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Abstract: The Internet of Things (IoT) is a significant technological advancement that allows for
seamless device integration and data flow. The development of the IoT has led to the emergence
of several solutions in various sectors. However, rapid popularization also has its challenges, and
one of the most serious challenges is the security of the IoT. Security is a major concern, particularly
routing attacks in the core network, which may cause severe damage due to information loss. Routing
Protocol for Low-Power and Lossy Networks (RPL), a routing protocol used for IoT devices, is faced
with selective forwarding attacks. In this paper, we present a federated learning-based detection
technique for detecting selective forwarding attacks, termed FL-DSFA. A lightweight model involving
the IoT Routing Attack Dataset (IRAD), which comprises Hello Flood (HF), Decreased Rank (DR),
and Version Number (VN), is used in this technique to increase the detection efficiency. The attacks on
IoT threaten the security of the IoT system since they mainly focus on essential elements of RPL. The
components include control messages, routing topologies, repair procedures, and resources within
sensor networks. Binary classification approaches have been used to assess the training efficiency of
the proposed model. The training step includes the implementation of machine learning algorithms,
including logistic regression (LR), K-nearest neighbors (KNN), support vector machine (SVM), and
naive Bayes (NB). The comparative analysis illustrates that this study, with SVM and KNN classifiers,
exhibits the highest accuracy during training and achieves the most efficient runtime performance.
The proposed system demonstrates exceptional performance, achieving a prediction precision of
97.50%, an accuracy of 95%, a recall rate of 98.33%, and an F1 score of 97.01%. It outperforms the
current leading research in this field, with its classification results, scalability, and enhanced privacy.

Keywords: Internet of Things (IoT); Linear Discriminant Analysis (LDA); IoT Routing Attack Dataset
(IRAD); Hello Food (HF); Decreased Rank (DR); federated learning; deep learning

1. Introduction

The Internet of Things (IoT) has brought about a profound transformation, enabling
devices to connect and communicate with one another, making data sharing a reality [1].
This network of devices has contributed to the progress of several industries, including
healthcare and transportation, by establishing a synergistic environment where gadgets
collaborate to collect, analyze, and share information [2]. The ability of IoT to change and
smooth certain aspects of our day-to-day operations makes IoT significant [3]. The IoT has
become an essential element of modern life, involved in many aspects such as homes, cities,
automation, and healthcare [4,5]. The unparalleled capacity of this technology to enhance
efficiency, productivity, and overall quality of life is incomparable [6]. At its foundation, IoT
represents a fundamental paradigm change, where everyday objects are empowered with
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the capacity to connect, communicate, and collaborate effortlessly [7]. This interconnect-
edness offers extraordinary prospects for efficiency, productivity, and convenience across
multiple disciplines. IoT allows for remote patient monitoring, individualized treatment
plans, and predictive analytics in healthcare, eventually boosting healthcare outcomes and
saving costs [8]. IoT provides intelligent infrastructure management, efficient resource
allocation, and increased public safety in smart cities through real-time data insights [9,10].
IoT revolutionizes industrial processes by allowing for predictive maintenance, supply
chain optimization, and intelligent manufacturing, generating significant increases in op-
erational efficiency and cost reductions [11,12]. In addition, IoT has entered our personal
living spaces, allowing us to use a variety of electronic gadgets at home while improving
energy management and enhancing security systems. [13,14]. The IoT has the capability to
change various industries, make processes more efficient, and improve the living standards
of different communities across the globe [15,16].

The rapid growth of IoT has also been marked by several challenges, one of the most
significant being the issue of cybersecurity [17,18]. People utilize electronics extensively;
hence, cyberattacks happen increasingly often. The general purity of IoT systems is in
danger because of security loopholes, privacy issues, and attack opportunities [19,20]. As
it occurs, the possibility of launching attacks in the RPL is a serious security concern. These
assaults may cause significant gaps and illegal access, undermining the stability of data
transmission in networks. [21]. The increasing safety issues have been addressed by IoT
collaborative learning [22–24]. Federated learning is a type of machine learning (ML) that
uses individual device training to lower the privacy concerns related to centralised data
processing [25,26]. This joint method allows devices to gain knowledge from data without
jeopardizing private information, hence boosting security in distributed settings [27,28].
Integrating federated learning into the monitoring method for sending threats in the RPL
protocol provides a flexible way to protect IoT networks [29–31]. Figure 1 presents the
framework of an IoT setup.

Figure 1. IoT network.

1.1. Motivation

The accumulation of IoT devices has transformed industries, resulting in substantial
security issues. This study aims to address these issues by developing cutting-edge ML,
federated learning (FL), and deep learning (DL) models to detect and alleviate security
issues. Motivated by the restrictions of existing IoT security techniques, this research
emphasizes overpowering issues, including scalability, energy efficiency, and real-time
computational abilities. The aim is to project a robust FL model that can handle dynamic
IoT settings, guarantee data secrecy, and minimize communication overhead or latency.
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Moreover, enhancing DL models for resource-inhibited IoT devices without conciliatory
performance is critical. By addressing these concerns, this study aims to improve IoT
systems’ security, efficacy, and scalability to support state-of-the-art applications and secure
against developing cyber threats.

1.2. Use Case: Selective Forwarding Attacks in Smart Healthcare Systems

Smart health technologies are important for the enhancement of one’s wellness and
personal health [32]. The devices primarily involve in-built moisture sensors for biometric
data analysis, which include heartbeat rate, sleeping habits, and activity levels. These
types of devices, like remote patient monitoring systems, play a crucial role in enhancing
patient results and caring for chronic conditions. Devices of the type described above
typically include implanted sensors to monitor blood pressure, glucose levels, and oxygen
saturation. For instance, an ECG sensor, used in remote patient monitoring systems for heart
problems, may detect heart rate and any anomalies the instant they happen. By checking
these crucial signs often, patients and health care providers will be able to anticipate and
identify potential health risks early enough to modify treatment plans where necessary
and act promptly to avert adverse outcomes. By means of such real-time information,
individuals can take a more active role in maintaining their own well-being while doctors
obtain suggestions on how best to provide personalized treatments. Nevertheless, the
interconnection of smart healthcare systems has resulted in serious cybersecurity risks,
which need to be looked into if patient safety and information confidentiality are to be
ensured.

