real-time continuous data collection, demonstrating its performance in improving
acoustic comfort and well-being. Similarly, de Valencia et al. [12] employs a network
of sensors (Arduino boards and sound sensors, specifically key-037 sensors) to capture
and process real-time accurate noise level measurements and provide a visual represen-
tation of classroom noise by notifying teachers and students via visual indicators (led)
in the system when the noise level exceeds a specific threshold, helping to create a quiet
learning environment.

2.2. Biometric Sensors

In educational settings, biosensors also play a huge role in promoting the intelligence
of classrooms. Biosensors are commonly used to monitor students’ or teachers’ physiologi-
cal indicators, including expression, movement, eye gaze, body temperature, EEG signals,
and heart rate. These sensors capture physiological and behavioral information, providing
insights into student engagement, emotional responses, and cognitive processes. The appli-
cations of these sensors range from monitoring attention and stress levels to developing
personalized learning pathways based on individual physiological responses. Moreover,
biosensors enable accessibility support for students with disabilities. This subsection will
demonstrate the applications of biosensors in smart classrooms according to several parts:
engagement analysis, attendance, and accessibility support.

2.2.1. Engagement Analysis

A high engagement state improves task performance and learning outcomes [22].
Learner engagement is influenced by a range of factors related to the individual learner,
the task, and the learning environment [23]. The effectiveness of digital training can be
enhanced by measuring and optimizing learners’ engagement during instruction [22]. After
a survey of the literature, research on the monitoring of student engagement based on
images is the most common, and this type of research mainly relies on camera sensors, eye
tracking, or other image capturing devices.

Image-Based Biometric Sensors

Images contain a wealth of information, and there are many ways to analyze student
engagement based on images. Verner and Dickinson [24] pointed out that the main indica-
tors of student inattention in class are fidgeting, doodling, yawning, and looking around. To
detect these indicators, numerous image-based studies have proposed methods to evaluate
student engagements by analyzing facial expressions, eye gaze, body movements, and
other indicators as shown in Table 2; among these, cameras and eye movement sensor
devices to detect inattention are the more promising methods.

Table 2. Image-based biometric sensors for engagement analysis.

Sensor Type Monitored Feature Monitoring Purpose Typical Studies

Facial recognition system Facial features Identification and emotional state analysis [25]

Posture and motion sensor Body posture Engagement analysis and classroom dynamics [26]

Thermal camera Body temperature Health monitoring and stress analysis [17]

Eye-tracking device Eye movement and
pupil dilation Focus and engagement analysis [27–30]

Cameras are capable of collecting image or video data of students’ posture, facial
features, movements, and eye movements. In recent years, cameras technology has un-
dergone significant developments. Camera hardware is becoming smaller and cheaper,
which makes it easier to access. Meanwhile, software algorithm technology for processing
images and videos has also been continuously enriched, especially the development of AI
technology and machine learning technology.
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To assess student engagement in STEM classrooms at U.S. universities, Alkabbany
et al. [25] designed a biometric sensor network (BSN) consisting of a webcam, wall-mounted
camera, and a high-performance computer. This system was designed to capture students’
head posture, eyes, body movements, and facial emotions. The recorded image features are
used to train an artificial intelligence-based model to assess the behavioral and emotional
engagement of students in a classroom environment. Four 75 min lecture experiments were
conducted to compare the proposed technique with the state-of-the-art framework, and the
results demonstrated that the proposed system showed superior accuracy in estimating
behavioral and emotional engagement. Zhu et al. [26] developed a smart learning table
based on visual sensors that can be used to identify abnormal sitting postures of primary
and secondary school students aged 9–18 years old. The system optimized the recognition
rate of abnormal sitting postures including long learning time, head tilt, body tilt, and head
drooping to more than 92%. Moreover, this system is able to provide instant feedback and
reminders when it detects a decline in student engagement and is able to prevent health
problems due to sitting.

Thermal infrared imaging has been proved to be a reliable tool for non-invasive and
non-contact assessment of vital signs, psychophysiological responses, and emotional states.
Kim [31] utilized thermal infrared imaging to assess students’ psychological state in a
Korean university classroom. The temperatures of each student’s area of interest (AOI)
were collected and averaged to reflect the engagement of the entire class. The higher the
temperature, the better the student’s classroom immersion. In Kim’s design, a mobile
app was designed for teachers to display student engagement in the form of a traffic
light, with green representing students immersed in the class, yellow representing average
engagement, and red representing poor engagement.

Similarly, Hu et al. [28] proposed a method for identifying learning engagement in
a VR environment based on multimodal feature integration. They employed HTC Vive
Pro Eye as an eye-tracking device and HTC Vive Facial Tracker for facial tracking. These
devices were connected to a computer and could simultaneously capture pupil diameter,
eye gaze, and facial expression data. This study also adopted a head-mounted device with
a ThinkGear ASIC module chip to integrate electroencephalogram data to collect brain
signals, and used the data to evaluate learners’ attention in terms of cognitive, emotional,
and behavioral performance in a VR environment. The entire experiment was conducted
in an English course classroom for geography students at the university level. The results
showed that the F1 score for learning concentration recognition using complete data input
(including data of all types and dimensions) ranges from 0.66 to 0.73, which is significantly
higher than the model using a single dimension or a single type of data.

An eye-tracking sensor is a device that monitors eye gaze position movement and
blinking activity. The application of eye-tracking technology in multimedia learning re-
search is gaining increasing attention [32]. Multi-sensor eye-tracking systems and hardware
platforms have indeed become a fast and primary means of capturing and tracking eye
movements, and have changed traditional teaching methods. Wang et al. [6] divided
existing eye-tracking devices into several categories including tower-mounted eye trackers,
screen-based eye trackers, head-mounted/wearable eye trackers, and mobile eye trackers.
They also point out that head-mounted and mobile eye-tracking systems are more suitable
for real-world applications and daily learning activities. Compared with tower-mounted
eye trackers that require embedded cameras and forehead/chin rests, or screen-based eye
trackers that require the use of display screens and have limited eye-tracking range, wear-
able and mobile eye-tracking systems are lighter, less burdensome, and have no monitoring
range restrictions.

The main components of a head-mounted/wearable eye tracker include a scene camera
sensor, an eye camera sensor, and a storage device. In a dual-eye-tracking investigation [30],
Shvarts and Abrahamson utilized a head-mounted eye tracker: Pupil-Labs eye-tracking
goggles. This device allowed the use of two people to move freely and simultaneously track
the eye movements of a given shared environment. It was deployed to monitor the visual
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tracks of university psychology teachers and students, explore how the student and the
tutor jointly focused on a specific visual object, and thus evaluated the interaction between
the teacher and the student during the teaching and learning process. This technology
offers a valuable tool for understanding the nuances of visual attention and interaction
in educational settings. The article found that teachers’ perceptual activities were closely
coordinated with students’ operational activities. Teachers were able to accumulate the
experience of students’ learning process by observing students’ behavior and identifying
the best time to conduct speech intervention. Zaletelj [33] adopted 2D and 3D features
obtained from the non-intrusive Microsoft Kinect One depth camera sensor to characterize
university students’ facial and body attributes, and estimated students’ attention levels
in the classroom by analyzing gaze points, body posture, and several other behavioral
parameters. The system used a Bagged Trees classifier and achieved an accuracy of 85.0%
to 86.9% based on different parameters. The study also found that certain behaviors of
students (such as writing, yawning, supporting the head, and gaze direction) were highly
correlated with their attention levels. Similarly, Prieto et al. [34] also developed a wearable
sensor system, mainly including SMI eye-tracking glasses and a smartphone with an
accelerometer, to record the teacher’s gaze data (including the location and content of
the teacher’s gaze in the classroom and audio data) as well as the teacher’s movement
in the primary and secondary class, involving students aged 11 to 12, whether standing
still or walking. The data were processed using a machine learning model to analyze
the teacher’s behavior and interaction to fully understand the classroom dynamics and
generate a visual choreography that can show the teaching activities and social interactions
in the classroom over time. This method is particularly useful for educational research and
teacher professional development, providing a new way to analyze and improve teaching
strategies and classroom management.

The cost of existing commercial eye-tracking glasses (e.g., Tobii Pro Glasses 2, Pupil
Labs Core, and SMI Eye Tracking Glasses) remains unaffordable for wide implementation in
educational environments. Kassner et al. [29] proposed an open source, low-cost wearable
eye-tracking solution, Pupil, which can serve as a low-cost alternative to commercial
eye trackers.

Due to the increasing prevalence of personal mobile devices, mobile eye-tracking
technology has become a low-cost alternative solution. This technology utilizes the front or
rear camera of basic personal smart devices such as smartphones and tablets, in conjunc-
tion with powerful software applications, to achieve face detection, eye detection, iris or
pupil detection, and gaze angle calculation [35]. This technology overcomes the high cost
and limited mobility of existing commercial eye trackers, thereby providing a technical
foundation for potential applications in education and classrooms.

