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Abstract: The early detection of liver fibrosis is of significant importance. Deep learning analysis
of ultrasound backscattered radiofrequency (RF) signals is emerging for tissue characterization as
the RF signals carry abundant information related to tissue microstructures. However, the existing
methods only used the time-domain information of the RF signals for liver fibrosis assessment, and
the liver region of interest (ROI) is outlined manually. In this study, we proposed an approach for
liver fibrosis assessment using deep learning models on ultrasound RF signals. The proposed method
consisted of two-dimensional (2D) convolutional neural networks (CNNs) for automatic liver ROI
segmentation from reconstructed B-mode ultrasound images and one-dimensional (1D) CNNs for
liver fibrosis stage classification based on the frequency spectra (amplitude, phase, and power) of
the segmented ROI signals. The Fourier transform was used to obtain the three kinds of frequency
spectra. Two classical 2D CNNs were employed for liver ROI segmentation: U-Net and Attention
U-Net. ROI spectrum signals were normalized and augmented using a sliding window technique.
Ultrasound RF signals collected (with a 3-MHz transducer) from 613 participants (Group A) were
included for liver ROI segmentation and those from 237 participants (Group B) for liver fibrosis stage
classification, with a liver biopsy as the reference standard (Fibrosis stage: F0 = 27, F1 = 49, F2 = 51,
F3 = 49, F4 = 61). In the test set of Group A, U-Net and Attention U-Net yielded Dice similarity
coefficients of 95.05% and 94.68%, respectively. In the test set of Group B, the 1D CNN performed the
best when using ROI phase spectrum signals to evaluate liver fibrosis stages ≥F1 (area under the
receive operating characteristic curve, AUC: 0.957; accuracy: 89.19%; sensitivity: 85.17%; specificity:
93.75%), ≥F2 (AUC: 0.808; accuracy: 83.34%; sensitivity: 87.50%; specificity: 78.57%), and ≥F4 (AUC:
0.876; accuracy: 85.71%; sensitivity: 77.78%; specificity: 94.12%), and when using the power spectrum
signals to evaluate ≥F3 (AUC: 0.729; accuracy: 77.14%; sensitivity: 77.27%; specificity: 76.92%). The
experimental results demonstrated the feasibility of both the 2D and 1D CNNs in liver parenchyma
detection and liver fibrosis characterization. The proposed methods have provided a new strategy for
liver fibrosis assessment based on ultrasound RF signals, especially for early fibrosis detection. The
findings of this study shed light on deep learning analysis of ultrasound RF signals in the frequency
domain with automatic ROI segmentation.
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1. Introduction

Early detection of liver fibrosis is very important as it can progress to liver cirrhosis
and even hepatocellular carcinoma [1]. Currently, a liver biopsy [2] still serves as the golden
standard for staging liver fibrosis. However, it is invasive and may cause complications
and sampling errors [3]. Therefore, noninvasive imaging methods for liver fibrosis staging
are of high interest. Among the different medical imaging modalities, ultrasound imaging
is frequently used in clinical practice because it is real-time, low-cost, and widely available.

B-mode ultrasound imaging has been mostly used for liver fibrosis assessment. How-
ever, B-mode ultrasound is qualitative because it is constructed from the logarithmic
compression of the envelopes of ultrasound-backscattered radiofrequency (RF) signals and
can be affected by post-processing parameters such as the dynamic range. Moreover, the
most significant source of variability in B-mode ultrasound is the insufficiently trained
users. The original ultrasound-backscattered RF signals contain more abundant informa-
tion than a B-mode ultrasound and can be used to extract different quantitative ultrasound
parameters from the frequency, phase, and statistical information of RF signals, which
have been widely used for biological tissue characterization [4]. Acoustically, biological
tissue can be modeled as an ensemble of small particles that scatter sound waves, i.e.,
scatterers. The interaction of the incident ultrasound waves with the scatterers is carried in
the backscattered RF signals [5,6]. Such correlations between ultrasound RF signals and
tissue scatterers can be utilized to characterize microstructural alterations in the tissue that
are not evident on conventional B-mode ultrasound images [5].

Recently, deep learning analysis of ultrasound-backscattered RF signals has emerged
for biological tissue characterization [7–13]. The abundant information contained in the
ultrasound RF signals can be automatically extracted by convolutional neural networks
(CNNs) to yield a large number of feature parameters. By contrast, for the quantitative
ultrasound techniques [4–6], a specific mathematical or physical model needs to be used
to extract one feature parameter each time, usually under specific model assumptions.
Previous studies have demonstrated the capability of one-dimensional (1D) CNNs based
on time-domain RF signals in characterizing hepatic steatosis [7,8], osteoporosis [10],
glioma [13], and liver fibrosis [10,12]. The frequency-domain information of RF signals
has also been used to build CNN models to assess hepatic steatosis [11]. However, the
feasibility of 1D CNNs applied to frequency spectra of RF signals in characterizing liver
fibrosis has not been explored. Furthermore, when analyzing the liver RF signals, the
liver region of interest (ROI) corresponding to the liver parenchyma generally needs to be
identified first, but manual segmentation of liver ROIs from B-mode ultrasound images has
been used in previous studies [8,10–12]. Hence, there is a need for automatic segmentation
of liver ROIs.

In this paper, we proposed a two-step method for assessing liver fibrosis using deep
learning models applied to ultrasound RF signals. First, two-dimensional (2D) CNNs
were employed for automatic segmentation of liver ROIs from B-mode ultrasound images
reconstructed from the RF signals. Second, 1D CNNs were used to classify liver fibrosis
stages based on frequency spectra (amplitude, phase, and power) of the segmented ROI
signals. Inspired by the work of Sanabria et al. [11], we hypothesized that the frequency-
domain information, i.e., frequency spectra, of ultrasound RF signals may be utilized to
build 1D CNN models for liver fibrosis characterization. We also hypothesized that 2D
CNN models based on reconstructed B-mode ultrasound images may be used for automatic
liver ROI segmentation. To test the two hypotheses, ultrasound RF signals collected from
613 participants were included for liver ROI segmentation and those from 237 participants
for liver fibrosis stage classification. Experimental results showed that the proposed method
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is feasible for automatic liver ROI segmentation and liver fibrosis stage classification. The
novelty of this work consists of using both 2D and 1D CNNs for liver parenchyma detection
and liver fibrosis characterization.