When a scenario is considered, there could be a number of security reasons regarding
unauthorized access to the IoT devices during a cyber attack. For example, compromising
communication systems may involve intentionally altering dosages for prescribed drugs
in such a way that it places individuals in harmful situations. Their records can be used
for fraud and identity theft or to commit other illegal offenses. Also, patients’ personal
information can be accessed with their details, violating their basic rights. Moreover, inter-
ruptions to healthcare services induced by cyber-attacks on smart healthcare infrastructure
might have far-reaching consequences, jeopardizing patient care delivery and weakening
faith in digital healthcare solutions. Therefore, comprehensive cybersecurity measures are
necessary to guard against such attacks and preserve the integrity and dependability of
smart healthcare devices and health management. The study provides a federated learning-
based detection mechanism for fighting selective forwarding attacks in IoT networks to
identify and mitigate routing risks in real time, utilizing feature extraction, normalization,
and model training using deep learning techniques.

The primary aim of this research is threefold:

1. To perform an extensive review of the literature on selective forwarding attacks and
the current strategies for detecting them;

2. To create a simulation environment for assessing the effects of selective forwarding
attacks on RPL-based IoT networks, and;

3. To devise a security framework incorporating federated learning to improve detection
accuracy of the system.

The paper is organized in different sections as described: Section 2 provides a detailed
literature review followed by the research gaps in the existing studies. In Section 3, a
detailed view of the proposed framework and methodology is presented. Section 4 details
the description of the results of all the learning models and their state-of-the-art comparison
and discussion. Finally, in Section 5, a brief conclusion of the study is provided along with
future research directions.

2. Related Work

A comprehensive analysis of the weaknesses and challenges of the IoT is detailed in
this section. It categorizes ML models and investigates the applications of FL and DL in
increasing IoT security.
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2.1. Security Challenges in IoT Attack Mitigation Studies

Table 1 presents a comprehensive analysis of the latest studies about mitigating security
threats in the IoT. The study in [33] trained the convolutional neural network (CNN) model
ResNet and transformed network traffic data into pictures to identify DoS and DDoS
attacks. The work in [34] introduced a radio-based RF jamming mitigation platform that
uses programmable beam-steering antennas at the physical layer and carries out real-time
jammer categorization. The findings indicated that this proposed study outperformed
the current state-of-the-art technique by 9% in binary classification accuracy. Utilising
UNSW-NB15 data, the study in [35] investigates flow, MQTT, and TCP feature clusters.
This work used supervised ML approaches like RF, SVM, and ANN for the cluster analysis.
The outcomes show that, while using RF, the proposed approach achieved an accuracy of
98.67% and 97.37%. A classification accuracy of 96.96%, 91.4%, and 97.54% was obtained
through RF for the top features from both clusters, TCP features, and flow & MQTT features,
respectively.

Another work in [36], used nine well-known machine learning algorithms to conduct
tests on an IoT dataset. Many machine learning approaches were evaluated in this work:
RF, LR, DT, KNN, BG, SVM, NB, NN, and ST. The work shows that the proposed method
identifies IoT malware with a perfect accuracy of 100% by using DT, SVM, RF, and Bagging
classifiers. It achieves an approximately 99.9% accuracy for LR, NB, KNN, and Neural
Networks. However, the Simple Tree classifier only achieves an accuracy of 28.16%. The
research conducted in [37] employed a structured approach to simulate the entire transmis-
sion process and featured a generation technique to generate artificial training data (ATD).
Two Support Vector Machine (SVM) classifiers were assessed: a conventional binary SVM
classifier (TC-SVM) and a single-class SVM classifier (SC-SVM). The results suggest that
the accurate calibration of parameters is essential to obtain a detection probability of 95%
for those attempting to listen in on private conversations.

Table 1. Security challenges in IoT attack mitigation studies.

Ref. Approach Description Privacy

[33] CNN ResNet model Transformed network traffic data into im-
ages for DoS/DDoS detection No

[34] Radio-based RF jamming
mitigation

Utilized programmable beam-steering an-
tennas for real-time jammer categorization No

[35] UNSW-NB15 data analysis Investigated flow, MQTT, and TCP feature
clusters No

[36] Machine learning algorithms Evaluated nine ML algorithms for IoT mal-
ware identification No

[37] Simulation-based approach Generated artificial training data for SVM
classifiers No

2.2. Federated Learning Use Cases in IoT

The provided table, labeled as Table 2, classifies federated learning models that aim to
enhance the security of IoT devices. The work conducted in [38] presents an efficient federated
defense approach known as FDA3. This study was constrained by the communication delay.
The paper [39] introduced DÏoT, an autonomous and self-learning distributed system that
employs federated learning to detect anomalous intrusions in IoT devices. DÏoT achieved
a remarkable 95.6% rate of identifying devices infected with the Mirai virus in just 257 ms.
The study conducted in [40] employed a ML-based IDS implemented within the framework
of the IoT industry. A constraint of the study was the absence of exploration into scalability
concerns. The study in [41] demonstrated the earliest research on intrusion detection in a
simulated setting. This study has shown that the federated technique is highly effective in
classification accuracy, computation, and communication cost when applied to the AWID
intrusion detection dataset. The major downside of this methodology is the need for empirical
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performance analysis. The study conducted in [42] presents MV-FLID, a FL approach
for intrusion detection in IoT networks. This paper does not include a validation of the
performance of FL in comparison to the ML and DL approaches. The research done in [41]
employed LiM, a privacy-centric system for categorizing malware that relies on federated
learning. The cloud server achieved an excellent F1 score of 95%, indicating high accuracy.
However, the research needed to incorporate the convergence of the learning process, which
is a drawback of the study.

The authors in [43] evaluate the efficacy of a FL-based IDS that uses a multiclass classifier
to detect various forms of assaults in IoT environments with diverse data distributions.
This highlights the challenge of connecting IoT devices, indicating the need for further
investigation and research. The study in [44] developed a resilient framework for securely
transferring data among IoT devices. The SecureIIoT model exhibited exceptional precision,
with accuracy of 99.79% when binary classification was used to identify attacks. Nevertheless,
its drawback lies in the requirement for testing on larger datasets. The study in [45] proposed
a technique that utilizes federated learning to detect IoT devices affected by malware. This
approach involves the utilization of the N-BaIoT dataset. This technique needs to address
the topics of energy efficiency and learning capacity. The study in [46] presented an FL
model integrating a dual-reputation reverse auction to improve security and select edge
nodes in IoT settings. Their method employs a reputation-bid ratio-based algorithm for
edge node selection, a flexible dropout accumulation technique to prevent malicious attacks,
and blockchain for repute administration. Simulation outcomes imply that their model
outperforms standard models in accuracy and reaction to assaults.

Table 2. Federated learning use cases in IoT.