However, it should be emphasized that most current research using eye trackers is
conducted in a set eye-tracking laboratory. Long-term eye tracking in a real educational
environment is truly original and novel [36]. We call for more research in real educational
environments in the future to help understand the extent to which laboratory research
content can be transferred to real educational environments.

No-Image-Based Biometric Sensors

Image-based sensors provide rich visual information in classroom; however, eval-
uating student engagement based on non-image biometrics (such as heart rate, sound,
blood oxygen, EEG signals, and skin temperature) can also achieve outstanding monitoring
results. Non-image biometrics are able to provide objective data for quantitative analysis.
The relevant representative studies are summarized in Table 3.

Gligoric et al. and Basu [37,38] employed a basic microphone to collect data on
classroom speech, to analyze and classify audio features including spectral entropy, formant
frequency, autocorrelation, and energy, and to convert audio signals into a representation
of the current level of students’ learning interest. This is achieved by combining machine
learning algorithms. Advanced sensor technology can also facilitate the monitoring of
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student engagement through a multitude of modalities. Spikol et al. [4] utilized the Kinect
One camera to monitor undergraduate engineering students’ facial and hand features
while using the camera’s built-in microphone to monitor the sound level and frequency of
students’ voices. Chiou and Tseng [18] proposed a smart classroom management system
deployed in an experimental classroom environment. A Wireless Sensor Network (WSN)
based on Zigbee technology was created in the paper, which used camera and microphone
sensors to monitor students’ inattentive behaviors and alert them with LED lights and
bracelet vibrations.

Table 3. Non-image-based biometric sensors for engagement analysis.

Sensor Type Monitored Feature Monitoring Purpose Typical Studies

EEG Device Brain activity Concentration and mental state analysis [39,40]

Acoustic Sensor Voice modulation Stress and emotional state analysis [37,38]

Galvanic Skin Response Sensor Skin conductance Stress and emotional arousal [41,42]

Heart Rate Monitor Heart rate Stress levels and engagement [42,43]

Blood Oxygen Sensor Blood oxygen levels Health monitoring in physical education [43]

Respiratory Rate Sensor Respiratory rate Stress levels and engagement [40]

Emotions can be defined as voluntary or involuntary responses to external factors.
People express their emotions through actions, such as speech, voice, facial expressions,
and body language. However, the emotions expressed in such actions are sometimes
manipulated and fail to clearly convey real feelings [44]. Monitoring objective physiological
indicators can objectively and truly present the current state and concentration of learners
in class. Hsu et al. [43] developed a reading attention monitoring system for e-book reading
via computers in higher education smart classrooms. In addition to using the webcam on
the display to monitor facial status, heart rate and blood oxygen sensors are installed on
the mouse to collect heart rate and blood oxygen indicators. Combined with the Artificial
Bee Colony (ABC) Algorithm, this system helps teachers understand students’ reading
concentration rate in the classroom learning environment. Chen et al. [39] proposed an
attention-based diagnosis and review mechanism (ADRM) based on EEG detection to help
record passages where students have low attention levels in interactive English learning
classes in a vocational high school. With printed textbooks and digital pens, targeted
review can be carried out on the parts with low attention levels in subsequent learning.
The experimental results showed that the review performance of the experimental group
was significantly better than that of the control group, confirming that ADRM improves
review performance. In addition, field-dependent learners performed better in review
than field-independent learners. Moreover, learners with low ability were better in review
performance in the experimental group than in the control group.

The monitoring of objective physiological data in the classroom often takes the form
of wearable sensor devices, which monitors multiple modals of data. Carroll et al. [40]
introduced a method for assessing unmanned aircraft systems (UAS) training classroom
engagement using non-invasive physiological and behavioral monitoring technology. This
was achieved by employing the Equivital EQ02 system to collect electrocardiogram (ECG),
electrodermal activity (EDA), respiratory rate and movement acceleration measurements.
Additionally, the VT3 mini eye tracker was employed to quantify the participant’s gaze
position. The study showed that physiological and behavioral data can successfully classify
learner engagement with 85% accuracy (including eye-tracking features) or 81% accuracy
(excluding eye-tracking features). In addition, the study found that the use of low-invasive
physiological measurements can observe changes in learner engagement in real time and
can support teachers to adjust training in different learning situations to optimize learner
engagement. Lascio et al. [41] adopted the Empatica E4 wristband with an electrodermal
(EDA) activity sensor to monitor teacher and student heart rate and electrical skin activity
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during university lectures over three weeks in spring 2017. Results demonstrated the
feasibility of using EDA sensors to monitor students’ emotional engagement during lectures,
and that this technology can provide feedback to students and instructors to improve
learning experiences and teaching methods. Similarly, Romine et al. [42] proposed a
wearable educational health device, the Edu-fit tracker, which combines measurements
of students’ electrodermal activity, skin temperature and heart rate to accurately track
and record cognitive load during learning tasks. The monitoring of these physiological
indicators can effectively reflect the changes in students’ cognitive load when dealing with
different tasks, and predict students’ focus through machine learning technology. This
system helped students manage and develop their own study habits and enhance their
learning ability.

2.2.2. Attendance

In the classroom, the traditional attendance method is a roll call, which is time-
consuming, especially in large classrooms. Moreover, this method also easily leads to
situations where someone substitutes for another person’s attendance. In recent years,
skipping classes has become a common phenomenon in college classrooms, and it has
spread, affecting the education and teaching of college classrooms. To solve this problem,
many studies on automated attendance recording have emerged.

Currently, the main attendance methods include roll call, radio frequency technol-
ogy (RFID [45], NFC [46]), smartphone-based technology (such as Bluetooth [47], NFC,
and WIFI [48]), and biometric recognition technology (fingerprint features [49], facial
features [50,51], and voice features [52]).

When using radio frequency and smart card technology to record attendance, students
only need to bring the card close to the identifier to record their attendance. However, it also
presents several issues such as the potential for card damage or loss, and the problem of
students lending their cards to others to proxy attendance. In addition, some studies have
developed some recognition applications based on the signal recognition of smartphone
devices [47,48]. After entering a specific range, you can use Bluetooth, WIFI, or GPS
technology on your personal mobile device to punch in and record, or scan the QR-Code to
record. But notably, the use of smart devices is not allowed in some schools.

Attendance recognition based on biometrics can reduce the reliance on personal
devices. Attendance management can be achieved by setting up recognition sensors in the
classroom and combining them with automatic recognition algorithms. The basic process
of attendance technology based on biometric sensors is: first, the basic biometric features
of students are “registered” and input and stored in the database as templates. These
features can be face, iris, voice, and fingerprint. Next is the verification stage, where the
biometric features collected in real time are compared and matched with the templates in
the database. If the pairing is successful, the recognition record is recorded as a successful
attendance record.

After reviewing, we found that there exists diverse studies and methods that can
help achieve attendance in the classroom, as shown in Table 4. Specifically, Ni et al. [50]
proposed a higher education classroom roll-call system based on face detection technology
using a camera as a sensor and the latest deep learning algorithm Faster-R-CNN, which
can help quickly count students’ attendance status. In this system, a camera placed in
front of the classroom collects classroom images and sends them to the school server for
facial data analysis. After processing, the student’s attendance record can be obtained.
Experimental results showed that the attendance rate of university classes had increased
by 15.3% after using the roll call system based on facial detection technology. It also greatly
saves class time, and the time required for roll call has been reduced by more than 10 times.
Similarly, a webcam with a Haar-Cascade facial recognition classifier deployed on a chat
robot was used to record attendance in [51]. After capturing the student’s facial image,
it was identified and compared with the known student facial database registered in the
system. The recognition result can also be prompted through the robot’s built-in speaker.
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Table 4. Biometric sensors for attendance.

Sensor Type Monitored Data Monitoring Purpose Typical Studies

Camera Facial or body image features Facial features identification [50]

Fingerprint Sensor Fingerprint patterns Fingerprint features identification [49]

Acoustic Sensors Voice characteristics Voice features identification [52]

Pressure Sensor The pressure applied to the chair Detect if someone is sitting in the chair [53]

Infrared Camera Infrared motion image Detect movements [54]

Fingerprints are also an important biological method for attendance. Gagandeep
et al. [49] utilized an R305 optical fingerprint scanner to quickly process image recognition
fingerprint, Wi-Fi module (ESP8266) to connect the device to the client application and
ARM Cortex M3 microcontroller as the device control center; each student was assigned
a unique ID number when building the database, which was compared with the optical
fingerprint scanner scan to complete the personal identity verification. The work in [55] was
also based on fingerprint recognition technology, and used a fingerprint student attendance
information system model that met the examination needs. The above two studies merely
proposed the design of the system but lacked sufficient experimental verification. With
the development of smartphone technology, Adal et al. [56] recommended using smart
mobile phones for fingerprint recognition attendance because most of these communication
devices are now equipped with built-in fingerprint sensors which are much cheaper.

