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Abstract: Different hyperelastic material models (Mooney-Rivlin, Yeoh, Gent, Arruda-Boyce and
Ogden) are able to estimate Treloar’s test data series containing uniaxial and biaxial tension and
pure shear stress-strain characteristics of rubber. If the rubber behaviour is only determined for
the specific load of the product, which, in the case of rubber bumpers, is the compression, the
time needed for the laboratory test can be significantly decreased. The stress-strain characteristics
of the uniaxial compression test of rubber samples were used to fit hyperelastic material models.
Laboratory and numerical tests of a rubber bumper with a given compound and complex geometry
were used to determine the accuracy of the material models. Designing rubber products requires
special consideration of the numerical discretization process due to the nonlinear behaviours (material
nonlinearity, large deformation, connections, etc.). Modelling considerations were presented for the
finite element analysis of the rubber bumper. The results showed that if only uniaxial compression
test data are available for the curve fitting of the material model, the Yeoh model performs the best in
predicting the rubber product material response under compressive load and complex strain state.

Keywords: rubber bumper; finite element analysis; material models; hyperelasticity; Mooney-Rivlin;
Yeoh; curve fitting; Drucker’s stability

1. Introduction

Rubber-based machine elements, like vibration dampers, bumpers, and seals, are
becoming increasingly common due to synthetic rubber compounds’ development and
shock-absorbing behaviour. In the automotive sector, they perform a crucial function in
stabilizing the engine, transmission or cabin, as a chassis component, or as a jounce bumper
that limits the last stage of movement. Even with the advancements in electromobility,
many of these components are still required in large quantities during the manufacture
of automobiles. However, because of the modified structural designs, products must be
redesigned considering the loads resulting from the altered total vehicle weight. The only
way to satisfy the resulting market demands in time involves innovative design processes
that use optimization and the finite element method to determine the rubber product’s
design [1–10]. Since a large portion of the literature [11–15] works on the numerical analysis
of rubber bumpers, the research aimed to determine which considerations have to be taken
to accurately model the behaviour of these rubber products under compressive load.

Rubber belongs to the group of elastomers, i.e., a polymer with elastic and viscous
properties. When modelling rubber products, it is necessary to deal with nonlinearities
due to material, geometric and contact effects. Numerical solvers for nonlinear equation
systems can be found in commercial finite element software packages. Selecting a calibrated
material model that describes the stress-strain relation is necessary for a structural analysis.
The material response can be derived from either the phenomenological modelling of
measurable macroscopic quantities like the relationship between stress and strain or the
micromechanical modelling of local material behaviours and interactions.
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A hyperelastic constitutive model that describes the relationship between stress and
strain using relevant continuum mechanics theories and the strain energy density function
can predict the nonlinearly elastic and isotropic behaviour of rubber materials [16–18]. In
phenomenological hyperelastic material models, the material response is approximated by
mathematical functions. Mooney-Rivlin [19,20], Ogden [21], Yeoh [22], Arruda-Boyce [23]
and Gent [24] are a few examples of these model formulas; the latter two were derived
using micromechanical model approximations. The load mode, the raw material, or its
availability in the finite element software are the main factors that influence the choice of
material model [25]. Since the rubber compound used in the bumper is a trade secret, raw
material measurements for various load cases are always required. Using these data, a
process called curve fitting can be used to determine the values of the parameters included
in the constitutive equations [26,27].

The combination of the uniaxial, biaxial or simple shear test will enhance the char-
acterization accuracy of the hyperelastic behaviour of the rubber. Since only the uniaxial
test is standardized, most material testing laboratories only have the equipment needed to
perform this test. Treloar’s natural rubber measurement data set [28] is used extensively
in the literature [29–33] to evaluate the accuracy of material models. Examining twenty
distinct material models was performed in one of the most often cited works. While the
Mooney-Rivlin model performed well for a restricted strain of 250%, the Ogden model
was among the best at describing the behaviour of the material over the whole defor-
mation range [31]. Forty-four different hyperelastic material models were fitted using a
multi-objective optimization process based on a genetic algorithm. The number of material
parameters was considered when selecting the best-performing model, in addition to the
goodness of fit [32]. Based on an evaluation system that considers the standard deviation of
the approximation and the number of material parameters, a ranking of fifteen hyperelastic
models was presented. The results show that the Ogden and Yeoh model is one of the
best-performing models [33]. In [34], 85 different isotropic strain energy function-based
material models were fitted for Treolar’s unfilled and Yeoh’s filled rubber data set. The
fitting results showed that the two data sets’ best-performing material models are different.
Numerical stress solution method was used to calibrate hyper-visco elastic solids subjected
to various loading modes in [35–37], and prediction capability was tested by simulation and
measurement of the radial force in an aged seal [38]. Few studies have tested the accuracy
of the fitted material model using rubber product finite element simulation [39–41]. After a
thorough analysis of 25 hyperelastic constitutive models, Steinmann and Hossain [29,30]
concluded that when just one type of test data is available, the prediction of the natural
rubber behaviour under the remaining two load modes deviates irregularly using the
different constitutive models. In the lack of material test results, a satisfactory alternative
could be the inverse material calibration. Nevertheless, it is a difficult and computationally
demanding task, particularly when dealing with numerous material parameters [42–44].