Ref. IoT Use Cases Specification of FL Limitations

[35] Attack defense
An FL-based attack defense
network was proposed to se-
cure industrial IoT networks

no consideration is given for
the impact of latency in com-
munication.

[39] Attack detection A FL model to detect security
attacks in IoT

The problem of data privacy
has been overlooked

[40] Attack detection FL-based attack detection in
industry 4.0

No research work has been
carried out on scalability is-
sues

[41] Intrusion detection An FL-based intrusion detec-
tion model for IoT

Its performance is not consid-
ered

[42] Intrusion detection Intrusion detection system
using FL in IoT

The performance is not vali-
dated by comparing with ML
and DL approaches

[41] Malware detection Malware detection in An-
droid applications using FL

The confluence of training
process is overlooked

[43] Intrusion detection
A review of FL techniques for
detecting intrusion is consid-
ered

Coordination between differ-
ent IoT devices is a major
problem

[44] Data breaching
FL-based identification and
prevention of data breaches
in industrial IoT

Larger datasets need to be
tested

[45] Malware detection in
IoT devices

FL-based security enhance-
ment in IoT

Energy performance and
learning ability is overlooked

2.3. Deep Learning Models for IoT Applications

Table 3 presents a comprehensive analysis of the deep learning models’ effectiveness
in various IoT applications. The study in [47] employed a TensorFlow deep neural network
to identify pirated software by detecting instances of source code copying. According
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to the findings, the suggested model achieved a classification accuracy of 97.46%. The
study in [48] presented a deep learning framework developed explicitly for an IoT-centered
infrastructure in a secure smart city. Blockchain technology is employed to establish
a decentralized environment in the communication phase of Cyber-Physical Systems
(CPSs). The results showed a precision value of 0.7244, a recall value of 0.7078, and
an F1 score of 0.7118, indicating a high level of scalability. The study in [49] employed
a FFDNN Wireless IDS equipped with a WFEU. Using the UNSW-NB15 dataset, the
authors achieved an accuracy of 87.10% for binary classification and 77.16% for multiclass
classification. The AWID dataset demonstrated an overall accuracy of 99.66% for binary
classification and 99.77% for multiclass classification. Another study in [50] presents a
sequential methodology that collects network layer attributes through TCP dump packets
and application layer attributes through system functions. The study employed Text-
CNN and GRU methodologies to derive supplementary characteristics from the data.
The statistics indicate that the model achieved an F1 score of 0.98%. The research in [51]
devised a novel intrusion detection system for IoT networks, employing profound learning
principles to categorize data flow accurately. The model is designed for both multiclass
as well as binary classification. The study achieved a prediction accuracy of 99.5% for
the NSL-KSS dataset, 99.3% for the CIDDS-001 dataset, and 99.1% for the UNSWNB15
dataset. The research in [52] presented an IoT-IDCS-CNN that harnesses the functionalities
of convolutional neural networks. The results showed a classification accuracy of 99.30%,
as well as multiclass classification accuracy of 98.20%. The system underwent verification
by K-fold cross-validation and evaluation, utilizing parameters from the confusion matrix.

Table 3. Deep learning models for IoT applications.

Ref. Approach Description Results

[47] TensorFlow DNN Identify pirated software
through source code copying 97.46% classification accuracy

[48]
Deep learning frame-
work for secure smart
city

Utilize blockchain for decen-
tralized communication in
CPS

Precision: 0.7244, Recall: 0.7078,
F1 score: 0.7118

[49] FFDNN Wireless IDS
with WFEU

Intrusion detection system
equipped with Wireless Fea-
ture Extraction Unit

Binary classification: 87.10% ac-
curacy, multiclass classification:
77.16% accuracy

[50]
Sequential methodol-
ogy with Text-CNN
and GRU

Collect network layer and ap-
plication layer attributes for
intrusion detection

F1 score: 0.98

[51] Deep learning-based
IDS for IoT networks

Categorize data flow for mul-
ticlass and binary classifica-
tion

NSL-KSS dataset: 99.5% accu-
racy, CIDDS-001 dataset: 99.3%
accuracy, UNSWNB15 dataset:
99.1% accuracy

[52] IoT-IDCS-CNN
Harness convolutional neu-
ral networks for intrusion de-
tection

Binary classification: 99.30% ac-
curacy, multiclass classification:
98.20% accuracy

2.4. Research Gaps

There are several security frameworks available in the existing literature; however, it is
essential to evaluate some critical concerns carefully. That includes the obstacles in FL-IoT
that arise from the convergence issues in integrating learning and communication. These
issues are created by the IoT network’s sensitivity to variations in sensing environments.
The limitations of IoT in terms of storage and computational capability lead to longer delays
and fluctuating synchronization. Current data transport techniques frequently increase
energy usage, particularly when utilizing GPUs, diminishing overall energy efficiency.
The trade-offs include the careful consideration of several factors, including safety, energy
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efficiency, cost-effectiveness, and accessibility, while also prioritizing security. It can be
challenging, since existing models may prioritize security above specific metrics. Moreover,
the integration of privacy-conserving techniques in FL is still in its initial stages, with
inadequate study into corresponding data privacy and model efficiency. An additional area
necessitating further study is the energy efficacy of DL models, as the high computational
costs of the models can lead to substantial energy consumption, leading to challenges for
battery-functioned IoT devices. Additionally, the compliance of security models to emerg-
ing threat/vulnerability landscapes and background responsiveness in IDSs is vital for
developing robust IoT security frameworks. Ensuring equilibrium among these parameters
is crucial to enhance security without sacrificing other essential features.

3. Research Methodology

In this section, a comprehensive description of the research methodology is presented.
Figure 2 provides a graphic representation of the whole research framework and summa-
rizes the workflow and interconnected elements of the federated learning model that was
put into practice.

Figure 2. Research framework.

3.1. Dataset Description and Pre-Processing

A detailed description and pre-processing steps of the dataset are mentioned in
this section.

1. Dataset Description: This study utilizes a publicly accessible dataset called IoT Rout-
ing Attack Dataset (IRAD) [53]. The dataset comprises authentic data, containing both
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harmless and the most current widespread attacks. The table provides a comprehen-
sive account of the quantity and dimensions of each occurrence; see Table 4.

Table 4. Dataset description.

Attack Type No. of Values Size (GB)

Hello Flood Attack 64,178,435 0.75
Version Number Attack 22,868,210 0.27
Decreased Rank Attack 49,873,385 0.58

In this study, three samples of dataset are used, each including two distinct classes:
the malicious and benign samples.