Voice recognition can also be used to record attendance. Amri et al. [52] introduced
an attendance system based on voice biometrics. First, students were required to register
and save their voices. Then, the power spectral density (PSD) and transition parameter
methods were used to extract features from these voice samples to form a voice feature
database. The real-time voice input by students was compared with the pre-registered
voice data to identify the students, achieving an accuracy rate of 60%, which is potentially
effective. The system introduced in [57] which utilized the built-in microphone of an
Android smartphone for voice recognition can also be used for classroom management
and attendance. However, the above two studies proposed pioneering solutions but lacked
more rigorous empirical evidence. In addition, it is worth noting that almost all voice-based
attendance systems use the built-in microphone of the mobile phone to record voice [58]
because smartphones have built-in sound sensors, which are easy to use and do not require
additional deployment.

Additionally, there are more specific methodologies that can be employed. He et al. [53]
designed a smart chair system that can detect whether someone is sitting on the chair by
installing an Interlink 402 pressure resistor on the chair and binds the chair to the student
ID to check student attendance. The pressure data will be transmitted to the cloud to
achieve real-time monitoring of the chair occupancy status.

In order to improve the attendance effect, attendance can also be multi-identified.
Sarker et al. [59] proposed a multi-step authentication intelligent attendance manage-
ment system that integrates radio frequency identification, a biometric fingerprint sensor,
and password-based technology to reduce the number of substitute attendances. Yadav
et al. [54] pointed out that the traditional attendance method was to call the student’s
name or use a sensor-based card (RFID sensor) or biometric fingerprint-based attendance
system. These methods are not efficient enough and cannot determine whether the student
has attended the entire course. This study proposed a dynamic attendance management
system that adds an infrared-based motion sensor to the basic recognition system. When
the student’s movement is detected, the camera is activated to start recording video to
identify the student, keep track of the student’s entry into and exit from the classroom,
and determine whether the student has fully participated in the course. In order to solve
the problem of absenteeism, Veer and Momin [60] also suggested tracking video frames to
achieve a continuous or regular observation of student facial images, ensure the student’s
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attendance time, and reduce the number of students absent from the course. However,
further validation of the system mentioned above is missing in their study.

2.2.3. Accessibility Support

The application of sensor technology has enabled people with disabilities to gain
additional abilities to understand the world, compensated for the body’s defects in “per-
ception”, and enabled students with disabilities to engage in more diverse learning. This is
the significant impact of the development of sensors.

For individuals with hearing and speech impairments, sign language represents the
sole means of communication with non-disabled individuals. However, it is not necessary
for non-disabled individuals to master sign language, as they lack the requisite knowledge.
The application of image-based gesture recognition technology in smart classrooms has the
potential to address this issue. Traditional gesture recognition devices and algorithms are
often static and therefore cannot be applied to dynamic interactions in practice. Varshin
and Vidhyapathi [61] proposed a dynamic finger gesture recognition device and algorithm
based on the Microsoft Kinect device. The results of real-world tests showed that the system
can recognize dynamic gestures of one hand and two hands, process depth data in real
time, continuously monitor finger movements and quickly output results, facilitating the
deployment of gesture recognition technology in real-time field environments, such as
classrooms. Based on this technology, this system can provide powerful communication
support for people with hearing and speech impairments in the classroom.

Zhang et al. [62] proposed a more efficient and simple smartphone-based gesture
recognition system (GazeSpeak) that can interpret eye gestures in real time. The article also
conducted a comparative experiment with the e-tran board. The results showed that the
system was superior to the e-tran board in terms of communication speed and availability,
showing good user satisfaction.

Lathière and Archambault [63] employed basic microphone sensors combined with
speech recognition systems to convert sound into text; deaf and hard of hearing students
were able to use subtitles to learn in class and understand the professor’s speech.

In early 2005, a software program called EyeDraw was developed for children with
severe motor disabilities in [64], which runs on a computer with an eye-tracking device.
This technology enabled disabled children to draw pictures by moving their eyes. The
validation experiment found that, compared with EyeDraw Verson 1, the functionally
improved EyeDraw Verson 2 can support all stages observed in the natural drawing
learning process better. In addition, the study also found that adding features such as color,
pattern, and sound feedback can improve the user experience and help attract users to use
the software more deeply.

2.3. Overview of Sensor Technologies and Applications in Classroom

The role of smart sensors in the classroom is multifaceted. They can be employed to
monitor the classroom environment and create a more conducive teaching environment.
Additionally, they can serve as an assistant to educators, enabling them to sense students’
participation in real time and assist with recording students’ attendance, thereby alleviating
the burden of classroom management for educators. This section introduces the types of
sensors in smart classrooms and their various applications.

This study also revealed potential trends. (1) An increasing number of new sensor
devices are being introduced into smart classrooms. Some of these are commercial biosensor
products, which have the characteristics of miniaturization and wearability. For example,
head-mounted eye trackers, brain wave sensors, skin electrical sensors, and other human
factors testing wearable kits can provide objective physiological signal data to support
quantitative analysis. Furthermore, some research devices are capable of monitoring
multiple physiological signals simultaneously, as exemplified by the Equivital EQ02 [27].
(2) The increasing prevalence of smart mobile devices has led to the introduction of smaller
and more integrated sensors into the classroom. In instances where students are permitted
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to utilize smartphones, these devices have also emerged as a cost-effective, portable and
efficient form of sensor in the classroom. Teachers and students can employ smartphone
cameras, microphones, fingerprint recognition sensors, accelerometers, and other sensors to
monitor attendance and participation. Of course, the dominance of traditional sensors, such
as cameras, microphones, and environmental sensors, in smart classroom applications has
not been entirely supplanted by the advent of new technologies. Image cameras continue
to provide the most abundant and intuitive information. (3) Moreover, the utilization of
sensor technology in educational settings is indicative of a growing trend towards data
fusion and multimodal analysis. There is an increasing emphasis on the integration of multi-
sensor data, as opposed to relying on a single sensor. The formation of a comprehensive
analysis enables a more accurate understanding and prediction of students’ learning status
and needs.

3. Software: Integration with Artificial Intelligence

The advancement of sensor technology in smart classrooms is contingent upon the
development of hardware and the implementation of software algorithms. In particular,
the integration of artificial intelligence technology enables sensor systems to process and
analyze data with greater efficiency, thereby enabling the generation of more nuanced and
personalized content, which in turn facilitates the delivery of higher quality educational
services. In systems comprising sensors, actuators, and processors (as shown in Figure 2),
the primary function of software algorithms is to (1) filter the data collected by the sensors,
(2) comprehend the data, (3) analyze the data, (4) generate content, and (5) output content
to the actuators.
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Over the past decade, advancements in traditional algorithms and the emergence of
novel AI technologies have led to notable enhancements in sensor software technology.
Various branches of AI, including machine learning, natural language processing, and
reasoning and judgment systems, have been investigated and implemented in the domain
of education. This section will delineate the advancements in sensor technology within the
context of education, with a particular focus on the role of software algorithms, particularly
AI technology.

Today, artificial intelligence (AI) technology is defined as the technology and science
that enables computer systems to perform tasks that normally require human intelligence.
These tasks include, but are not limited to, learning (acquiring information and applying
rules to use the information), reasoning (using rules to reach approximate or definite
conclusions), self-correction, and understanding language.

Baker and Smith [65] provided a comprehensive definition of artificial intelligence,
which they define as a computer that performs cognitive tasks, usually associated with
human thinking, especially learning and problem solving. They also highlight that artificial
intelligence is not a single technology but rather a general term for a range of technologies
and methods, including machine learning, natural language processing, data mining,
neural networks, and algorithms.

The capacity of AI to analyze vast quantities of data and automate complex tasks has
opened up new avenues for enhancing both teaching and learning experiences. In the field
of education, the application of AI, or Artificial Intelligence in Education (AIEd), has also
become one of the emerging and rapidly developing fields. The survey [7] put forth four
principal domains of AI implementation in higher education: (1) analysis and prediction,
(2) evaluation and assessment, (3) adaptive systems and personalization, and (4) intelligent
tutoring systems. The article by Silva et al. [66] posited that artificial intelligence (AI)
in education serves as a tool to support various aspects of teaching practice evaluation,
student learning performance prediction, student behavior analysis, and learning emotion
recognition. AI tools for teachers are employed to automate the management of classroom
attendance and student engagement, facilitate the evaluation and provision of feedback
on student learning outcomes, and reduce the workload of teachers. System-oriented AI
tools assist institutional managers in the management and monitoring of their institutions,
providing information such as school staff flow.

From the perspective of combining with sensor technology, this article identifies four
principal areas in the application of AI sensor technologies in education: analysis and
prediction, teaching evaluation and learning feedback, personalized learning support, and
teaching management. This section emphasizes the synergy between sensors and advanced
AI computational technologies, illustrating how they work together to enhance educational
experiences through data processing and understanding algorithms and data analysis and
content generation algorithms.

3.1. Data Processing and Understanding

Processing and understanding the data collected by sensors is one of the main tasks of
software algorithms. This enables the processor system to convert the physical information
of sensors into data signals with recognizable value, realize the understanding and recogni-
tion of scenes, and provide a prerequisite for microprocessors to make decisions. After a
literature survey, the research on data recognition algorithms based on AI technology is
mainly applied to the understanding of biological characteristics such as teacher or student
behavior and characteristic status. Compared with the understanding of the physical
environment characteristics of the classroom, it is more complex and requires processing
larger and more complex data.