Based on the reviewed literature, there is enough knowledge available about the
behaviour and relative accuracy of hyperelastic material models fitted to the Treloar mea-
surement data set. These showed that the Mooney-Rivlin, Ogden, Yeoh, Arruda-Boyce,
and Gent were the most accurate phenomenological models. However, one of the engi-
neering applicability problems of these results is that, in the case of rubber products under
compression, the strain range is smaller than the tested one, and the Treloar data set does
not contain uniaxial compression measurement. The rubber bumper material is a blend
of natural rubber (NR) and styrene-butadiene rubber (SBR), which differ from the natural
rubber used in the Treolar dataset and may have an impact on the prediction accuracy of
the different hyperelastic material models. To numerically calculate the operating char-
acteristics of a rubber product under compressive load, it is vital to select an appropriate
hyperelastic material model and to be aware of its accuracy. It is often possible to identify
the primary load and its extent based on the design requirements. In addition, a measure
for the element strain state called biaxiality indication will be used to determine the load
mode required for the curve fitting of the hyperelastic model. In the case of the investigated
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rubber bumper, this is the uniaxial compressive load up to a 30% drop in height. None
of the reviewed studies examined the accuracy of predicting the behaviour of a rubber
product under compressive load if only the uniaxial compression data set is used for the
material model calibration. Consequently, this research aim was to fit various hyperelastic
material models (Mooney-Rivlin, Ogden, Yeoh, Arruda-Boyce, Gent) for the stress-strain
characteristics derived from the uniaxial compression test. Furthermore, the study sought
to evaluate the accuracy of the fitted material model using the rubber bumper finite element
simulation for compressive load.

2. Hyperelasticity

If we ignore the viscoelastic behaviour of the rubber, then its stress state depends on
the current state and any stress measure depends on the deformation gradient F. The strain
energy density function is used by a hyperelastic constitutive model to describe the stress-
strain relation [16,18]. If the strain energy is only a function of the initial and instantaneous
state, i.e., it does not depend on the deformation history, then the hyperelastic constitutive
equation describing the nonlinear elastic and compressible properties of rubber [45,46] is

P =
∂W(F)

∂F
, (1)

where P is the I. Piola-Kirchhoff stress tensor, and W(F) is the strain energy density function.
The latter can be decomposed into two terms [16,47]

W(F) = WD(C) + WV(J), (2)

where J = detF, C is the right Couchy-Green deformation tensor and WV(J) is the volumet-
ric, while WD(C) is the deviatoric (no change in the volume) strain energy density function.

2.1. Hyperelastic Material Models

Polynomial formulas for the deviatoric strain energy density function can be used
to describe the phenomenological models using the I1, I2 scalar invariants of the Cauchy-
Green deformation tensor, as originally proposed by Rivlin [19]. Without claiming to
be exhaustive, the material models Mooney-Rivlin, Yeoh, Arruda-Boyce, and Gent are
available within the polynomial formula that uses invariants. The polynomial model of the
strain energy density function for incompressible material is [25]

WD
(

I1, I2
)
=

H

∑
i+j=1

cij
(

I1 − 3
)i(I2 − 3

)j, (3)

where cij material constants need to be characterized. Another approach, proposed by
Valanis [48] and Ogden [21], describes the deviatoric strain energy density function using
λ1, λ2, λ3 principal stretches.