2. Dataset Split: Training, Validation, and Test: During the data sampling step, a metic-
ulously chosen subset of 150,000 samples has been gathered from the dataset. The
provided subset has been methodically partitioned into three sets to improve the relia-
bility of training, testing, and validating the model. More precisely, 70% of the samples
have been allocated to the training set, which forms the basis for the model’s learning
process. Afterwards, 10% of the samples were assigned to the validation set, which
is crucial as it helps in tuning up the model’s performance. This test set contains the
leftover 20% of the data; it checks how well our model can be applied outside the existing
data. With this stratified partitioning strategy, there is no bias or favoritism in any of the
training set, validation set or test sets used for model assessment. See Table 5.

Table 5. Simulation data.

Metric Length Info Trans
Rate

Rcv
Rate TR/RR Sources

Count
Dest
Count

Length 83.58 15.5 64.0 64.0 87.0 99.0 102.0
Info 3.14 1.65 1.0 2.0 3.0 5.0 7.0
Trans Rate (per 1000 ms) 0.15 0.07 0.0 0.1 0.16 0.2 0.29
Rcv Rate (per 1000 ms) 0.36 0.21 0.0 0.21 0.34 0.49 0.9
TR/RR 0.62 1.08 0.0 0.3 0.46 0.71 225.0
Sources Count/s 147.97 69.71 1.0 95.0 156.0 201.0 286.0
Destinations Count/s 361.08 208.91 1.0 209.0 345.0 493.0 901.0
Trans Total Duration/s 0.37 0.45 0.0 0.18 0.29 0.42 9.99
Rcv Total Duration/s 0.84 0.65 0.0 0.46 0.82 1.0 9.93
Trans Average/s 0.0 0.01 0.0 0.0 0.0 0.0 1.47
Rcv Average/s 0.0 0.01 0.0 0.0 0.0 0.0 1.47
DAO 28.91 66.58 0.0 0.0 0.0 0.0 286.0
DIS 51.08 78.78 0.0 0.0 0.0 145.0 260.0
DIO 10.15 29.74 0.0 0.0 0.0 0.0 227.0
Label 0.45 0.5 0.0 0.0 0.0 1.0 1.0

3. Dataset Pre-processing: A wireshark analyzer was used to convert the packet capture
(PCAP) files to a comma-separated value (CSV) format. A preprocessing script has
been developed, as will be described.

• Feature Extraction and Selection: This research focuses on the process, which
is thorough in regards to obtaining selections and developing features, strug-
gling heavily to refine dataset features and aiming at overcoming the associated
danger of overfitting. The use of Linear Discriminant Analysis (LDA) enhanced
the separability of different classes by representing each subset with a single
feature, allowing for the distinction between attack and benign classes, as demon-
strated in Figure 3. By intentionally excluding identifiers, bias was minimized,
thereby assuring a thorough and unbiased investigation. The IRAD datasets,
which include qualitative and quantitative features, were carefully converted to
be compatible with numerical learning methods. The significant analysis and
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adjustment of DAO, DIO, and 6LoWPAN characteristics highlight their crucial
functions in the Routing Protocol for RPL. The combination of harmless and de-
structive datasets maintained consistency in structural characteristics, and using
Scikit-learn, properties showing strong correlations to the output variable were
specifically separated. This comprehensive approach emphasizes the thorough
identification and selection of characteristics to achieve research goals within the
specific field. Three attacks were evaluated, focusing on the reception elements
and transmission of 6LoWPAN protocol packets and DIO control messages. The
selection of relevant attributes was carried out using deep neural networks, Pear-
son correlation coefficients, and histograms. The DNN technique was used to
evaluate the value of the recovered characteristics and identify the most effective
number of neurons. The information on the features is provided in Table 6.

Figure 3. Feature importance from Linear Discriminant Analysis (LDA).

Table 6. Features and attack detection.

No. Features Attack Detected Min–Max (X)

1 Reception rate HF, VN 6.6879305× 10−3

2 Transmission rate HF, DR, and VN 7.8469016× 105

3 Rcv average per Second HF, DR, and VN 6.7000000× 100

4 Rcv total duration Per Second HF, DR, and VN 1.0000000× 103

5 DAO DR 9.9997274× 100

6 DIS DR and VN 1.0000000× 100

7 Trans total duration per Second HF, VN 3.0000000× 100

8 DIO HF, DR, and VN 1.0000000× 100

9 TR/RR HF, DR, and VN 4.5000000× 100

S =
p(Σab)− (Σa)(Σb)√

[pΣc2 − (Σc)2][pΣd2 − (Σd)2]
(1)

• Feature Normalization: The feature normalization procedure is used to stan-
dardize datasets and populate them into an even range. The min–max scaling
procedures were the most direct, uncomplicated, and adaptable method for
normalizing the values of the selected attributes. The newly introduced feature,
designated as Y*, is adjusted to span a range of values between 0 and 1. RPL
stands for the values that have been normalized. The variable “RPL.FACTOR”
denotes the starting value of the feature, whereas “RPL.FACTORmin” and
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“RPL.FACTORmax” indicate the minimum and maximum values of the selected
features, respectively, as shown in Equation (2)

Y∗ =
RPL.FACTOR− RPL.FACTORmin

RPL.FACTORmax− RPL.FACTORmin
(2)

By using bagging to combine unbiased variables, a model with decreased vari-
ance was attained. A classifier, which is a feed-forward artificial neural network,
was used to examine specific properties. The network consisted of at least three
nodes in each layer and utilized various activation functions.

3.2. Local Models’ Training

In this study, each IoT device goes through a systematic and personalized training
program after careful system setup and thorough device selection. The server employs
strategic configuration and initialization during the local training and update stage to
introduce a new model. Subsequently, this model is distributed to individual IoT users,
commencing a decentralized training procedure. Users, separate entities inside the IoT
network, independently improve their local models by utilizing unique datasets. This
reiterative process includes several rounds of updates, during which every device improves
its local models based on unseen data and the response received from the federated global
model. This involves updating the training data to minimize the loss function F, as specified
by the optimization equation:

W∗p = argminwp∈PF, p ∈ P (3)

In this context, W∗p represents the optimal model parameters for a particular user p
in the federated learning (FL) process. The use of localized training ensures that every
IoT device, operating as an autonomous agent, may autonomously enhance its model.
Consequently, the enhanced individual models together enhance the intelligence of the
aggregate global model. Methods including differential privacy and secure cooperative
computation are used to ensure validity. Stringent measures are used during this process
to ensure the utmost privacy and integrity of the data. Once models have been trained,
they are uploaded and methodically merged at the base station, which is a crucial step
in federated learning in the IoT context. The models undergo training utilizing five deep
learning approaches to improve analysis and simplify result comparison.