The progress of AI technology in this field is particularly reflected in the large-scale
application of machine learning technology, especially the deep learning technology that
has developed rapidly in recent years. Deep learning technology has great potential in
automatic feature processing, large-scale data recognition, generalization ability, data
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processing rate and efficiency, and accuracy in specific scenarios. It is able to realize end-to-
end learning and direct training from input to output. Moreover, it has good performance
in complex image recognition and audio processing.

At present, there are numerous significant studies on smart classroom image recog-
nition algorithms. Meanwhile, traditional machine learning algorithms can also meet
the requirements for data processing and achieve favorable outcomes when the amount
of data and computing resources are limited. As an example, when dealing with linear
problems such as EEG signals, body temperature, and ECGs on students, traditional ma-
chine learning algorithms are the simpler, easier to debug approach compared with deep
learning algorithms.

Considering the prominent number and progress of classroom image recognition stud-
ies based on AI technology, this section will consider whether or not image recognition is a
benchmark for illustrating the role of AI technology in the advancement of recognition algo-
rithms from two perspectives: image-based and non-image-based recognition algorithms.

3.1.1. Image-Based Recognition Algorithm

Images can present a wealth of information. The recognition and understanding of
images can effectively help assess students’ emotional state, participation, attendance,
and learning behavior patterns, and realize automated classroom management. Although
existing devices such as electroencephalograms (EEGs), electrocardiograms (ECGs), and
eye-tracking devices can be used to recognize emotions, cameras are the most promising
type of sensor because visual images often have the richest information and do not need
to be worn [67]. Typical image-based recognition algorithms, including the recognition of
facial and body images are shown in Table 5.

Table 5. Image-based recognition algorithms integrated with AI technology.

Types of
Recognition

Sensors

Recognized
Features Recognition Purpose Classifier Accuracy Typical Study

Computer camera Student facial
images Emotion classification SVM Regression 99.16% [68]

Classroom
wall-mounted

camera

Student facial
images

Dynamically evaluate
classroom

performance
CNN 70.1% [69]

Classroom
wall-mounted

camera

Student facial
images Automated attendance CNN 99% [70]

Classroom
wall-mounted

camera

Student facial
images

Facial feature
recognition, emotion

recognition, classroom
sign-in

MTCNN

Facial recognition:
98%

Emotion
recognition: 92%

[71]

Classroom
wall-mounted

camera

Student facial
images Student identification KNN 93.94% [72]

Classroom
wall-mounted

camera

Student facial
images

Face recognition under
blurry conditions YOLOv5 81.42% [73]

Computer camera Student facial
images

Confused emotion
recognition CNN–SVM 93.8% [74]

Computer camera Student body
movement images

Student action
recognition CNN 89.5% [75]
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Tarnowski pointed out that there are many ways to identify personal emotions (such as
monitoring eye movements, body posture, electromyographic signals, heartbeat, etc.) [76],
among which emotion recognition based on facial image features is the most commonly
used method. Facial image recognition is also an effective method for automated attendance
in classrooms. Lek and Teo [77] divided the FER (Facial Emotion Recognition) algorithms
into traditional FER and FER based on deep learning. The methods used in traditional
facial recognition technology include the Viola-Jones algorithm, Support Vector Regression
(SVR), Support Vector Machine (SVM), Decision Tree, Random Forest (RF), Naive Bayes,
K-Nearest Neighbors (KNN), Adaptive Boosting (AdaBoost), and other traditional machine
learning technologies. Facial recognition algorithms based on deep learning technology
mostly use the emerging machine learning technology of the Deep Neural Network (DNN).
The main difference between them and traditional recognition algorithms is whether deep
learning technology is used.

Facial emotion recognition can be divided into the following steps, as shown in
Figure 3: (1) Preprocessing: This involves the reduction of noise and redundant data,
face detection, dimensionality reduction, and normalization. (2) Feature extraction: This
includes the extraction of geometric features, appearance-based features, or physiological
features of FER. (3) Emotion classification: This is achieved through the use of different
classifiers to classify the extracted feature expressions into appropriate categories, thus
enabling the identification of emotions. Within traditional FER algorithms, facial emotion
expression features are extracted manually and then classified using non-deep neural
network machine learning algorithms. In contrast, deep learning-based FER automatically
extracts features and classifies them automatically, without the need for manual feature
extraction. Deep neural networks are responsible for feature extraction and classification.
Both methods can achieve good recognition efficiency in specific scenarios. Currently,
support vector machines (SVMs) are a conventional learning emotion classifier that is
widely used in FER systems. Besides, convolutional neural networks (CNNs) are the most
commonly used deep learning classifiers. Lek and Teo [77] pointed out that the majority of
literature studies employ CNNs in the feature extraction stage. This conclusion can also be
preliminarily observed in Table 5.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 34 
 

 

expression features are extracted manually and then classified using non-deep neural net-
work machine learning algorithms. In contrast, deep learning-based FER automatically 
extracts features and classifies them automatically, without the need for manual feature 
extraction. Deep neural networks are responsible for feature extraction and classification. 
Both methods can achieve good recognition efficiency in specific scenarios. Currently, 
support vector machines (SVMs) are a conventional learning emotion classifier that is 
widely used in FER systems. Besides, convolutional neural networks (CNNs) are the most 
commonly used deep learning classifiers. Lek and Teo [77] pointed out that the majority 
of literature studies employ CNNs in the feature extraction stage. This conclusion can also 
be preliminarily observed in Table 5. 

 
Figure 3. Process of facial emotion recognition. 

Sabri et al. [68] employed the SVR (SVM regression) classifier of traditional machine 
learning technology to monitor the four emotions (happy, normal, sad, and surprised) of 
students engaged in online learning during the epidemic. The accuracy rate achieved was 
99.16%. The application analyzed static frontal facial images of students to identify the 
emotion type. The specific process is as follows: the grayscale conversion and contrast 
stretching of the collected images are preprocessed, then the Haar Cascade or Viola-Jones 
algorithm is used for face monitoring to determine whether there is a face in the image. 
The face model technique is then employed for eye and mouth localization, the skin-color 
segmentation technique is used for image segmentation, and the Grey-Level Co-Occur-
rence Matrix (GLCM) is used for feature extraction. Following the aforementioned steps 
of image processing and feature extraction, the SVM regression classifier is employed for 
emotion classification. A smart classroom learning status management system is proposed 
in study [78]. It utilizes a range of sensor technologies, including cameras, body tempera-
ture sensors, pulse sensors, and image recognition technologies, to detect and collect a 
multitude of data points about students. This information is then processed through a 
Bayesian classification network, which is used to infer the students’ learning status. Fur-
thermore, the system incorporates a feedback mechanism that not only furnishes the out-
comes of immediate learning status analysis to educators but also alerts students who are 
identified as inattentive in class. 

As for face recognition based on deep learning technology, the convolutional neural 
network (CNN) is the most widely used classification algorithm today. It can be imple-
mented directly on the input image without using any face detection or feature extraction 
algorithm, which makes it the most effective algorithm [79]. The FER method based on 
deep learning significantly reduces the reliance on facial physics-based models and other 
pre-processing techniques by implementing “end-to-end” learning directly from the input 
image in the pipeline. As a distinct type of deep learning, CNN visualizes the input image 
to facilitate the comprehension of the model learned through various FER datasets and to 
demonstrate the emotion detection capability of the network trained on the dataset and 

Figure 3. Process of facial emotion recognition.

Sabri et al. [68] employed the SVR (SVM regression) classifier of traditional machine
learning technology to monitor the four emotions (happy, normal, sad, and surprised) of
students engaged in online learning during the epidemic. The accuracy rate achieved was
99.16%. The application analyzed static frontal facial images of students to identify the
emotion type. The specific process is as follows: the grayscale conversion and contrast
stretching of the collected images are preprocessed, then the Haar Cascade or Viola-Jones
algorithm is used for face monitoring to determine whether there is a face in the image.
The face model technique is then employed for eye and mouth localization, the skin-color
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segmentation technique is used for image segmentation, and the Grey-Level Co-Occurrence
Matrix (GLCM) is used for feature extraction. Following the aforementioned steps of image
processing and feature extraction, the SVM regression classifier is employed for emotion
classification. A smart classroom learning status management system is proposed in
study [78]. It utilizes a range of sensor technologies, including cameras, body temperature
sensors, pulse sensors, and image recognition technologies, to detect and collect a multitude
of data points about students. This information is then processed through a Bayesian
classification network, which is used to infer the students’ learning status. Furthermore,
the system incorporates a feedback mechanism that not only furnishes the outcomes of
immediate learning status analysis to educators but also alerts students who are identified
as inattentive in class.