This paper is organized as follows. Section 2 describes the ultrasound RF signal collec-
tion and the proposed method. Section 3 presents the results of liver ROI segmentation and
liver fibrosis stage classification. Discussion and conclusions are given in Sections 4 and 5,
respectively.

2. Materials and Methods

Figure 1 shows the flow chart of the proposed liver fibrosis stage classification ap-
proach using deep learning models applied to ultrasound RF signals. The proposed
approach was a two-step method. First, 2D CNNs were utilized for automatic liver ROI
segmentation from B-mode ultrasound images reconstructed from the RF signals. In this
study, two classical 2D CNNs, i.e., U-Net [14] and Attention U-Net [15], were used for liver
ROI segmentation because U-Net and its extension networks, such as Attention U-Net,
could yield fine segmentation for medical images, even with a small number of training
samples. The B-mode images were obtained using the Hilbert transform and logarithmic
compression and underwent data augmentation before training 2D CNN models. Binary
images of liver ROIs were obtained using the trained 2D CNN models. The segmentation
performance of U-Net and Attention U-Net models was compared, and the model with
better segmentation performance was selected as the final 2D CNN model. Second, 1D
CNNs were employed to classify liver fibrosis stages based on frequency spectra (am-
plitude, phase, and power) of the segmented ROI signals. The frequency spectra were
obtained using the Fourier transform and underwent normalization and data augmentation
before training 1D CNN models. Liver fibrosis stages were classified using the trained 1D
CNN models.
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Figure 1. Flow chart of the proposed liver fibrosis stage classification method using deep learning
models applied to ultrasound radiofrequency (RF) signals. First, two-dimensional (2D) neural
networks (CNNs) were utilized for automatic liver region of interest (ROI) segmentation from
B-mode ultrasound images reconstructed from RF signals. Second, one-dimensional (1D) CNNs
were employed to classify liver fibrosis stages based on the frequency spectra (amplitude, phase,
and convolutional power) of the segmented ROI signals. The white pixels in the liver ROI images
represent the detected liver region whose values were 1, and the black pixels represent the detected
non-liver region whose values were 0. The ROI spectrum signals were obtained by multiplying the
spectrum signals by the resized liver ROI image. The size of the signals or the images is indicated as
(a × b), where a is the sampling point number of a frame of signals or the height of an image, and b is
the scan line number of the frame of signals or the width of the image.
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This section is organized as follows. Section 2.1 describes the RF data collection.
Section 2.2 describes the methodology of the 2D CNN-based liver ROI segmentation.
Section 2.3 describes the methodology of the 1D CNN-based liver fibrosis stage classification.
Section 2.4 describes the segmentation and classification performance evaluation metrics.

2.1. Clinical Data

The liver ultrasound RF signals included in this study were divided into two groups.
Group A contained 613 cases of liver ultrasound RF signals, which were used for training
and testing 2D CNN models for automatic liver ROI segmentation based on reconstructed
B-mode images (Figure 1). Among them, 237 cases corresponded to adult liver fibrosis [16],
41 cases corresponded to pediatric liver fibrosis, 204 cases corresponded to adult hepatic
steatosis, and 131 corresponded to pediatric hepatic steatosis. Group B contained 237 cases
of ultrasound RF signals of adult liver fibrosis [16], which were used for training and
testing 1D CNN models for liver fibrosis stage classification based on ROI spectrum signals
(Figure 1).

The Institutional Review Board of Chang Gung Memorial Hospital at Linkou, Taiwan,
approved the data collection. An informed consent form was signed by each participant or
his/her guardian. The experiments were conducted following the approved guidelines.
Ultrasound RF signals were collected using a clinical ultrasound scanner (Model 3000,
Terason, Burlington, MA, USA) and a convex-array transducer with a 3 MHz central
frequency and a 12 MHz sampling frequency. Each case of ultrasound RF signals was a
frame of signals collected from one participant. Each frame of RF signals was composed of
256 scan lines, and each scan line had 1247 sampling points.

As the clinical reference standard for liver fibrosis staging, a liver biopsy and the
METAVIR scoring system were used to semi-quantitatively classify liver fibrosis into
5 stages: F0–F4. F0 corresponded to no fibrosis, F1 corresponded to portal fibrosis with
no septa, F2 corresponded to portal fibrosis with few septa, F3 corresponded to bridging
fibrosis with many septa, and F4 corresponded to cirrhosis (nodular stage). In this study,
the METAVIR scores were used as the reference standard for classifying liver fibrosis stages
in Group B with the proposed method. The number of participants with different stages of
liver fibrosis was scored as F0 = 27, F1 = 49, F2 = 51, F3 = 49, and F4 = 61.

2.2. Liver ROI Segmentation Using B-Mode Image-Based 2D CNNs
2.2.1. B-Mode Image Reconstruction from Ultrasound RF Signals

For Group A, B-mode images were reconstructed from ultrasound RF signals. First,
the Hilbert transform was used to detect the envelopes of a frame of RF signals. Second,
logarithmic compression was conducted on the detected envelopes (dynamic range: 40 dB)
to obtain a B-mode image. Note that no digital scan conversion was performed to recon-
struct the B-mode images. Each B-mode image was sized 1247 pixels × 256 pixels (height
× width). The reference standard of liver ROIs for the 2D CNN models was obtained by
manual delineation of the reconstructed B-mode images by expert radiologists. There-
fore, 613 B-mode images were obtained, corresponding to the 613 frames of RF signals in
Group A. The B-mode image reconstruction was performed using MATLAB 2019 (Math-
Works, Natick, MA, USA). Specifically, the MATLAB subroutine hilbert() was used for
envelope detection.