1. Logistic regression (LR) The statistical deep learning method is utilized for binary
classification to predict the likelihood of a routing assault using the IoT Routing Attack
Dataset (IRAD). The logistic regression model is formally defined as follows:

P(y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+...+βnXn)
(4)

2. K-nearest Neighbors (KNN) The KNN approach is a classification strategy that assigns
a class to a data point based on the majority class of its nearest neighbor in the space
of the feature. This approach is agnostic to any specific assumptions about the data
distribution. The projected class for a certain data point, X, is mathematically defined
by the class that appears most frequently among its k-nearest neighbors.

3. Support Vector Machine (SVM) SVM is an ML classification and regression analysis
technique. It belongs to the supervised learning domain, which implies that it necessi-
tates labeled data for model training. The objective is to ascertain a hyperplane that
effectively partitions the data into definite classes. The SVM technique aims to math-
ematically identify the hyperplane (H) with the largest margin that can accurately
divide the classes.
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4. Naıve Bayes (NB) The NB method is a probabilistic approach that applies Bayes’
theorem and assumes attribute independence. It is commonly used for activities that
need categorization. The Naive Bayes model is formally defined as follows:

P(Ck|x) =
P(x|Ck) · P(Ck)

P(x)
(5)

3.3. Global Model Aggregation

Following the use of DNN approaches, several local models were trained. The weights
of these models were then aggregated and consolidated worldwide using the Federated
Averaging method. It is a collaborative method for merging model weights without directly
accessing specific variables. The system employs federated learning, storing individual
models on several devices. The training process is distributed, indicating that several
servers are utilized. The local models that have undergone training possess weights.
Federated Averaging has been employed to merge the data, resulting in a more robust and
widely applicable global model.

1. Federated Averaging: following the individual clients’ training and updating of the
model, the server combines the models and calculates the new global model using
Equation below:

global model←
N

∑
i=1

(
Ni
N
× local modeli

)
(6)

This technique ensures that the global model mirrors the cooperative developments
from all local models, upholding high efficiency while conserving data secrecy.
In addition, the loss function can be reduced by handling the optimisation complexity
given in the Equation below:

p = min
wp∈P

1
p

p

∑
p=1

w′p (7)

The aggregated global model influences the distributed character of IoT devices,
compounding their insights without conciliating the distinct data secrecy of every device.

3.4. The Cross-Validation of the Models

Cross-validation is used to validate the model’s results by splitting the dataset into k
subgroups, or “folds”. In this research, k-fold cross-validation was used, where every fold
is successively employed as a validation set, though the other k− 1 folds are employed
for training. This procedure is repeated k times, and the middling performance metrics
are calculated to measure the model’s applicability. The average efficiency metric M is
considered as follows:

M =
1
k

k

∑
i=1

Mi

where Mi is the metric for the ith fold. This method makes sure that the model’s efficiency
is assessed broadly for other subsections of the dataset, thus delivering a dependable
approximation of its efficiency.

3.5. Evaluation Parameters for Methodology

An all-inclusive set of metrics is used to evaluate the tested technique regarding its
resistance and how well it works:

• Accuracy: The accuracy is a key factor used to measure to what extent the model’s
predictions are correct, providing a strategy to analyze its overall performance.



Sensors 2024, 24, 5834 12 of 25

• Precision: This statistic examines the precision of positive predictions, emphasizing
the model’s ability to reduce false positives. It is especially pertinent in situations
when accuracy is a crucial factor. This parameter checks the precision of positive
predictions in reducing false alerts; it is important especially when accuracy matters
most.

• Recall: Recall reveals how many instances are correctly identified versus misclassified
data points, taking into consideration sensitive issues so that the system responds
to relevant cases as expected without classifying anything incorrectly, and without
caring about sensitivity and specificity. In preventing further occurrences of error type
II, this value is required.

• F1 Score: F1 score provides the mean of both accuracy and recall, offering a com-
prehensive evaluation of the FL models. This is obtained through taking both false
positives and false negatives into consideration, hence giving a balanced view.

• Confusion Matrix: A visual portrayal emphasizes the allocation of true positive,
true negative, inaccurate positive, and erroneous negative predictions, offering a full
overview of the model’s efficacy across multiple categories.

These well-selected evaluation criteria, taken together, provide a detailed and complex
picture of the performance of the approach in many aspects, guaranteeing a thorough
evaluation of its effectiveness.

3.6. Federated Learning Algorithm

The research methodology used in this work is described in Algorithm 1. Local model
training is performed at the Fog layer and the CPS layer, two separate levels of the system.
Key parameters like the number of communication rounds, local models, learning rate, and
aggregation technique are set during the initialization phase. Each CPS node defines its local
datasets, and a global model is initialized. The Fog layer functions throughout multiple
runs. The local models obtained from CPS nodes are combined to update the global model.
It is subsequently broadcast to all nodes and transmitted separately to each CPS node. The
local model training CPS layer specifically targets individual CPS nodes. Every node starts
by initializing a local model and then updates it during communication rounds using the
global model and its local dataset. The optimized local model is, after that, returned to
the Fog layer. This method facilitates collaborative learning while ensuring privacy, as the
global model is updated by aggregating information from all CPS nodes. The organized
exchange of information between the Fog and CPS layers enables the implementation of
federated learning inside the CPS framework.

3.7. Implementation Details

This section presents the computational settings for implementing and evaluating
the proposed model. The implementation used Google Colab to produce and train an
FL model using numerous tools and frameworks. The implementational configuration in
the Google Colab (USA) setting used the workings of the subsequent hardware systems:
Google Colab’s RAM capability differs depending on the selected runtime nature, ranging
from 12 GB to 25.5 GB. The CPU resources have various cores, enabling simultaneous
model implication and training processing. The most appropriate GPUs for DL workloads
are NVIDIA Tesla T4 (USA). The subsequent hardware requirements were essential to
implement FL in the Google Colab setting efficiently, using the TensorFlow Federated (TFF)
framework, TensorFlow (tf. keras) or PyTorch libraries, and NumPy. Consuming RAM,
CPU, GPU, and disc resources enabled the effective and swift training of models, allowing
for the effective building and analysis of the FL model through the experiment. Details are
mentioned in Table 7.
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Table 7. Simulation parameters.

Parameter Value

IDE Google Colaboratory

Computation GPU

Type NVIDIA Tesla T4

RAM 12.68 GB

CUDA Version 11.2

Number of GPUs 1

Programming Language Python 3.8

Modeling Library TensorFlow, Scikit-learn, Keras, Seaborn
Adam, SentenceSplitter, Pandas, Torch

Algorithm 1 Federated learning with Selective Forwarding Attack Detection.