As for face recognition based on deep learning technology, the convolutional neural
network (CNN) is the most widely used classification algorithm today. It can be imple-
mented directly on the input image without using any face detection or feature extraction
algorithm, which makes it the most effective algorithm [79]. The FER method based on
deep learning significantly reduces the reliance on facial physics-based models and other
pre-processing techniques by implementing “end-to-end” learning directly from the input
image in the pipeline. As a distinct type of deep learning, CNN visualizes the input image
to facilitate the comprehension of the model learned through various FER datasets and
to demonstrate the emotion detection capability of the network trained on the dataset
and various FER-related tasks [79]. Lasri and Solh [80] achieved 70% accuracy using Haar
Cascades face detection with normalization and emotion recognition using CNNs on the
FER 2013 database, with the data classified into seven facial expressions: surprise, fear,
disgust, sadness, happiness, anger, and neutrality. The results demonstrate that facial
emotion recognition is a feasible educational tool that can assist teachers in modifying their
expressions according to students’ emotions.

Some studies have improved and adapted CNN to more diverse application scenar-
ios. CNN can effectively help emotion recognition in static face images, while real-time
face recognition needs to solve the delay problem. Due to the generation of millions
of parameters, the delay of the hardware constraints used in the project is very large.
In [69], a real-time classroom evaluation system was designed using computer vision target
recognition technology. By removing the fully connected layer and combining the depth
separable convolution with the remaining modules, a real-time emotion recognition model
was established. Compared with the original model, the modified model reduced the
parameters by 80 times, increased the recognition time by 1.5 times, and increased the
average recognition accuracy (mAP) from 65.4% to 70.1%. It can realize real-time dynamic
evaluation of students’ classroom performance and provide quick feedback to teachers.

CNN is commonly used for image recognition that requires large label training, but for
scenarios with limited training data, the application of CNN has some limitations. In [70],
the pre-trained CNN was fine-tuned and a two-step method combining data enhancement
and CNN transfer learning was used to develop an automated attendance system focused
on single-sample face recognition. After comparing five pre-trained models, DenseNet121
was found to be the best model for practical problems (up to 99% top-1 accuracy).

The Multi-Task Convolutional Neural Network (MTCNN) is a modified CNN, a deep
cascaded multitask network that uses the intrinsic correlation between face recognition
and matching to improve performance [81]. Specifically, three cascaded networks are used.
These three cascaded networks are the Proposal Network (P-Net) for fast candidate window
generation, the Refinement Network (R-Net) for high-precision candidate window filter
selection, and the Output Network (O-Net) for generating the final wraparound box with
key points of the face [82]. The MTCNN algorithm is widely used in face detection because
of its high accuracy and fast detection speed. Wang et al. [71] employed an improved
MTCNN algorithm for face detection and then the FaceNet model for recognition. The
system achieved 98% accuracy in face recognition and 92% accuracy in student emotion
recognition. The proposed method can realize students entering classroom check-in within
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2s, which effectively improves the efficiency of classroom check-in, monitors the teaching
process, and manages the teaching effect.

Current deep learning methods mainly focus on global or local facial features, while
ignoring the multi-regional synergy of facial expressions from coarse to fine and the
subtle variance of expressions [83]. To solve this problem, Guo et al. [84] proposed a
multi-region attention transformation framework (MATF), which mainly includes a face
local segmentation network, an attention transformation network, and a feature weight
allocation mechanism. It associated global facial features with local details through the
multi-dimensional joint method of FER, and integrated global and local facial details for
expression recognition.

You Only Look Once version 5 (YOLOv5) is a CNN-based technology which is also
widely used in image recognition technology. Hu et al. [72] introduced a power IoU loss
function to You Only Look Once version 5 (YOLOv5) to detect students in You Only Look
Once version 5 (YOLOv5) based on non-intrusive classroom videos and obtained 95.4%
accuracy, and also developed a bimodal learning engagement detection method based
on ResNet50 and CoAtNet, which combined with the use of KNN classifier obtained an
accuracy of 93.94%.

Existing facial recognition algorithms are based on a single frontal image and are less
effective in processing multi-faceted images in real classroom environments (e.g., low video
resolution, blurred images, and less feature information). Therefore, detecting small faces
becomes a challenging problem. Bie et al. [73] improved YOLOv5 with the concept of
feature enhancement (FE-YOLOv5). In this study, Resnet-34_Focal was employed as the
expression classification network, and the proposed upsampling module and Convolution-
Batch Normalization-Leaky ReLU (CBL) module integrated more feature map information.
The UPS module reduced the local perception field of the network, enabling the backbone
network to learn detailed information more effectively. The CBL module accelerated the
convergence of the model and improved the nonlinearity of the features, thereby achieving
efficient feature extraction and fusion. This is more suitable for small face detection in
classroom situations and solves the problem of the inaccurate recognition of small targets
in the original network. In comparison to the original YOLOv5 algorithm, the average
accuracy mAP of this method has increased by 7.18%, reaching 81.42%.

In the work by Zhang and Cao [85], different convolutional neural networks were
employed. The system comprised MTCNN for face detection and an improved CNN for
face recognition, as well as a memory-augmented neural network (MAN) for tracking
students’ knowledge and learning status. These components were integrated to construct a
multi-functional intelligent education system based on deep learning algorithms, which
was capable of performing the four key functions: class attendance tracking, class status
monitoring, knowledge status monitoring, and learning report analysis. The accuracy of
face recognition was 96–97%, and the execution time of the model was less than or equal to
3 s.

In addition to the traditional FER algorithm and the deep learning FER algorithm,
studies have been conducted that combine the two methods to perform student facial recog-
nition. This algorithm is referred to as a hybrid facial recognition algorithm (Hybrid-FER).
Rao [86] introduced a hybrid convolutional neural network (CNN) model that employs
both manually designed features and features extracted from CNNs to identify the cog-
nitive state of online e-learners during the COVID-19 pandemic. The model achieved an
accuracy rate of 99.95% when the CK+ dataset was combined for training and testing. Shi
et al. [74] developed a model for detecting confusion emotions generated by students in
online learning. In the recognition method section, multiple methods (Histogram of Ori-
ented Gradients (HOG), Local Binary Patterns (LBP), Support Vector Machine (SVM), and
Convolutional Neural Network (CNN)) were combined to form four methods: HOG–SVM,
LBP–SVM, CNN, and CNN–SVM. The CNN–SVM combination demonstrated the most
promising performance, with average accuracy of 93.8%.
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Facial recognition is the most prevalent method for assessing student status based
on images in smart classrooms. Additionally, studies have indicated that the recognition
of student body posture, head movement, hand movement, gaze, and other features can
also present a wealth of visual information. In the study by Spikol et al. [4], traditional
machine learning and deep learning algorithms were employed to perform multimodal
sensor data recognition. The distance between the hand and the face, hand movement,
and speed were utilized as a crucial feature to facilitate the monitoring and prediction
of the success of the student team in open-ended tasks. In addition to the use of depth
cameras, the study employed marker wristbands to obtain three-dimensional positional
data regarding the hands of the students. Based on the aforementioned three-dimensional
information, two key indicators can be calculated: the distance between the students’
hands and the distance between the hands and the face (which helps to understand the
students’ current interaction, communication, and cooperation) and the hand movement
speed (which, to a certain extent, reflects the students’ current activity and participation).
The paper compares the performance of traditional machine learning and deep learning in
multimodal analysis. Both algorithms can achieve data classification. The deep learning
model has greater potential when using larger time windows and multimodal features.

Qi et al. [75] constructed a cascade analysis network model that integrates gaze esti-
mation, facial expression recognition, and action recognition to identify students’ attention
and engagement, thereby evaluating the engagement of students in online classes. In
addition to recognizing students’ facial expressions, the convolutional neural network
(CNN)-based L2CS-Net model is also used to identify students’ gaze directions, such as
yaw and pitch angles, to help determine whether students are focusing on the screen. When
students’ gaze deviated from the screen, the camera above the computer screen collected
students’ movements and used an improved 3D convolutional neural network (Inflated 3D
ConvNet) to process the image. This method stacked multiple consecutive video frames
and used a cube-like convolution kernel to capture action features in temporal information.
It also divided students’ actions into active actions, such as writing, reading, and passive
actions, including eating, looking around, sleeping, and playing with mobile phones. The
improved CNN-based algorithm proposed in this paper achieved an accuracy of 89.5% in
the recognition task, which was higher than the traditional algorithms (such as LRCN, C3D,
and Two Stream). Furthermore, it achieved a high-precision average angle error of 3.96◦

and 3.92◦ in student gaze estimation.
Monkaresi et al. [87] estimated students’ heart rates by analyzing small color changes

in facial videos (based on photoplethysmography, PPG, a light volume tracing technique)
and analyzed learners’ facial and heart rate features using traditional machine learning
classifiers such as Bayesian networks, random forests, and logistic regression, which were
used to assess students’ engagement. The results indicate that the accuracy of facial
expression is superior to that of heart rate.