2.2.2. Data Augmentation for B-Mode Images

The 613 B-mode images were randomly divided on the participant level into a training
set, a validation set, and a testing set in a ratio of 60%:20%:20%. Consequently, there were
367 B-mode images in the training set, 122 B-mode images in the validation set, and 124 B-
mode images in the testing set. Data augmentation was performed to increase the number
of samples in the training set and the validation set. The data augmentation included
rotation and random cutting. The rotation angle was randomly set to 0◦, 90◦, 180◦, or 270◦.
In addition, we adjusted the brightness, saturation, and contrast of the B-mode images
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to increase sample diversity. After data augmentation, the training set had 734 B-mode
images, and the validation set had 244 B-mode images. Each B-mode image was resized to
192 pixels × 256 pixels (height × width) using bicubic interpolation to speed up 2D CNN
training and to reduce the parameter size of the trained 2D CNN models.

2.2.3. Network Structures of U-Net and Attention U-Net

U-Net [14] is a deep-learning network specifically designed for medical image seg-
mentation. Its structure was an improvement over the fully convolutional network [17].
Figure 2 shows the network structure of U-Net. U-Net had a topology structure of an
encoder and a decoder, with skip connections between them. The input to U-Net was a
3-channel B-mode ultrasound image sized 192 pixels × 256 pixels (height × width). On the
left side of the network was the encoder (Figure 2), which captured contextual information
and extracted features. An encoder layer consisted of two 3 × 3 convolutional layers with a
step of 1 and one 2 × 2 max-pooling layer with a step of 2. The output of the convolutional
layer was batch-normalized and then activated using a rectified linear unit (ReLU) [18]. On
the right side was the decoder (Figure 2) for precise positioning. A decoder layer consisted
of two 3 × 3 convolutional layers with a step of 1. The up-sampling in the decoder was
performed using transpose convolution. The decoder used the extracted features and the
information provided by skip connections to restore the size of the image and to produce
fine segmentation. The output of U-Net was a 1-channel liver ROI binary image sized
192 pixels × 256 pixels (height × width).
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Attention U-Net [15] was an extended network of U-Net [14], which incorporated
the attention mechanism into U-Net. Figure 3 shows the network structure of Attention
U-Net. The network structure of Attention U-Net was similar to that of U-Net. In Attention
U-Net, the attention gate was integrated into the skip connection and up-sampling modules.
Through the attention mechanism, the networks could suppress irrelevant information in
the image and highlight important local features.
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2.2.4. 2D CNN Model Training and Testing

The 2D CNN (U-Net and Attention U-Net) models were trained and tested on a
personal computer with an Intel(R) Xeon(R) W-2104 CPU @ 3.20 GHz, Nvidia Quadro P400
GPU, and 16 GB RAM. PyTorch (version 1.11.0) was used as the deep learning framework.
The batch size and the number of epochs were set to 2 and 100, respectively. Adam [19] was
used as the gradient optimizer, with an initial learning rate of 2 × 10–4 and betas of (0.9,
0.999). The loss function was the binary cross-entropy function [20]. After B-mode image
segmentation, the detected liver ROI image was resized back to 1247 pixels × 256 pixels
(height × width) using bicubic interpolation to match the size of the spectrum signals
(Figure 1).

2.3. Liver Fibrosis Stage Classification Using ROI Spectrum Signal-Based 1D CNNs
2.3.1. Frequency Spectrum Analysis of Ultrasound RF Signals

Quantitative ultrasound parameters could be obtained by extracting the spectral
information of ultrasound-backscattered RF signals [21–25], which could be used to analyze
tissue characteristics at different frequencies and provide a new perspective for tissue
characterization. Therefore, we extracted three kinds of frequency spectrum information,
i.e., the amplitude spectrum, phase spectrum, and power spectrum, from the ultrasound
RF signals in Group B by performing the Fourier transform.

The amplitude spectrum of a signal is the amplitude distribution of the signal at
different frequencies. Let s denote a scan line of ultrasound RF signals; the frequency
spectrum of s, SF, was obtained as follows:

SF = fft(s), (1)

where fft(.) denotes the fast Fourier transform. The amplitude spectrum, SA, was obtained
as follows:

SA = |SF|, (2)

The phase spectrum of a signal is the phase distribution of the signal at different
frequencies. The phase spectrum, SPH, was obtained as follows:

SPH = angle(SF), (3)

where angle(.) denotes the phase angle function.
The power spectrum of a signal is the energy distribution of the signal at different

frequencies. The power spectrum, SPW, was obtained as follows:

SPW = |SF|2/length(SF), (4)

where length(.) denotes the signal length function.
The MATLAB subroutine fft() was used for the fast Fourier transform. The MATLAB

subroutine abs() was used to compute the amplitude spectrum. The MATLAB subroutine
angle() was used to compute the phase angle.

2.3.2. ROI Spectrum Signal Normalization

With the segmented liver ROI image by the 2D CNN models, the ROI spectrum
signals were obtained by multiplying the spectrum signals sized 1247 points × 256 lines
(axial × lateral) by the binary, resized liver ROI image sized 1247 pixels × 256 pixels (height
× width) (Figure 1). Consequently, the pixel values in the non-liver region of the ROI
spectrum signals were 0. A data normalization technique was introduced to normalize the
ROI spectrum signals. Specifically, for a frame of ROI spectrum signals, R, the min-max
normalization method was used:

R’ = (R − Rmin)/(Rmax − Rmin) (5)
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where R’ is the normalized ROI spectrum signals, and Rmin and Rmax are the minimum
and maximum values of R, respectively. The MATLAB subroutine mapminmax()was used
for spectrum signal normalization. In the following text, the normalized ROI spectrum
signals were used where applicable.