1: Input: Local datasets {D1, D2, . . . , Dn} for each CPS node
2: Output: Global Model Mglobal
3: Initialization:
4: Set communication rounds T, local models M, learning rate η, aggregation method ϕ

5: Initialize global model M(0)
global

6: Fog Layer Processing:
7: for t = 1 to T do
8: Receive local models from CPS nodes: {M(t)

1 , M(t)
2 , . . . , M(t)

n }
9: Aggregate models: M(t)

global = ϕ({M(t)
1 , M(t)

2 , . . . , M(t)
n })

10: Broadcast global model M(t)
global to all CPS nodes

11: end for
12: CPS Layer for Local Model Training:
13: for i = 1 to n do
14: Initialize local model M(0)

i
15: for t = 1 to T do
16: Receive global model M(t)

global

17: Train local model M(t)
i = Train(M(t−1)

i , Di) using KNN, LR, SVM, NB

18: Transmit local model M(t)
i to Fog layer

19: end for
20: end for
21: Final Aggregation:
22: Finalize the global model Mglobal

4. Results

This section contains the analysis and results found using the method and gives a
detailed look at the outcomes achieved as a consequence of its application.

4.1. KNN

This section constitutes the significance and the impact of the KNN joined with its
usability. In addition to that, it contains the particular performance figures of the same
technique in the deployment framework.

1. Global vs. Local Model Training: The outcomes of our study are shown in Figure 4. In
several assessment categories, they demonstrate noteworthy accomplishments. The
local and global models scored an amazing 95% for accuracy, recall, precision, and
F1 score. The local models are made especially to handle the complexity of their partic-
ular IoT environments, effectively differentiating between normal network behavior
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and potentially dangerous behavior. Smooth data integration from several local models
by the global model enhances its understanding of the dynamics of IoT networks. The
global model replicates the outstanding performance of the local models through the
use of this cooperative technique, producing an amazing 95% in all assessment criteria.
Considering their overall amazing accuracy, recall, precision, and F1 score measures,
the models are trustworthy in handling complexity in the dataset.

Figure 4. KNN training model.

2. Confusion Matrix of KNN: Figure 5 displays the efficacy of the KNN model. Based on
the data, the model accurately predicted 13,789 instances out of 28,000 as “True 0”,
which signals regular network functioning. In addition, the program properly identi-
fied 14,576 incidents as “True 1”, indicating incidences of selective forwarding attacks.
Yet, it yielded 805 misclassifications, marked as “predicted 0” that were actually
“true 1”; additionally, 830 identifications were wrongly flagged as “predicted 1” when
in reality, they were “true 0”. However, there are infrequent misclassifications, but it
carries out very well on the whole by guessing right in many situations and making
only a few false ones. Its competence and potential in enhancing security against
malicious attacks in IoT networks is highlighted by the impressive performance of the
KNN model on recognizing selective forwarding attacks instances on IRAD dataset.

Figure 5. KNN confusion matrix.
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4.2. Logistic Regression (LR)

This section summarizes the findings relevant to the Logistic Regression (LR) algo-
rithm, explaining the individual contributions and their influence on the overall outcomes
of the federated learning architecture that was put into place.

1. Global vs. Local Model Training: The remarkable global and local performance of
the logistic regression model is shown in Figure 6, which also shows its usefulness in
binary classification problems. The model shows remarkable accuracy rate of 93% with
precision, recall, and F1 score values of 92%, 95%, and 93%, in that order, globally. This
emphasizes its ability to classify events and effectively document accurate, positive
outcomes. At the local level, both local models consistently achieve high levels of
accuracy, precision, recall, and F1 score. Some measures show tiny gains. Specifically,
Local LR 2 is notable for its increased accuracy of 94%, while it has a slightly lower
precision of 91%. However, the global logistic regression model performs better than
both local models when evaluating the combined results, confirming its superiority
across all measures. By adopting an integrated perspective, the global model emerges
as the most advantageous option, capitalizing on the advantages of local variations to
obtain superior overall performance in binary classification tasks.

Figure 6. LR training model.

2. Confusion Matrix of LR: The confusion matrix displayed in Figure 7 provides a
detailed assessment of the effectiveness of the logistic regression model. The model
has impressive accuracy in its predictions, as seen by the significant number of
occurrences accurately identified as either absence (13,339 instances) or presence
(14,601 instances) of selective forwarding assaults, indicated by true labels 0 and 1,
respectively. In addition, the model has a significantly low misclassification rate, with
just 1252 examples improperly classified as not having selective forwarding attacks
and 808 occurrences mistakenly labelled as having such attacks. The little difference
between the predicted and real labels highlights the model’s strong performance and
ability to accurately distinguish between normal network behaviour and malicious
selective forwarding actions. Strong sensitivity and specificity—qualities essential
for preserving the integrity and security of IoT installations depending on the RPL
protocol—are shown by the model’s precision. Thus, our results provide a solid
foundation for the use of FL-based detection systems, a potent technique of fortifying
IoT networks against the dangerous threat of selective forwarding attacks.
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Figure 7. LR Confusion Matrix.

4.3. Support Vector Machine (SVM)

This section briefly describes the outcomes of the SVM algorithm, emphasizing its
purpose and impact on the implemented federated learning architecture.

1. Global vs. Local Model Training: The SVM model’s evaluation parameters provide
outstanding performance on a number of measures, as Figure 8 illustrates. The model
predicts with a high overall accuracy level of 95%. Besides, the model demonstrates its
ability to provide accurate and trustworthy positive identifications with an accuracy
rate of 94%. At the same time, a 96% recall rate implies that it recognizes selective
forwarding attacks taken as prominent instances. The 95% F1 score, for false negatives
and false positives, shows that generally the model has no problem balancing between
precision and recall. Taken together, it is evident that SVM can detect patterns that
indicate selective forwarding attacks.

Figure 8. SVM Training Model.

2. Confusion Matrix of SVM: The confusion matrix provided in Figure 9 illustrates the
high performance of the SVM model while applying federated learning for recognizing
selective forwarding attacks in IoT networks with the RPL protocol. The program
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displays exceptional accuracy in accurately recognizing scenarios that do not include
selective forwarding attacks, totaling 13,627 occurrences. Furthermore, it is quite
accurate in detecting the occurrence of these assaults, identifying 14,808 instances
as selective forwarding behavior. The results demonstrate the model’s exceptional
sensitivity and specificity, as well as its ability to successfully strengthen IoT networks
against hostile behavior. The ability to accurately distinguish between safe and
malicious network data is critical for improving the security of RPL-enabled IoT
setups. This provides a solid foundation for future optimization efforts to eliminate
misidentifications and improve detection systems.