3.1.2. Non-Image-Based Recognition Algorithms

Sensor algorithms for the recognition and understanding of image data are capable
of parsing rich visual image information. However, image information alone may be
somewhat one-dimensional, and non-image information can also provide reliable and
efficient information that enriches the pathway to understanding student states. Table 6
summarizes algorithms for non-image-based recognition. AI technologies have also made
great strides in helping to process and understand this kind of data, helping to broaden the
ways and dimensions of understanding student states in smart ways and dimensions of
understanding student states in the classroom.
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Table 6. Non-image-based recognition algorithms integrated with AI technology.

Types of
Recognition

Sensors

Recognized
Features Recognition Purpose Classifier Accuracy Typical Study

Acoustic Sensor Student Voice Understanding
student interest levels Adaboost M1 81.9% [37]

Acoustic Sensor Teacher’s Voice Reflecting student
satisfaction Random Forest 70.7%~83.9% [88]

Acoustic Sensor Teacher’s Voice

Identify emotional
information in

teachers’ voice during
teaching

CNN and LSTM 75.36% [89]

EEG Sensors Student EEG
signals

Identifying student
emotions DeepBi LSTM

Binary
classification:

70.89%
Multivariate
classification:

90.33%

[44]

Speech emotion recognition is a technique that can be used to analyze and predict
the current interest level in the classroom, helping to improve the interaction between
educators and learners. Existing studies have used diverse machine learning methods to
achieve an understanding and recognition of audio. The study by Gligoric et al. [37] based
on the Adaboost M1 machine learning algorithm transforms the sound signals collected
by the sensors into an understanding of the interest level. The specific steps are shown in
Figure 4. The sound is pre-processed using the algorithm proposed by Basu et al. [38] to
detect talking and non-talking segments in noisy environments, and then key features are
extracted from the processed sound segments, which mainly include the following:

• Spectral Entropy: a measure of the randomness and complexity of the sound signals,
which is usually used to distinguish between voiced (such as speech) and unvoiced
(such as breathing or background noise) sound.

• Formant Frequency: relates to the frequency characteristics of a sound and can reflect
the quality of a vowel, helping to identify the content and intensity of speech.

• Autocorrelation: used to analyze the periodicity of a sound signal and helps to identify
the rhythm, rate, and repetition pattern of a sound.

• Energy: the loudness of the sound signal, which reflects the level of activity and
engagement of the students.

The sound signals were then further analyzed and classified again using the HMM
(Hidden Markov Model) to distinguish between active student responses (such as question-
ing and discussion) and quiet listening periods, extracting more information about interest
levels. Finally, these extracted features are fed into the Adaboost M1 weak classifiers for
iterative recognition and comprehension, and the weighted vote of each weak classifier
determines the final classification decision, which determines whether a segment of the
lecture is “interesting” or “uninteresting”. The final classification decision is whether a
segment of a lecture is “interesting” or “uninteresting”. It is worth mentioning that the use
of the Adaboost M1 machine learning algorithm in the paper also helps to analyze and
understand the image information captured from the camera, and to recognize and track
the students’ body movements, such as fidgeting, nodding, and raising their hands.
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The research [88] by Uzelac and Gligoric identified the voice characteristics of lecturers
in the classroom environment, constructed a model using a random forest classifier, and
established a link between the voice characteristics of lecturers and the feedback of students’
satisfaction. This enabled the real-time continuous prediction of students’ classroom
satisfaction based on the voice characteristics, which in turn allowed teachers to adjust the
speed of speech, interaction, and other lecturing styles in a timely manner according to the
students’ satisfaction predicted by the model. The study compared the classification results
with the distribution of students’ satisfaction with the segments on the webpage. The
results demonstrated that the accuracy of this method in evaluating students’ satisfaction
with the quality of lectures ranged from 70.7% to 83.9%.

In [89], a speech emotion recognition model was constructed for the purpose of
analyzing the emotional information present in the teacher’s speech during the teaching
process. This model was constructed using a hybrid neural network (HNN) as a classifier,
with the specific aim of extracting three features: sound spectrogram, filter bank (FBank),
and Mel-frequency cepstral coefficient (MFCC). DenseNet was employed as a convolutional
neural network (CNN) module in the deep learning model training to convolve and merge
the spectrogram image representation of the audio file to generate an expanded feature
map. Subsequently, an LSTM architecture in the recurrent neural network (RNN) was
utilized to process the sequence data and learn the feature vector sequence output by the
CNN. Then, the distinct features processed by the CNN and LSTM were integrated through
a parallel subnetwork to form a comprehensive feature vector, which was then transmitted
to the fully connected layer and the Softmax layer for emotion classification. This process
enables the recognition of emotions in speech. The lowest error rate that this method
achieved was 24.64%.

As previously stated, facial expressions, voices, movements, and other signals are
subjective expressions of students’ emotions. These expressions may exhibit certain devia-
tions and may not necessarily represent the students’ true feelings. Conversely, measuring
objective physiological features such as electroencephalography (EEG), heart rate, and body
temperature should provide more reliable data. Abdulrahman et al. [44] proposed a method
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for emotion recognition based on EEG signals that employed deep learning. In this paper,
the empirical mode decomposition (EMD) and variational mode decomposition (VMD)
methods were employed to convert and preprocess EEG signals, simplify and decompose
EEG signals into a series of modal functions (IMFs), and manually extract statistical features
such as maximum, minimum, and average values from each IMF. The amplitude change
of the signal was indicative of the intensity and stability of the students’ brain activity.
Signal fluctuations of high amplitude and rapid changes indicate that students may be in a
state of high enthusiasm and high participation, while vice versa, they may be in a calm
state. Finally, the statistical features were input into the DeepBiLSTM deep learning model
for feature classification. This method achieved an average accuracy of 70.89% in binary
classification and an average accuracy of 90.33% in multivariate classification.

3.2. Data Analysis and Content Generation

In the previous subsection, we described the great potential of AI technology to help
sensors understand information about the classroom environment. However, how AI
technologies can help analyze previously understood data and output educational content
is also of great interest. Data analysis and content generation algorithms do not directly
process the data collected by the sensors, but rather empower the sensors with richer
and more powerful features that enable them to play different roles in different teaching
and learning sessions. For students, analytics and content generation algorithms can
help achieve personalized learning and provide not only personalized, efficient teaching
content support, but also the intelligent correction of students’ homework and the output
of intelligent feedback; for educators, these algorithms help make educational decisions,
predict the performance of students, automatically assess the quality of teaching, and
reduce the pressure on the management of educators.

This subsection will demonstrate the application of AI technology in smart classrooms
to facilitate the generation of decision-making and content software algorithms in three
distinct areas: educational analytics and prediction, teaching quality assessment and
feedback, and personalized learning and instructional support.

3.2.1. Analysis and Prediction

The learning analysis capabilities of machine learning technology can be employed to
achieve educational prediction and decision-making, including admission decisions, course
scheduling, dropout and retention, and the prediction of academic performance. Com-
monly utilized analysis and prediction tools include logistic regression, traditional machine
learning methods, and deep learning methods, among which machine learning methods
exhibit superior classification accuracy compared to traditional logistic regression [7]. The
following presents some representative studies.

The advent of online virtual education platforms has generated a vast quantity of
educational data, which can be utilized to identify patterns in students’ learning behaviors
and optimize educational decisions. Waheed et al. [90] employed a deep artificial neural
network (Deep ANN) model to predict students’ academic performance from virtual learn-
ing environment (VLE) big data. The features extracted from VLE big data were manually
completed. These features include the students’ highest education level, age, the click data
of various activity types, delays in submitting homework, etc. Based on these features, the
deep artificial neural network proposed in this paper can determine whether students can
pass the course, whether they can pass the course with excellent results, and whether they
will drop out of the course. The classification accuracy rate achieved was between 84% and
93%, which was better than the baseline logistic regression and support vector machine
models in overall performance. This has the potential to enhance the educational decision-
making process. In the study by Yagci [91], a variety of traditional machine learning
methods were employed to predict the final exam scores of students enrolled in the Turkish
course. The students’ midterm exam scores and faculty and department information were
utilized as feature parameters to input into models constructed using machine learning
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algorithms, including Random Forests, Nearest Neighbor, Support Vector Machines, Logis-
tic Regression, Naïve Bayes, and K-Nearest Neighbor. The efficiency differences between
the methods were then compared. The classification accuracy of these machine learning
algorithms ranged from 70% to 75%. The results of this study demonstrated that Random
Forests, Neural Networks, and Support Vector Machines exhibited high predictive accuracy
in predicting students’ academic performance and contributed to the early identification of
students at high risk of failure.

Furthermore, machine learning algorithms have also been used to predict students’
job placement after graduation. Based on students’ academic performance in the tenth,
twelfth, final year, and up to the graduation date, Maurya et al. [92] employed a variety
of machine learning classifiers (such as support vector machines (SVM), Gaussian Naive
Bayes, K-Nearest Neighbor, Stochastic Gradient Descent, Random Forest, Decision Tree,
Logistic Regression, and Neural Network) to predict students’ positions in the IT industry.
The best performing method, Stochastic Gradient Descent, achieved an accuracy of 91.17%.