2.3.3. Data Augmentation for ROI Spectrum Signals

To address the unbalanced data distribution issue and avoid overfitting [26], a data
augmentation method was employed for ROI spectrum signal augmentation before train-
ing the 1D CNN models. Take ≥F2 (i.e., binary classification between F0–F1 and F2–F4)
for instance. The number of the ROI spectrum signals of F0–F1, N01, was less than that
of F2–F4, N24. To avoid overfitting, the ROI spectrum signals of F0–F1 were augmented
by a factor of Naug, Naug = N24/N01. Figure 4 shows the flow chart of the data aug-
mentation for ROI spectrum signals. The input was a frame of spectrum signals sized
1247 points × 256 lines (axial × lateral). For each line with more than 768 points in the
liver region (indicated as the red solid lines in Figure 4), a gate of 768 points (indicated as
the purple dashed line in Figure 4) was slid on the liver region in a step of 20 points. As a
result, we obtained a frame of gated spectrum signals (indicated as the black solid lines
in Figure 4) sized 768 points × Llateral lines (axial × lateral). Next, a window (indicated
as the brown dashed rectangle in Figure 4) sized 768 points × 256 lines (axial × lateral)
was slid on the gated spectrum signals in a step of (Llateral − 256)/Naug to obtain Naug
frames of gated spectrum signals (indicated as the green solid lines in Figure 4); each
frame sized 768 points × 256 lines (axial × lateral). Note that the sizes of the sliding gate
(768 points × 1 line) and the sliding window (768 points × 256 lines) were experimentally
set. After data augmentation, the spectrum signal samples were randomly divided on the
participant level into a training set, a validation set, and a test set in accordance with a ratio
of 80%:10%:10%.
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2.3.4. Network Structure of the 1D CNN

Figure 5 shows the network structure of the 1D CNN for liver fibrosis stage classifica-
tion. The 1D CNN had four 1D convolutional layers, four max-pooling layers, and four
fully-connected layers. The features extracted by the convolutional and pooling layers were
integrated into a single 1D feature vector. The 1D feature vector was taken as an input to
the fully connected layer to output a prediction. Tanh(.) [27] was used as the activation
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function, which had a fast convergence speed and could effectively avoid oscillation of
loss values.
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2.3.5. 1D CNN Model Training and Testing

In this study, four kinds of liver fibrosis stage classification experiments were con-
ducted: (i) ≥F1, the binary classification between F0 and F1–F4; (ii) ≥F2, the binary
classification between F0–F1 and F2–F4; (iii) ≥F3, the binary classification between F0–F2
and F3–F4; and (iv) ≥F4, the binary classification between F0–F3 and F4. The 1D CNN
models were trained and tested for each of the three kinds of frequency spectra, i.e., am-
plitude, phase, and power, using the same computer and deep learning framework as
the 2D CNN models. The batch size and the number of epochs were set to 256 and 100,
respectively. Adam [19] was used as the gradient optimizer, with an initial learning rate
of 2 × 10–4 and betas of (0.9, 0.999). The loss function was the cross-entropy function [20].
For a frame of ROI spectrum, signals sized 768 points × 256 lines in the test set, each line
of ROI spectrum signals were input to the trained 1D CNN model, so 256 predictions
were obtained. Let nc and nw denote the correct and wrong predictions, respectively. If
the whole-frame prediction probability p = nc/(nc + nw) was greater than 0.5, then the
whole-frame prediction was determined as a correct classification.

2.4. Performance Evaluation Metrics
2.4.1. Evaluation Metrics for Liver ROI Segmentation

To evaluate the performance of the 2D CNN models for liver ROI segmentation, six
evaluation metrics were used: Jaccard similarity coefficient (JSC), Dice similarity coefficient
(DSC), accuracy (ACC), sensitivity (SEN), precision (PRE), and specificity (SPE). Each metric
had a value ranging from 0 to 1. A higher value corresponded to a better segmentation.
The metrics were defined as follows:

JSC(A, B) =
|A ∩ B|
|A ∪ B| ; (6)

DSC(A, B) =
2|A ∩ B|
|A|+ |B| ; (7)

ACC =
|TPP|+ |TNP|

|TPP|+ |FPP|+ |TNP|+ |FNP| ; (8)

SEN =
|TPP|

|TPP|+ |FNP| ; (9)

PRE =
|TPP|

|TPP|+ |FPP| ; (10)

SPE =
|TNP|

|TNP|+ |FPP| , (11)

where A is the liver region predicted by the 2D CNN models, and B is the liver region
manually delineated by human experts. TPP represents true positive pixels, TNP repre-
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sents true negative pixels, FPP represents false positive pixels, and FNP represents false
negative pixels.

2.4.2. Evaluation Metrics for Liver Fibrosis Stage Classification

To evaluate the performance of the 1D CNN models for liver fibrosis stage classifi-
cation, four metrics were used: ACC, SEN, SPE, and area under the receiver operating
characteristic (ROC) curve (AUC) [28]. Each metric had a value ranging from 0 to 1. A
higher value corresponded to a better classification. The metrics of ACC, SEN, and SPE
were defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
; (12)

SEN =
TP

TP + FN
; (13)

SPE =
TN

TN + FP
(14)

where TP represents true positive classifications, TN represents true negative classifications,
FP represents false positive classifications, and FN represents false negative classifications.

3. Results

This section describes the results of 2D CNN model-based liver ROI segmentation
(Section 3.1) and 1D CNN model-based liver fibrosis stage classification (Section 3.2).

3.1. 2D CNN Model-Based Liver ROI Segmentation

Figure 6 shows representative liver ROI segmentation results on the test set in Group
A by the U-Net and Attention U-Net models. The segmentation performance of the U-Net
model at the boundary was relatively lower, even with some missing boundaries. The
Attention U-Net model performed better in liver ROI segmentation and was closer to the
reference standard than the U-Net model. This indicated that the attention mechanism
enhanced the model’s capability for processing details.

Table 1 and Figure 7 show the liver ROI segmentation performance on the test sets in
Group A by the U-Net and Attention U-Net models in terms of JSC, DSC, ACC, SEN, PRE,
and SPE. The Attention U-Net model was slightly better than the U-Net model in each
metric. Compared with the U-Net model, the Attention U-Net model was 0.85% higher in
JSC, 0.37% higher in DSC, 0.78% higher in ACC, 0.77% higher in SEN, 0.14% higher in PRE,
and 0.42% higher in SPE. Because of its better segmentation performance, the Attention
U-Net model was chosen as the final 2D CNN model for detecting liver ROIs in Group B.