Figure 9. SVM Confusion Matrix.

4.4. Naive Bayes (NB)

In this section you will find short descriptions that will tell you what the Naive Bayes
(NB) algorithm’s results are, so as to underline its value in the context of federated study.

1. Global vs. Local Model Training: In many aspects, the Naive Bayes classifier performs
admirably according to the assessment criteria shown in Figure 10. The model sug-
gests a considerable degree of general correctness in its predictions, with an accuracy
of 87%, or the percentage of properly identified instances. For global and local cases,
respectively, the model shows that it can provide accurate affirmative identifications
with remarkable precision scores of 98% and 97%. Furthermore, the model demon-
strates competence in detecting pertinent cases of selective forwarding attacks, even
though it has much lower recall scores of 76% and 75% for the global and local exam-
ples, respectively. Computed as the mean of accuracy and recall, the F1 scores always
reach 86%. This suggests a performance in controlling the trade-off between false
negative and false positive that is balanced. The results show that the Naive Bayes
classifier is quite good at spotting trends that point to selective forwarding attacks
in RPL-controlled IoT networks. This highlights the promise of the classifier as a
trustworthy detection technique in the particular research field.

2. Confusion Matrix of NB: We use the confusion matrix presented in Figure 11 to
extensively assess the efficacy of a Naive Bayes classifier in identifying selective
forwarding attacks in RPL-enabled IoT networks. Although the model misclassifies
14,382 examples as such, it is remarkably accurate at correctly detecting events without
sending out assaults only in certain cases. Furthermore, the detection of selective
forwarding attacks is quite sensitive; 11,728 examples of this behavior have been found.
It is shown that, save from a few instances of false positives (214) and false negatives
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(3675) results, the model can usually differentiate between beneficial and detrimental
network activity. The results indicate that the Naive Bayes classifier proves to be a
trustworthy detection technique to enhance the security of IoT systems with RPL
capability. Its ability to thwart selective forwarding attacks has to be enhanced, and
misclassifications have to be reduced.

Figure 10. NB training model.

Figure 11. NB confusion matrix.

4.5. Global Model Performance on Test Data

The test dataset is presented in Figure 12 with the evaluation results of four machine
learning models: Naive Bayes (NB), Logistic Regression (LR), Support Vector Machine
(SVM), and K-Nearest Neighbours (KNN). These findings underline, according to a number
of standards, the special performance qualities of every model. The impressive accuracy
scores of 95% of the KNN and SVM models, especially, show how well they can categorize
situations. The SVM model has an accuracy of 94%; thus, it can accurately identify positive
scenarios. Additionally, the stunning 96% recall rate is evidence of how well it captures
relevant examples of selective forwarding attacks. What the KNN model shows by reaching
a balanced precision, F1 score, and recall of 95% is that it has high classifying accuracy,
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implying the detection of patterns that possibly indicate selective forwarding attacks.
Despite its somewhat lower accuracy of 93%, the LR model shows good precision, recall,
and F1 scores of 92%, 95%, and 93%, respectively. This underlines its capacity to accurately
identify positive situations and document noteworthy examples of selective forwarding
assaults. On the other hand, while attaining a very high precision of 98%, the accuracy of
the NB model is noticeably lower, at 87%. This is why the model reduces false positives
really effectively. Still, its 86% F1 score and significantly lower recall rate of 76% suggest
that it might be difficult to detect every instance of selective forwarding assaults. We
finally show how successfully a number of algorithms detect selective forwarding attacks
in RPL-based IoT networks. Their limits and benefits are clarified in a significant way.

Figure 12. Global models’ performance on test data.

4.6. Global Models’ Performance on Validation Data

Figure 13 displays the validation data evaluation results and highlights the differences
in performance across several parameters. The remarkable accuracy rate of 95% of the SVM
and KNN models, especially, highlights their ability to categorize traffic accurately. With a
precision of 94%, the SVM model shows that it is quite accurate at detecting affirmative
cases. It demonstrates that it can capture significant instances of selective forwarding
attacks with a 97% recall rate. With 95% F1 scores, precision, and recall, the KNN model
performs in a well-balanced manner. This demonstrates its continuing accuracy in data
categorization and usefulness in identifying patterns, suggesting focused forwarding
attacks. Though it lags in accuracy at 94%, the LR model shows important precision, recall,
and F1 score at 92%, 96%, and 94%, in that order. This shows that it can detect positive cases
and record pertinent instances of selective forwarding attacks. In contrast, the accuracy
of the NB model differs significantly, at 89%. However, its remarkably high recall at 99%
raises the possibility that the system can successfully rule out false positives. Even then,
the somewhat lower recall of 79% and F1 score of 88% suggest possible difficulties in
accurately recognizing all relevant cases of selective forwarding attacks. These data provide
a detailed overview of the models’ performance environment and perceptive details on
their applicability and potential for improvement in detecting selective forwarding attacks
in RPL-based IoT networks.
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Figure 13. Global models’ performance on validation data.

4.7. State of the Art Comparison and Discussion

The major advantages of the proposed methodology and the current machine learning
methods are shown in Table 8. This work presents a novel method with remarkable
benefits, such as a decentralized system, enhanced data privacy, and large-scale deployment
simplicity. Exceptional performance measurements enhance these qualities in several
aspects. The study suggests that SVM and KNN, when employed under FL, attained
an amazing 95% accuracy, surpassing the 94% of Logistic Regression, while Naive Bayes
(NB) reached only 89%. Furthermore, precision measurements show that at 99%, NB
outperforms SVM and KNN at 94% and LR at 92%. Though recall rates vary somewhat,
SVM outperforms LR and KNN at rates of 96% and NB at 79%. All models, though,
routinely perform quite well when considering the F1 score. In such sequences, KNN
scores 95%, LR scores 94%, and SVM scores 96%. The difference shows how considerably
FL enhances the capacity of intrusion detection in IoT systems, signaling a new era of
reliable cybersecurity solutions that prioritize data privacy, distributed processing, and
flexible deployment. Promising results have been obtained from the suggested model
applied to machine learning models. SVM and KNN, particularly, reach high accuracy rates
of 95% on both the test and validation datasets, with the global models continually showing
excellent performance in classification correctness. Furthermore, an analysis of the state of
the art emphasizes FL’s advantages over traditional machine-learning techniques regarding
data privacy, decentralized processing, and scalability. These results highlight how much
FL enhances the security of IoT deployments, particularly by lessening the negative effects
of selective forwarding attacks in networks with RPL enabled.