3.2.2. Teaching Quality Assessment and Student Feedback

In the past, the evaluation of teachers’ teaching quality was mostly based on observa-
tion, questionnaires, or grades. This process is subjective and may result in a low accuracy
of the scoring system [93]. The integration of artificial intelligence technology is capable
of enhancing the analysis of data collected by sensors to provide a more comprehensive
and objective teaching evaluation. In addition, the application of AI technology can realize
the automation of evaluation processes. By inputting data on satisfaction, classroom in-
teraction, student test scores, homework submission, classroom participation, and other
classroom process characteristics for training and classification, it can provide timely au-
tomated feedback and evaluation, and integrate it into learning activities to continuously
analyze students’ performance, rather than stopping for testing to improve the efficiency of
evaluation [94]. Lin [93] constructed an objective automatic teaching evaluation model with
the weighted naive Bayes algorithm. This modal was able to enhance the efficiency and
performance of the evaluation model when applied to a larger scale of teaching evaluation
data. The discrepancy between the model output and the standard manual score was
no greater than 10%, which rendered the model capable of replacing manual scoring. To
enhance the precision of the teaching evaluation model and mitigate the impact of various
confounding variables in the evaluation process, Sun [95] employed the ACLLMD method
(a signal processing method) to decompose and eliminate power quality interference sig-
nals, resolving issues encountered in the signal decomposition process and enhancing the
Relevance Vector Machine (RVM) machine learning algorithm in the feature extraction
stage. Moreover, Huang [96] proposed an active learning algorithm based on a hybrid
Gaussian process and an improved correlation vector machine model. This algorithm
improved the efficiency and accuracy of ELT assessment by strategically selecting and
labeling samples.

The assessment of student learning outcomes represents a crucial responsibility for
educators at all levels of academic instruction. With regard to written assignments, it is
undoubtedly one of the most challenging, laborious, and time-consuming tasks [97]. In
2014, a system for automatically grading computer programs using machine learning was
first proposed in [98].

In general, student work is divided into closed and open questions. Closed question
correction is easy to grade; as these questions have a single limited number of correct
answers, the general way to achieve grading is to compare the similarity of the answers
with the reference answers, and there are already efficient correction procedures. However,
for open-ended subjective short-answer questions, there are often no standard answers for
these questions, which require a great deal of teacher attention and are easily influenced
by the subjectivity of the grader. Automatic machine grading will effectively improve this
problem, and the progress of deep learning algorithms is expected to promote research in
this field. Zhang et al. [99] developed an automatic semi-open-ended short answer scoring
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model. The paper employed a long short-term memory recurrent neural network (LSTM)
to learn the representation in the classifier, which enabled the model to consider word
sequence information. The author integrated general domain information from Wikipedia
and specific domain information from labeled student answers to train the model, and set
up an experiment with seven reading comprehension questions and more than 16,000 short
answer questions. The results showed that the automatic scoring model was superior to
the existing model. However, this study also suffered from the typical issues of using deep
neural network technology, which required a large amount of labeled data for training.
Moreover, once trained, it was equivalent to being locked and could not dynamically adapt
to changes in the environment, resulting in a decline in evaluation performance. Jamil and
Hameed [100] constructed a real-time ISE (Intelligent Student Evaluation) system based on
DNN and NLP techniques that dynamically evaluates students’ answers. The model used
Particle Swarm Optimization (PSO) and Gradient Descent (GD) as optimization schemes for
model weight parameters, which allowed the model to adjust itself when encountering new
data, thus enabling continuous learning to adapt to new data and environmental changes.
The correction of math problems is also a typical application scenario for open-ended
questions. Botelho et al. [101] developed a system for automatically assessing students’
open-ended math questions using Natural Language Processing (NLP) techniques. It was
mainly a model based on machine learning and collaborative filtering methods, and this
system was able to give feedback and recommendations in addition to scores.

3.2.3. Personalized Learning and Instructional Support

According to the 2017 U.S. National Education Technology Plan, personalized learning
is defined as “instruction that optimizes the pace of learning and teaching methods based
on the needs of each learner” [102]. Ezzaim et al. [103] proposed a definition of adaptive
learning: the notion of adaptive learning can be defined as a technology-based approach
represented by educational systems and platforms that try to tailor pedagogical content,
presentation styles, or learning paths to individual profiles, such as cognitive state, affective
status, and knowledge level. In academia, the two terms personalized learning and adaptive
learning are used interchangeably [104]. Personalized learning has existed for hundreds of
years in the form of apprenticeship and mentoring, and as educational technology began to
mature in the second half of the last century, personalized learning emerged in the form of
intelligent tutoring systems.

In this century, advances in big data and learning analytics are expected to transform
personalized learning once again [105], especially represented by the great potential that
AI technologies hold in the field of personalized learning. The realization of personalized
learning requires machines to be able to analyze and understand the personal characteristics
of different learners. AI-based processing algorithms are capable of capturing educational
data from sensors or online system backgrounds, and output personalized content to
provide instructional support.

In large-scale distance learning institutions, AI can fully exert its advantages. These
institutions run modules for thousands of students, providing a rich learning database for
training artificial intelligence to generate personalized learning paths, because educators
can collect a large amount of students’ learning interaction data in the education platform
including click-through rate, learning time, problem-solving speed, and facial expressions.
These data do not come from traditional sensors, but from the background of the program
system. In this setting, machine learning technology which is capable of processing large
amounts of data is more efficient than traditional algorithms. Machine learning technology
can learn and analyze students’ learning behavior patterns from a large amount of data.
Subsequently, compared with traditional e-learning systems that provide similar content to
all learners, machine learning-based systems can provide specific learning routes that suit
the needs of each learner. In addition, the application learning system of natural language
processing (NLP) technology and emotion recognition can understand learners’ emotions
and expressions through sensors or language input, and combined with content generation
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technology, AI-based intelligent learning systems can play a role as a simulated teacher,
providing learners with real-time automatic one-to-one targeted learning feedback and
guidance without the need for a large number of teachers online. Furthermore, this system
is able to continuously track the real-time interaction of remote students and adapt to the
long-term growth and changes of learners.

A growing number of studies have been conducted employing artificial intelligence
(AI) algorithms to address challenges in personalized learning. Abyaa et al. [106] developed
an automatic classifier based on a supervised learning algorithm that can predict learners’
personality dimensions based on their learning traces in online learning systems, which is
very important in the design of personalized learning paths.

New learners to adaptive learning systems may encounter a “cold start problem”,
which is, the system usually has no information about the initial ability level of new learners
entering the learning environment. Therefore, it is challenging to accurately predict the
proficiency of these new learners, which may impact the quality of personalized item
recommendations in the initial stage of the learning environment. In order to improve
the adaptability of the system, Pliakos et al. [107] proposed a system that combines item
response theory (IRT) with machine learning. The new learner’s side information (including
age, relevant courses taken, IQ, and pre-test scores) and responses were used as machine
learning training sets. When new learners enter the system, the trained machine learning
model is used to predict their potential ability parameters based on their background
information. The predicted ability parameters are then combined with the IRT model to
predict the new learner’s response to learning items. This enabled the system to provide
more personalized learning materials while only having the most basic side information of
the learner, alleviating the impact of the cold start problem. This article also mentioned
that the IRT model combined with random forest provided the lowest error and highest
response prediction accuracy in ability estimation.

Additionally, adaptive learning platforms based on AI technology can also provide
personalized support to educators. In the process of designing online courses, educators
often dedicate significant time and effort to retrieving learning objects (LOs) to develop
suitable courses. Tahir et al. [108] proposed an intelligent system called DRFLO (Dynamic
Recommendation of Filtered Learning Objects) based on machine learning technology
and context-based recommendation methods. This system was designed to assist course
designers in searching and accessing high-quality learning resources that aligned with their
teaching objectives and course design based on their preferences and the current progress
of the teaching context.

Advances in natural language processing and emotion recognition technologies can
also provide learners with personalized learning support in the form of educational robots.
By integrating AI-powered chatbots (based on the Amazon Lex platform) into e-learning,
the system proposed in [109] by Davies et al. was able to provide customized learning ma-
terial based on different user parameters and make up for the lack of real-time consultation
in offline courses. However, at present, the level of chatbots cannot replace real educators
and can only serve as online assistants.

Lu et al. [110], based on the self-determination theory (SDT), designed a physical
learning assistant robot SLP (Smart Learning Partner) for middle school students. This
system supported informal chats with students through a conversational agent engine to
enhance students’ sense of social connection, and provided real-time feedback through
emotion recognition technology, which adapted to students’ emotional states. In addition,
the system can also utilize personal assessment results and interaction data with the
question-and-answer engine to automatically label different levels of knowledge mastery
for each concept, provide corresponding multidisciplinary learning materials, and achieve
a personalized learning experience. When students demonstrate significant progress
in the current learning topic, the SLP can also provide regular positive feedback and
encouragement, and encourage students to attempt more challenging learning topics
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to enhance students’ sense of challenge and achievement. This system was a powerful
assistant for learners for social interactions and daily learning activities.