Table 1. Liver ROI segmentation performance on the test sets in Group A by U-Net and Attention
U-Net in terms of JSC, DSC, ACC, SEN, PRE, and SPE. The larger value of each metric is indicated as
bold numbers. JSC: Jaccard similarity coefficient; DSC: Dice similarity coefficient; ACC: accuracy;
SEN: sensitivity; PRE: precision; SPE: specificity. Attention U-Net was slightly better than U-Net on
each metric.

Metrics U-Net Attention U-Net

JSC (%) 90.11 90.96
DSC (%) 94.68 95.05
ACC (%) 93.86 94.46
SEN (%) 95.53 96.30
PRE (%) 94.24 94.38
SPE (%) 91.31 91.73
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Figure 6. Representative liver ROI segmentation results on the test set in Group A by U-Net and
Attention U-Net. (a–d) Liver B-mode ultrasound images, (e–h) manual delineation as the reference
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white pixels in the segmentation images represented the segmented liver region, and the black pixels
represented the segmented non-liver region. ROI: region of interest.
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3.2. 1D CNN Model-Based Liver Fibrosis Stage Classification

After data augmentation on the spectrum signals in Group B, the numbers of spectrum
signal samples in the training set, validation set, and test set for different liver fibrosis
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stage classifications are shown in Table 2. Note that the numbers in Table 2 applied to
each of the three kinds of frequency spectra, i.e., amplitude, phase, and power. The
results of liver fibrosis stage classification for each kind of spectra are described in the
following subsections.

Table 2. Numbers of spectrum signal samples in the training set, validation set, and test set in Group
B for different liver fibrosis stage classifications. Each sample was sized 768 points × 256 lines.

Fibrosis Stage Training Sets Validation Sets Test Sets

≥F1 315 42 42
≥F2 248 32 33
≥F3 277 35 35
≥F4 284 36 39

3.2.1. Liver Fibrosis Stage Classification for Amplitude Spectra

Table 3 and Figure 8 show the liver fibrosis stage classification performance on the
amplitude spectrum test set in Group B by the proposed method, compared to that by the
1D CNN models of Han et al. [7] and Nguyen et al. [8]. For ≥F1, our model had larger ACC,
SEN, and AUC values than the other two models and an SPE value larger than Nguyen
et al.’s model [8] but lower than Han et al.’s model [7]. For ≥F2, the SEN value of our
model was lower than that of the other two models, and the values of the other metrics
of our model were slightly higher. For ≥F3, Nguyen et al.’s model [8] had a higher AUC
value, and our model outperformed the other two models in ACC, SEN, and SPE. For ≥F4,
our model outperformed the other two models in ACC, SPE, and AUC, while the SEN of
our model was the same as the other two models.
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Table 3. Liver fibrosis stage classification performance on the amplitude spectrum test set in Group
B by the proposed method, compared to that by the 1D CNN models of Han et al. [7] and Nguyen
et al. [8]. The largest value of each metric for each classification is indicated as bold numbers. ACC: ac-
curacy; SEN: sensitivity; SPE: specificity; AUC: area under the receiver operating characteristic curve.

Fibrosis Stage Model ACC (%) SEN (%) SPE (%) AUC

Ours 90.48 95.24 85.71 0.941
≥F1 Han et al. [7] 88.10 85.71 90.48 0.937

Nguyen et al. [8] 80.95 85.71 76.19 0.853

Ours 81.25 75.00 87.50 0.771
≥F2 Han et al. [7] 78.13 87.50 68.75 0.763

Nguyen et al. [8] 75.00 78.13 71.88 0.767

Ours 74.29 63.64 92.31 0.649
≥F3 Han et al. [7] 71.43 63.64 84.62 0.621

Nguyen et al. [8] 71.43 68.18 76.92 0.678

Ours 80.56 77.78 83.33 0.758
≥F4 Han et al. [7] 75.00 77.78 72.22 0.753

Nguyen et al. [8] 72.22 77.78 66.67 0.691

3.2.2. Liver Fibrosis Stage Classification for Phase Spectra

Table 4 and Figure 9 show the liver fibrosis stage classification performance on the
phase spectrum test set by the proposed method, compared to that by the 1D CNN models
of Han et al. [7] and Nguyen et al. [8]. For ≥F1, our model had larger values in ACC and
SEN than the other two models, while the SPE of our model was equal to Han et al.’s
model [7] and higher than Nguyen et al.’s model [8]. For ≥F2, our model outperformed the
other two models in ACC, SPE, and AUC, with an SEN value equal to Han et al.’s model [7]
and lower than Nguyen et al.’s model [8]. For ≥F3, our model outperformed the other two
models in ACC, SEN, and AUC, with the same SPE value as the other two models. For
≥F4, our model had higher values in ACC, SPE, and AUC than the other two models, with
an SEN value lower than the other two models.
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Table 4. Liver fibrosis stage classification performance on the phase spectrum test set in Group B by
the proposed method, compared to that by the 1D CNN models of Han et al. [7] and Nguyen et al. [8].
The largest value of each metric for each classification is indicated as bold numbers. ACC: accuracy;
SEN: sensitivity; SPE: specificity; AUC: area under the receiver operating characteristic curve.