Hyperparameters, including batch size, learning rate, and dropout rate, impacted
the performance of the FL-DSFA. The research utilized a learning rate of 0.001, a batch
size of 32, and a dropout rate of 0.25 to avoid overfitting and improve model generality.
These hyperparameters have a straight-wedged model’s accuracy and convergence pace.
The LR of 0.001 ensured steady convergence, though the dropout rate of 0.25 enhanced
generalization, despite producing underfitting. The optimization of these hyperparameters
was vital for attaining optimal efficacy and performance in the proposed model.
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Table 8. State of the Art Comparison.

Ref. Dataset Scalability Privacy Model Used Attack Findings

This
Study IRAD Yes Yes FL-DSFA (LR, KNN,

SVM, NB)

Hello Flood, Decreased
Rank, and Version Num-
ber

SVM: Accuracy = 95%,
Precision = 94%, Recall =
97%, F1 score = 96% NB:
Accuracy = 89%, Preci-
sion = 99%, Recall = 79%,
F1 score = 88% KNN: Ac-
curacy = 95%, Precision
= 95%, Recall = 95%, F1
score = 95% LR: Accuracy
= 94%, Precision = 92%,
Recall = 96%, F1 score =
94%

[54] IRAD No No LR, KNN, SVM, NB,
MLP

Hello Flood, Decreased
Rank, and Version Num-
ber

Accuracy = 98%, Preci-
sion = 97%, Recall = 98%,
F1 score = 97%

[55] RPL-ELIDS 783,176
(self-constructed) No No ELG-IDS

internal attacks: Ver-
sion Number, Decreased
Rank, and DIS flooding
attacks

Accuracy = 97.90%

[38] IRAD No No ANN Decreased Rank attacks
Accuracy = 97.14%, Pre-
cision = 97.03%, Recall =
96.39%, F1 score = 96.39%

[56] RPL-IoBT network
(self-constructed) No No IoBTSec-RPL

Rank, Version, blackhole,
Hello Flood, and sinkhole
attacks

Accuracy = 98.1%, Preci-
sion = 98.46%, Recall =
98.1%, F1 score = 96.00%

[57] self-generated
LIoTN-RPL dataset. No No ProSenAD

protocol-specific rank at-
tacks and sensor network-
inherited wormhole at-
tacks

Accuracy = 0.98%, Pre-
cision = 99%, Recall =
98.1%, F1 score = 98%

[58] Edge Nodes (ENs)
data Yes Yes CFL-IDS IIoT intrusion detection Accuracy = 0.94%

[59] CIC-IDS-2017 Yes Yes FL-SCNN-Bi-LSTM
model

Wireless Sensor Net-
works intrusion detection Accuracy = 0.99%

4.8. Potential Real-World Applications of FL-DSFA

FL-DSFA proposes a vigorous solution for improving the security of IoT nets for a
wide range of cyber threats. In smart homes and cities, FL-DSFA can protect interrelated
devices from DDoS assaults by detecting abnormal traffic patterns without risking user
data secrecy. In healthcare, this system can secure critical medical devices and patient data
from malicious and forbidden access, ensuring the integrity and confidentiality of crucial
health data. Furthermore, FL-DSFA can strengthen industrial systems against APTs in
industrial IoT settings by unceasingly apprising and refining security models founded on
real-time datasets from varied edge/endpoint devices. By exploiting distributed learning,
FL-DSFA can offer compliant and robust security procedures personalized to the explicit
requirements of several IoT settings, thus improving IoT networks’ inclusive robustness
and dependability.

5. Conclusions and Future Directions

The study proves the effectiveness of FL in solving complex problems in IoT security.
Different ML algorithms, including KNN, LR, SVM, NB, and FL-DSFA, have shown their
capacity to detect routing vulnerabilities effectively. All performance parameters, including
accuracy, precision, recall and F1 score, are observed at consistently high levels for varied
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models, reflecting their capability to distinctly identify normal from harmful network be-
havior. The SVM and KNN models are notable for their exceptional performance, regularly
reaching accuracy rates of approximately 95% on both the test and validation datasets.
Moreover, upon comparing federated learning with conventional machine learning tech-
niques, it becomes apparent that it has several distinct advantages, such as enhanced
data confidentiality, distributed processing, and expandability. The results highlight the
substantial influence that federated learning can have on improving the security of IoT de-
ployments. This technology enables the development of more effective intrusion detection
algorithms to tackle rising cyber threats. The performance findings of the FL-DSFA model
also demonstrated better detection efficiency. This solution requires the modification of
the firmware of IoT devices; however, its computational expense remains modest. Our
upcoming research aim is to extend the detection range by utilizing a more efficient and
economical calculation process.

Future studies may explore progressive global model aggregation methods to improve
efficiency and convergence in the FL environment. Other advanced ML models, such as
XGBoost and LightGBM, can advance identification accuracy while upholding compu-
tational efficacy. Escalating the FL-DSFA to cover a wider variety of IoT routing attacks
and directing scalability in varied IoT systems can be explored. Furthermore, employing
and testing this technique in real-world IoT scenarios will be critical to authenticating its
efficiency and practicality under operative circumstances.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
RPL Routing Protocol for Low-Power and Lossy Networks
FL-DSFA Federated Learning-based Detection Mechanism for Selective Forwarding Attack
IRAD IoT Routing Attack Dataset
HF Hello Flood
DR Decreased Rank
VN Version Number
LR Logistic regression
KNN K-Nearest Neighbors
SVM Support Vector Machine
NB Naive Bayes
DoS Denial of Service
DDoS Distributed Denial of Service
CNN Convolutional Neural Network
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TCP Transmission Control Protocol
MQTT Message Queuing Telemetry Transport
RF Random Forest
NN Neural Networks
ST Stacking
BG Bagging
DT Decision Tree
ATD Artificial Training Data
SC-SVM Single-Class SVM
FDA Federated Defense Approach
IDS Intrusion Detection System
CPS Cyber-Physical Systems
FFDNN Feed-Forward Deep Neural Network
WFEU Wrapper-Based Feature Extraction Unit
GRU Gated Recurrent Units
LSTM Long Short-Term Memory Networks
PCAP Packet Capture
CSV Comma-Separated Value
LDA Linear Discriminant Analysis
DAO Destination Advertisement Object
DNN Deep Neural Network
FL Federated Learning
ANN Artificial Neural Networks
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