Educational robot systems can also provide personalized support for specific learning
content. Jiao et al. [111] proposed an English oral teaching system based on speech recogni-
tion and machine learning. Through the deep belief network (DBN) support vector machine
(SVM) model, the pronunciation errors of oral learners were classified and detected, and
the quality can be intelligently scored and pronunciation errors can be corrected. This
system served as a personal oral learning partner and provided a new English oral teaching
model. Similarly, Liu et al. [112] employed an intelligent dialogue robot to practice drama
dialogue with students, thereby helping them to learn English speaking. This intelligent
oral learning system, called SmartVpen, integrated the context-aware intelligent learning
mechanism (CASLM) to perceive the learner’s learning content and provide oral feedback,
enabling learners to practice drama dialogue independently.

3.3. Summary of AI Integrated Sensor Software Algorithms in Classroom

This section reviews the combination of AI technology and sensor software algorithms
from the perspectives of recognition algorithms, analysis and prediction, and content gen-
eration algorithms, demonstrating its broad application prospects. Artificial intelligence
technology has significantly improved the efficiency and accuracy of data processing and
analysis. Machine learning technology has played its advantages in sensor data regression
and cluster analysis, and has achieved considerable recognition accuracy in image recogni-
tion, speech recognition, EEG signal analysis, and other tasks, enhancing the monitoring
and understanding of student behavior and emotions. In particular, the development of
deep neural network technology (DNN) has brought progress and huge development
potential to recognition algorithms. Deep learning algorithms represented by convolutional
neural networks (CNN) are particularly suitable for processing large amounts of image and
video data. This algorithm does not require manual feature extraction and has better accu-
racy. However, deep learning technology has recognition limitations or decreased accuracy
for data with less data volume, more details, and fewer classification dimensions, such as
micro-expressions. In some studies, these algorithms are often improved or combined with
other machine learning algorithms to adapt to the characteristics of different recognition
scenarios and achieve better results. Additionally, after the epidemic, the number of studies
on data recognition algorithms for online learning students based on sensor devices that
are limited by remote online learning (often cameras and microphones built into personal
computers or smartphones) has also increased.

Artificial intelligence technology expanded the scope of sensors. While machine
learning technology helps improve recognition efficiency, it can also learn the underlying
patterns within data and analyze students’ learning behavior data to help predict academic
success or recommend personalized learning paths. Based on AI technology, sensors
can also serve as “teaching supervisors” and “grading assistants”, evaluating teachers’
pedagogical quality in real time in class, grading homework after class (auto-grading),
obtaining students’ learning status, and obtaining objective feedback on teaching quality.
Natural language processing technology (NLP) demonstrated outstanding performance in
speech recognition and sentiment analysis. In certain studies, it has also been shown to be
effective when combined with large language models and voice or display output devices,
enabling it to act as an intelligent tutor chatbot, establish one-on-one communication with
students, and replace teachers to complete certain teaching and question-answering tasks.

4. Discussion

The use of artificial intelligence systems inevitably entails the collection of vast quanti-
ties of data, including confidential information about students and teachers, which raises
serious privacy and data protection issues [7]. Only two (1.4%) of the 146 articles retrieved
in the survey in [7] in 2019 critically reflect on the ethical implications, challenges, and risks
of AI applications in education.
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In some educational classrooms, cameras are still installed in classrooms in a way
that is both conspicuous and intrusive to each students’ desk, though in experimental
scenarios, which may still give students the psychological burden of being watched, raise
privacy concerns, and may lead to a decrease in classroom efficiency. Moreover, several
faculty, teaching assistants, student counselors, and administrators may be concerned that
intelligent tutoring systems, expert systems, and chatbots based on artificial intelligence
technology will take away their jobs. These are ethical issues that cannot be ignored. We
call on more researchers in the future to invest in research on data privacy and ethical issues
brought about by the introduction of emerging sensor devices in smart classrooms, help
protect the basic rights and interests of students and educators, and enhance the acceptance
of sensor technology at the use and social levels.

Usability is another significant challenge. The term “usability” is used to describe
the effectiveness, efficiency, and subjective satisfaction of a product when the user uses
it. Although numerous new sensor devices have been introduced in smart classrooms,
these devices still have problems with comfort and invasiveness. Some of these devices
are directly and conspicuously exposed in the classroom environment, while others, such
as wearable monitoring devices, may cause a poor wearing experience due to weight and
volume. Such situations will result in physical and psychological rejection and a sense of
unfamiliarity among students and teachers, thereby affecting the effectiveness of teaching.
In order to improve the usability of sensor devices, future research may be directed towards
reducing the visual presence of sensor devices in educational settings, hiding the devices
in corners, or developing more comfortable wearable devices. The interface of the sensor
involves viewing data information. How to present data information in a clearer and more
visual way also represents an important area for usability enhancement, which involves
the knowledge of human–computer interfaces and information design.

Since the pandemic, the trend of “remote” and “virtual” education has become increas-
ingly prominent, with the potential for a radical transformation of the teaching scenario.
The question of how to achieve a mastery of the classroom situation in a remote online
classroom or a classroom in a virtual reality space, and how to design new sensor systems
are issues that are rarely discussed. In the virtualized world, sensors may exist in new
forms. It is conceivable that sensor systems may be represented by a string of code that
calls background data, or integrated into wearable virtual reality devices.

5. Conclusions

The integration of sensor technology and artificial intelligence in smart classrooms is
constantly innovating the current education methods, greatly enhancing the “perception”
ability of the classroom, and providing strong support for interactive, personalized, and
intelligent teaching. This review introduces the application of various sensor technologies
in smart classrooms and their deep integration with AI algorithms, and summarizes the
main trends and challenges of current technology applications.

The sensor system can play multiple roles in a smart classroom. It monitors the
physical conditions of the classroom in real time and is committed to creating the most
comfortable and efficient teaching environment. The sensor system can also capture subtle
facial emotions, body movements, sounds, brain waves, and other signals from a profes-
sional and objective perspective to evaluate the status of teachers and students during
the teaching process, serving as a teaching supervisor. Sensor systems deployed with
artificial intelligence technology perform a wider range of functions. Such systems can act
as one-to-one intelligent tutors, learning from data, analyzing, and summarizing students’
learning behavior characteristics. They can also output academic prediction reports, pro-
mote personalized learning plans and content, provide educational chat exchanges, and
provide comprehensive intelligent educational support.

Sensor systems significantly improve teaching in smart classrooms; however, they
also require a high deployment cost. The development of low-cost and affordable sensor
solutions is urgently needed. Deep learning technology provides some more efficient and



Sensors 2024, 24, 5487 28 of 33

accurate recognition solutions, but it requires large-scale datasets, massive computing
resources and a large amount of memory, and the training and testing phases are very time-
consuming, which is challenging for some educational organizations with limited funds
and resources to provide independently. The cost of some advanced biosensor devices that
can provide objective physiological data is also a significant barrier to the promotion of
sensor technology. Yet, few studies have focused on reducing the deployment cost of deep
learning algorithms, and further research is necessary. One potential avenue for future
research is an investigation of the built-in sensors of personal mobile devices, such as
cameras integrated into smartphones or tablet devices. In numerous classrooms, sensors on
personal devices have been shown to complete attendance tasks at a low cost. These devices
have been employed for activities such as QR code scanning check-in, geolocation check-in,
and identity recognition. They do not necessitate additional equipment configuration costs
and can be utilized in sufficient quantities. In addition, they are more accessible and user-
friendly, and generally require the development of a mobile application to invoke them.
However, there are few studies investigating the utilization of such sensors to complete
other educational applications, such as participation monitoring and personalized learning.
As the reform of smart classrooms in education and teaching emphasizes intelligence
while paying attention to cost-effectiveness, the balance between the cost of intelligent
systems in teaching classrooms and teaching gains is a very delicate issue that deserves
in-depth exploration.

This work also identified several trends in the application of sensors in smart class-
rooms. The use of wearable sensor devices and personal smart mobile devices has been
increasingly prevalent in smart classroom settings. Sensor devices are developing towards
miniaturization, integration, and wearability. Furthermore, with the advancement of vir-
tual reality technology and remote teaching technology, new types of sensor devices for
remote virtual teaching spaces will emerge to adapt to the “virtualization” of classrooms.
Of course, these trends are inseparable from the synchronous development of artificial
intelligence technology. The advent of deep learning technology and large language model
technology have shown their immense potential to help further improve the application
effect of sensors at the software algorithm level.

Nevertheless, the application of smart classroom technology still encounters challenges
including data privacy and security, deployment costs, availability, and new application
settings. Future research should focus on solving these issues and developing safer, more
efficient, and more usable technologies and algorithms. At the same time, more exploration
of multi-sensor integration, sensor data personalized learning, and intelligent recommen-
dation should be conducted, which can provide novel insights for the comprehensive
promotion and application of smart classrooms.

Yet, the integration of sensors and AI technology in smart classrooms has brought
unprecedented opportunities and challenges to the intelligentization of education. Through
continued technological innovation and application research, smart classrooms will become
the main model of future education, helping to promote the intelligent, personalized and
interactive development of education, and providing teachers and students with enhanced
teaching and learning experiences.
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