Fibrosis Stage Model ACC (%) SEN (%) SPE (%) AUC

Ours 89.19 85.71 93.75 0.957
≥F1 Han et al. [7] 86.49 80.95 93.75 0.923

Nguyen et al. [8] 81.08 76.19 87.50 0.839

Ours 83.34 87.50 78.57 0.808
≥F2 Han et al. [7] 80.00 87.50 71.43 0.781

Nguyen et al. [8] 76.67 93.75 57.14 0.772

Ours 71.43 77.27 61.54 0.719
≥F3 Han et al. [7] 65.71 68.18 61.54 0.703

Nguyen et al. [8] 68.57 72.73 61.54 0.657

Ours 85.71 77.78 94.12 0.876
≥F4 Han et al. [7] 82.86 88.89 76.47 0.858

Nguyen et al. [8] 77.14 83.33 70.59 0.828

3.2.3. Liver Fibrosis Stage Classification for Power Spectra

Table 5 and Figure 10 show the liver fibrosis stage classification performance on the
power spectrum test set by the proposed method, compared to that of the 1D CNN models
of Han et al. [7] and Nguyen et al. [8]. For ≥F1, the values of ACC, SPE, and AUC of our
model were higher than those of the other two models with the same SEN. For ≥F2, our
model had higher values in ACC, SPE, and AUC than the other two models, with an SEN
value lower than Nguyen et al.’s model [7] and equal to Han et al.’s model [8]. For ≥F3,
our model had ACC, SEN, and AUC values higher than the other two models, with an SPE
value lower than Han et al.’s model [7] and equal to Nguyen et al.’s model [8]. For ≥F4,
our model had ACC and AUC values higher than the other two models, with an SEN value
equal to Nguyen et al.’s model [8] and higher than Han et al.’s model [7], and with an SPE
value equal to Han et al.’s model [7] and higher than Nguyen et al.’s model [8].
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Sensors 2024, 24, 5513 14 of 19

Table 5. Liver fibrosis stage classification performance on the power spectrum test set in Group B by
the proposed method, compared to that by the 1D CNN models of Han et al. [7] and Nguyen et al. [8].
The largest value of each metric for each classification is indicated as bold numbers. ACC: accuracy;
SEN: sensitivity; SPE: specificity; AUC: area under the receiver operating characteristic curve.

Fibrosis Stage Model ACC (%) SEN (%) SPE (%) AUC

Ours 86.67 80.95 91.67 0.887
≥F1 Han et al. [7] 84.44 80.95 87.50 0.852

Nguyen et al. [8] 82.22 76.19 87.50 0.875

Ours 78.13 62.50 93.75 0.736
≥F2 Han et al. [7] 75.00 62.50 87.50 0.713

Nguyen et al. [8] 75.00 81.25 68.75 0.732

Ours 77.14 77.27 76.92 0.729
≥F3 Han et al. [7] 68.57 59.09 84.62 0.657

Nguyen et al. [8] 71.43 68.18 76.92 0.706

Ours 77.78 88.89 66.67 0.748
≥F4 Han et al. [7] 69.44 72.22 66.67 0.715

Nguyen et al. [8] 75.00 88.89 61.11 0.721

4. Discussion

In this study, we proposed a two-step approach for assessing liver fibrosis using deep
learning models applied to ultrasound RF signals. First, 2D CNNs (U-Net and Attention
U-Net) were used for automatic liver ROI segmentation from B-mode ultrasound images
reconstructed from the RF signals. Second, 1D CNNs were utilized for liver fibrosis stage
classification based on frequency spectra (amplitude, phase, and power) of the segmented
ROI signals. Ultrasound RF signals collected from 613 participants were analyzed for liver
ROI segmentation and those from 237 participants for liver fibrosis stage classification.
Experimental results demonstrated the feasibility of both the 2D and 1D CNNs in liver
parenchyma detection and liver fibrosis characterization. The findings of this study shed
light on deep learning analysis of ultrasound RF signals in the frequency domain with
automatic ROI segmentation.

In the context of ultrasound techniques for liver fibrosis assessment, B-mode ul-
trasound imaging is the most widely used technique in clinical settings. However, it is
qualitative in nature and can be affected by post-processing parameters such as the dynamic
range. Ultrasound elastography techniques have been used to quantitatively stage liver
fibrosis by measuring the strain, stiffness, or shear wave speed of the liver tissue [29,30],
but these techniques require specialized ultrasound scanners, and the measurement can be
affected by hepatic inflammation [31,32].

Ultrasound techniques on the basis of analyzing the ultrasound RF signals may be
compatible with most ultrasound scanners, as B-mode ultrasound images are constructed
using the envelopes of RF signals. Although quantitative ultrasound techniques [4] can be
utilized to assess liver fibrosis, they usually need specific mathematical or physical models
under specific model assumptions to extract a single feature parameter each time.

Deep learning analysis of ultrasound RF signals is emerging for tissue characterization,
as it can automatically extract multi-level information as feature parameters through
CNNs [7–13]. In 2020, Han et al. [7] proposed 1D CNNs based on ultrasound RF signals to
assess hepatic steatosis in 204 adults, with a 96% accuracy on the test set. In 2021, Nguyen
et al. [8] presented ultrasound RF signal-based 1D CNNs to evaluate hepatic steatosis
in 52 rabbits, with a 74% accuracy on the test set. In 2021, Cheng et al. [9] introduced
1D bidirectional recurrent neural networks based on ultrasound RF signals to analyze
liver fibrosis in 160 rats, with an 80% accuracy on the test set. In 2022, Luo et al. [10]
presented multichannel CNNs based on ultrasound RF signals to assess osteoporosis in
274 participants, with an 83.05% accuracy, higher than the accuracy by the conventional
speed of sound method (66.67%). In 2022, Sanabria et al. [11] employed 1D, 2D, and three-
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dimensional CNNs based on ultrasound RF signals and their frequency spectra (power
and phase) to assess hepatic steatosis in 31 patients. In 2022, Huang et al. introduced 1D
CNNs based on ultrasound RF signals to classify 230 adults’ liver fibrosis stages [12]. In
2023, Xie et al. proposed deep learning models based on ultrasound RF signals for rapid
intraoperative multi-molecular diagnosis of glioma [13]. Currently, there are only two
studies [9,12] involving deep learning models based on ultrasound RF signals to evaluate
liver fibrosis stages. However, both Cheng et al. [9] and Huang et al. [12] only used the time-
domain information of ultrasound RF signals to train and test the deep learning models,
but they did not investigate the feasibility of deep learning models based on frequency-
domain information of ultrasound RF signals in liver fibrosis evaluation. Furthermore,
the liver ROIs were manually delineated by Cheng et al. [9] and Huang et al. [12], lacking
automatic ROI identification. In this work, we proposed a new strategy for deep learning
characterization of liver fibrosis based on RF signals, with 2D CNNs for automatic liver
ROI segmentation and 1D CNNs for liver fibrosis stage classification based on frequency
spectra of the segmented ROI signals.