2.1.1. Mooney-Rivlin Model

The Mooney-Rivlin formula has good curve fitting because of the various order models
that are available when choosing how many terms to include in the polynomial formula.
The values H = 2 and c20 = c02 = 0 could be inserted into Equation (3) to derive the
three-term Mooney-Rivlin model [19,20]

WD,MR3
(

I1, I2
)
= WD,MR3(c10, c01, c11) = c10

(
I1 − 3

)
+ c01

(
I2 − 3

)
+ c11

(
I1 − 3

)(
I2 − 3

)
. (4)

2.1.2. Yeoh Model

Numerous research papers [22,49,50] demonstrate that the deviatoric strain energy
for most elastomers, including rubber, depends significantly less on the I2 second scalar
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invariant of the Cauchy-Green deformation tensor than on the I1. Thus, the Yeoh model
could be written using the third-order polynom [22]

WD,Y3
(

I1
)
= WD,Y3(c10, c20, c30) = c10

(
I1 − 3

)
+ c20

(
I1 − 3

)2
+ c30

(
I1 − 3

)3. (5)

2.1.3. Gent Model

Given that the deviatoric strain energy is a logarithmic function of I1, the Gent model
is an extension of the well-known Neo-Hooke material model [24]

WD,Gent
(

I1
)
= WD, Gent(µ, Jm) = −µJm

2
ln
(

1 − I1 − 3
Jm

)
, (6)

where µ is the shear modulus and Jm is the dimensionless parameter that controls the
finite extensibility. This extension makes the Gent model more suitable for describing the
responses of elastomer-like materials to large deformations.

2.1.4. Ogden Model

A more accurate approximation in large strain ranges is provided by Ogden [21] using
the principal strains directly in the polynomial model

WD,Ogden(λ1, λ2, λ3) = WD,Ogden(µ, α) =
H

∑
k=1

2µk

α2
k

(
λ

αk
1 + λ

αk
2 + λ

αk
3 − 3

)
, (7)

where λ1, λ2, λ3 are the principal stretches, µk is the shear modulus and αk is the dimension-
less parameter. During the investigations, the commonly used H = 3 formula was used.

2.1.5. Arruda-Boyce Model

Arruda and Boyce used a micromechanical model and statistical mechanics methods
to predict the response of the elastomer [23]

WD,AB
(

I1
)
= WD,AB(µ, λL) = µ

5

∑
i=1

ci

λ2i−2
L

(
Ii

1 − 3i
)

, [c1, c2, c3, c4, c5] =

[
1
2

,
1

20
,

11
1050

,
19

7050
,

519
673750

]
, (8)

where µ is the shear modulus and λL is the limit of stretch.

2.2. Modelling the Volumetric Strain Energy Density Function

The additions in the mixture cause rubber vulcanizates to behave as nearly incom-
pressible material under hydrostatic pressure. The formula most commonly used to express
the volumetric strain energy density function to model this behaviour is [51]

WV(J) =
κ

2
(J − 1)2, (9)

where κ is the bulk modulus, which is a true material coefficient. It is recommended that
during the finite element analysis of a rubber bumper subjected to compressive load, the
value κ = 1000 [MPa] be used, based on my prior tests [52].

2.3. Drucker’s Stability

Only the nonlinear stress-strain characteristic satisfying the mathematical criteria is
suitable for the material according to Drucker’s stability [53,54]. Examining Drucker’s
first stability criterion within the framework of this study is crucial. It stipulates that an
increase in the external influence on the body (such as time, temperature, or load) must
result in a positive change in the internal energy. Therefore, energy cannot be released, so
the following criterion for the inner product of the tensors has to be fulfilled

∆(JT)··∆At ≥ 0, (10)
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where T is the Cauchy stress tensor, while At is the logarithmic strain tensor. Under tensile
load, hyperelastic material models remain Drucker’s stable even at large strains; however,
in other load cases, they may become unstable even at small strains. Therefore, the stability
of the material model response must be examined for the common load cases that are also
used during material tests, to a pre-selected range of strain [25]. To investigate the stability
of the material models, the range of strain based on Table 1 was selected, considering the
deformation range experienced during the rubber product operation.

Table 1. The selected range of strains for different modes of load to examine Drucker’s stability.

Mode of Load Range of Strain

Uniaxial compression-tension −0.5 ≤ εten ≤ 0.5
Pure shear −0.5 ≤ εpsh ≤ 0.5

Biaxial compression-tension −0.5 ≤ εbia ≤ 0.5
Simple shear 0 < εsh ≤ 0.5

Volumetric compression-tension −0.1 ≤ εvol ≤ 0.01

3. Calibration of Hyperelastic Material Model
3.1. Compression Test of the Rubber Bumper

The compression test of the bumper was performed according to test conditions
specified in Table 2 using an Instron 8801 (Norwood, MA, USA) uniaxial test machine.

Table 2. Test conditions of the uniaxial compression of the rubber bumper.