The performance of the 2D CNN models in segmenting liver ROIs from reconstructed
B-mode ultrasound images was compared in terms of metrics, including DSC and JSC. Note
that DSC and JSC have been frequently used in the medical image segmentation field to
quantitatively evaluate the segmentation performance. A higher value closer to 1 indicates
a better segmentation result, meaning that the segmentation was closer to the reference
standard. The results in Figure 6 and Table 1 indicated that both the U-Net and Attention
U-Net models were feasible for automatic liver ROI segmentation in B-mode ultrasound
images. The attention mechanism adopted in the Attention U-Net model improved the
segmentation performance over the U-Net model. However, the average training time per
epoch for the U-Net model (121.84 s) was less than that for the Attention U-Net model
(139.98 s), indicating that the attention mechanism also increased computational cost.

The performance of our 1D CNN models in classifying liver fibrosis stages was
compared with the 1D CNN models by Han et al. [7] and Nguyen et al. [8] in terms
of AUC, ACC, SEN, and SPE. Each of the four metrics had a maximum value of 1 (or
100%). A larger value of AUC corresponded to a higher diagnostic value. A larger value
of ACC corresponded to a more accurate diagnosis, i.e., a higher rate of true positive
and true negative predictions in the total samples [Equation (12)]. A larger value of SEN
corresponded to a lower rate of missed diagnosis [Equation (13)]. A larger value of SPE
corresponded to a lower rate of misdiagnosis [Equation (14)]. The results in Tables 3–5
indicated that our 1D CNN models based on ROI spectrum signals were feasible for liver
fibrosis stage classification. From Table 3, it can be seen that our model based on amplitude
spectra had better liver fibrosis stage classification performance than the 1D CNN models
of Han et al. [7] and Nguyen et al. [8] for ≥ F4 in terms of AUC, ACC, SEN, and SPE. From
Table 4, it can be seen that our model based on phase spectra outperformed the other two
models for ≥ F1 and ≥ F3 in terms of AUC, ACC, SEN, and SPE. From Table 5, it can be
seen that our model based on power spectra outperformed the other two models for ≥F1
and ≥F4 in terms of AUC, ACC, SEN, and SPE.

Our models based on the three kinds of frequency spectra were compared in terms
of different liver fibrosis stage classifications (Figures 11–13). For ≥F1, ≥F2, and ≥F4, our
model based on phase spectra all yielded the highest AUC values of 0.957, 0.808, and 0.876,
respectively. For ≥ F3, our model based on power spectra had the highest AUC of 0.729.
Overall, the performance of the proposed deep learning method was the best when using
phase spectrum signals for ≥F1 (AUC: 0.957; ACC: 89.19%; SEN: 85.17%; SPE: 93.75%),
≥F2 (AUC: 0.808; ACC: 83.34%; SEN: 87.50%; SPE: 78.57%), and ≥F4 (AUC: 0.876; ACC:
85.71%; SEN: 77.78%; SPE: 94.12%). The classification performance of our method was
the best when using power spectrum signals for ≥ F3 (AUC: 0.729; ACC: 77.14%; SEN:
77.27%; SPE: 76.92%). In particular, the proposed method based on ROI phase spectrum
signals was recommended for liver fibrosis stage classification, especially for early fibrosis
detection (≥F1).
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This study has limitations. First, the sample size and diversity of the dataset were
limited. The clinical data were collected from a single center with a single ultrasound
scanner. Second, the proposed method yielded satisfying performance in liver fibrosis stage
classification for ≥ F1, ≥ F2, and ≥ F4 (all AUCs > 0.80) when using ROI phase spectrum
signals, but the performance for ≥ F3 (AUC: 0.719) was lower. In future work, more
ultrasound RF data may be collected to further validate the performance of the proposed
method, the cross-center and cross-scanner performance of the proposed method may be
evaluated, and the performance for ≥ F3 may be improved.
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5. Conclusions

In this study, we proposed an approach for liver fibrosis assessment using deep learn-
ing models on ultrasound RF signals. The proposed method consisted of 2D CNNs for
automatic liver ROI segmentation from reconstructed B-mode ultrasound images and 1D
CNNs for liver fibrosis stage classification based on frequency spectra (amplitude, phase,
and power) of the segmented ROI signals. Experimental results demonstrated the feasibility
of both the 2D and 1D CNNs in liver parenchyma detection and liver fibrosis characteriza-
tion. The proposed methods have provided a new strategy for liver fibrosis assessment
based on ultrasound RF signals. In particular, the proposed method based on ROI phase
spectrum signals was recommended for liver fibrosis stage classification, especially for
early fibrosis detection. The findings of this study shed light on deep learning analysis of
ultrasound RF signals in the frequency domain with automatic ROI segmentation.
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20. Li, L.; Doroslovački, M.; Loew, M.H. Approximating the gradient of cross-entropy loss function. IEEE Access 2020, 8, 111626–

111635. [CrossRef]
21. Ferraioli, G.; Barr, R.G.; Berzigotti, A.; Sporea, I.; Wong, V.W.; Reiberger, T.; Karlas, T.; Thiele, M.; Cardoso, A.C.; Ayonrinde, O.T.;

et al. WFUMB guidelines/guidance on liver multiparametric ultrasound. Part 2: Guidance on liver fat quantification. Ultrasound
Med. Biol. 2024, in press. [CrossRef]

https://doi.org/10.1053/j.gastro.2020.01.043
https://doi.org/10.1056/NEJM200102153440706
https://www.ncbi.nlm.nih.gov/pubmed/11172192
https://doi.org/10.1016/j.cgh.2010.03.025
https://doi.org/10.1016/j.measurement.2023.114046
https://doi.org/10.1016/j.ultsonch.2024.106910
https://www.ncbi.nlm.nih.gov/pubmed/38772312
https://doi.org/10.1148/radiol.2020191160
https://www.ncbi.nlm.nih.gov/pubmed/32096706
https://doi.org/10.1016/j.ultrasmedbio.2020.10.025
https://doi.org/10.1016/j.cmpb.2020.105875
https://doi.org/10.1016/j.ultrasmedbio.2022.04.005
https://doi.org/10.1016/j.ultrasmedbio.2022.05.031
https://doi.org/10.3390/diagnostics12112833
https://doi.org/10.1016/j.ebiom.2023.104899
https://doi.org/10.1016/j.ultrasmedbio.2020.09.021
https://doi.org/10.1109/ACCESS.2020.3001531
https://doi.org/10.1016/j.ultrasmedbio.2024.03.014


Sensors 2024, 24, 5513 19 of 19

22. Han, J.; Sun, P.; Sun, Q.; Xie, Z.; Xu, L.; Hu, X.; Ma, J. Quantitative ultrasound parameters from scattering and propagation may
reduce the biopsy rate for breast tumor. Ultrasonics 2024, 138, 107233. [CrossRef] [PubMed]

23. Ozturk, A.; Kumar, V.; Pierce, T.T.; Li, Q.; Baikpour, M.; Rosado-Mendez, I.; Wang, M.; Guo, P.; Schoen, S.; Gu, Y., Jr.; et al. The
future is beyond bright: The evolving role of quantitative US for fatty liver disease. Radiology 2023, 309, e223146. [CrossRef]

24. Gao, J.; Zapata, I.; Chen, J.; Erpelding, T.N.; Adamson, C.; Park, D. Quantitative ultrasound biomarkers to assess nonalcoholic
fatty liver disease. J. Ultrasound Med. 2023, 42, 1675–1688. [CrossRef] [PubMed]

25. Gao, F.; He, Q.; Li, G.; Huang, O.Y.; Tang, L.J.; Wang, X.D.; Targher, G.; Byrne, C.D.; Luo, J.W.; Zheng, M.H. A novel quantitative
ultrasound technique for identifying non-alcoholic steatohepatitis. Liver Int. 2022, 42, 80–91. [CrossRef] [PubMed]

26. Cook, J.A.; Ranstam, J. Overfitting. Br. J. Surg. 2016, 103, 1814. [CrossRef] [PubMed]
27. Kalman, B.L.; Kwasny, S.C. Why Tanh: Choosing a sigmoidal function. In Proceedings of the 1992 International Joint Conference

on Neural Networks (IJCNN), Baltimore, MD, USA, 7–11 June 1992; pp. 578–581.
28. Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.

[CrossRef]
29. Bâldea, V.; Sporea, I.; Lupus, oru, R.; Bende, F.; Mare, R.; Popescu, A.; S, irli, R. Comparative study between the diagnostic

performance of point and 2-D shear-wave elastography for the non-invasive assessment of liver fibrosis in patients with chronic
hepatitis c using transient elastography as reference. Ultrasound Med. Biol. 2020, 46, 2979–2988. [CrossRef] [PubMed]

30. Ronot, M.; Ferraioli, G.; Müller, H.P.; Friedrich-Rust, M.; Filice, C.; Vilgrain, V.; Cosgrove, D.; Lim, A.K. Comparison of
liver stiffness measurements by a 2D-shear wave technique and transient elastography: Results from a European prospective
multi-centre study. Eur. Radiol. 2021, 31, 1578–1587. [CrossRef] [PubMed]

31. Berzigotti, A.; Castera, L. Update on ultrasound imaging of liver fibrosis. J. Hepatol. 2013, 59, 180–182. [CrossRef]
32. Raizner, A.; Shillingford, N.; Mitchell, P.D.; Harney, S.; Raza, R.; Serino, J.; Jonas, M.M.; Lee, C.K. Hepatic Inflammation May

Influence Liver Stiffness Measurements by Transient Elastography in Children and Young Adults. J. Pediatr. Gastroenterol. Nutr.
2017, 64, 512–517. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ultras.2023.107233
https://www.ncbi.nlm.nih.gov/pubmed/38171228
https://doi.org/10.1148/radiol.223146
https://doi.org/10.1002/jum.16185
https://www.ncbi.nlm.nih.gov/pubmed/36744595
https://doi.org/10.1111/liv.15064
https://www.ncbi.nlm.nih.gov/pubmed/34564946
https://doi.org/10.1002/bjs.10244
https://www.ncbi.nlm.nih.gov/pubmed/27901280
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1016/j.ultrasmedbio.2020.07.015
https://www.ncbi.nlm.nih.gov/pubmed/32807571
https://doi.org/10.1007/s00330-020-07212-x
https://www.ncbi.nlm.nih.gov/pubmed/32902745
https://doi.org/10.1016/j.jhep.2012.12.028
https://doi.org/10.1097/MPG.0000000000001376

	Introduction 
	Materials and Methods 
	Clinical Data 
	Liver ROI Segmentation Using B-Mode Image-Based 2D CNNs 
	B-Mode Image Reconstruction from Ultrasound RF Signals 
	Data Augmentation for B-Mode Images 
	Network Structures of U-Net and Attention U-Net 
	2D CNN Model Training and Testing 

	Liver Fibrosis Stage Classification Using ROI Spectrum Signal-Based 1D CNNs 
	Frequency Spectrum Analysis of Ultrasound RF Signals 
	ROI Spectrum Signal Normalization 
	Data Augmentation for ROI Spectrum Signals 
	Network Structure of the 1D CNN 
	1D CNN Model Training and Testing 

	Performance Evaluation Metrics 
	Evaluation Metrics for Liver ROI Segmentation 
	Evaluation Metrics for Liver Fibrosis Stage Classification 


	Results 
	2D CNN Model-Based Liver ROI Segmentation 
	1D CNN Model-Based Liver Fibrosis Stage Classification 
	Liver Fibrosis Stage Classification for Amplitude Spectra 
	Liver Fibrosis Stage Classification for Phase Spectra 
	Liver Fibrosis Stage Classification for Power Spectra 


	Discussion 
	Conclusions 
	References