Temperature and Relative Humidity of the Test 25 (◦C); 50%

The number, magnitude and speed of the preload cycles 3 cycles; 35 mm; 50 (mm·min−1)
The number, magnitude and speed of the measured cycle 4th cycle; 35 (mm); 50 (mm·min−1)

Test setup Polished compression platen without lubrication

The measured compressive force-displacement characteristics in Figure 1 show the
differences between the first and second cycles due to the viscous and Mullins effect, which
no longer cause significant changes in the additional loading cycles. The rubber bumper
working characteristic was determined using the data points of the fourth half cycle.
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Figure 1. Uniaxial compression test setup and the measured characteristics of the rubber bumper.

3.2. Compressive Stress-Strain Characteristics of the Rubber

The rubber bumper material is a blend of natural rubber (NR) and styrene-butadiene
rubber (SBR); however, the blend ratio and the additional rubber compound elements are
a trade secret. Therefore, rubber samples were machined out of the product to test the
material behaviour according to ISO 23529 using a milling machine. Figure 2 illustrates
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the location of sampling within the product and the prepared specimens, which have a
diameter of 29 ± 0.5 (mm) and a height of 12 ± 0.5 (mm). As a reference to the rubber
compound, the Shore hardness was measured according to the ISO 48–4 standard using a
BAREISS Digi-Test II (Stouffville, ON, Canada) durometer, which is 77 Shore A for the test
specimens and 78 Shore A for the product.
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Figure 2. The sampled specimens and their location within the rubber product.

The compression test of the rubber specimens was performed according to the ISO
7743 ‘A’ method and the test conditions specified in Table 3. The tests were performed
using an Instron 68TM-10 (Norwood, MA, USA) uniaxial test machine and the Instron AVE
2 non-contacting video extensometer. The operating rate of the traverse was calculated
based on the strain rate used for the compression test of the rubber bumper.

Table 3. Test conditions of the uniaxial compression of the cylindrical rubber specimens.

Temperature and Relative Humidity of the Test 25 (◦C); 50%

The number, magnitude and speed of the preload cycles 3 cycles; 6.4 (mm); 6.76 (mm·min−1)
The number, magnitude and speed of the measured cycle 4th cycle; 6.4 (mm); 6.76 (mm·min−1)

Test setup Polished and lubricated compression platens

The measurement setup is shown in Figure 3 where to reduce friction, the compression
platens were prepared by mechanical polishing and PTFE (polytetrafluoroethylene) oil
lubricant. Figure 3 shows the deformation state of the specimen under maximum load,
based on which it can be inferred that the barrelling effect as a result of friction during the
compression test is minor.
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In this instance, there is an almost linear relationship between the displacement and
force up to approximately 15% compressive deformation due to the specimen geometry and
the test conditions can both be considered ideal. This behaviour was taken into account to
correct data points that differ from linear caused by geometric errors. Assuming frictionless
sliding between the rubber specimen and compression platens, the stress is homogeneous,
hence the engineering stress

σe =
F

Ao
, (11)

where F is the compressive force, Ao is the original cross-sectional area. The engineering
strain is expressed as the ratio of the change in dimension ∆L to the original dimension Lo
in the direction of the applied compressive load

εe =
∆L
Lo

=
L − Lo

Lo
=

L
Lo

− 1 = λ − 1. (12)

The true strain, which is the change in instantaneous dimension L in the direction of
the applied compressive load over time

εt =
∫ L

L0

dL
L

= [ln L]LL0
= ln L − ln L0 = ln

L
L0

= ln(1 + εe) = ln (λ). (13)

The rubber behaves as a nearly incompressible material; thus, λ1λ2λ3 ≈ 1. It allows
the expression of the instantaneous cross-section A, and thus the true stress can be written

σt =
F
A

=
A0F
A0 A

= σe
A0

A
= σe

A0λ

A0
= σeλ = σe(1 + εe). (14)

Using Equations (11)–(14), Figure 4 shows the calculated characteristics for specimen
number 1, where an inflexion point can be found in the true stress-strain curve. Therefore,
a higher-order polynomial form was selected for the hyperelastic material model wherever
it was available.
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The stresses were calculated for the strain ε = {0 : 0.01 : 0.45} by linear interpolation
between the measured stress values. This was undertaken to be able to calculate the
average engineering stress-strain characteristic of the four rubber specimens and to reduce
the points in the data set. The result is shown in Figure 5 and Table A1.
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3.3. Fitting the Material Parameters of the Phenomenological Hyperelastic Models Describing the
Deviatoric Strain Energy Density Function

The selection of the material parameters of the hyperelastic model is an optimization
task, where the objective function is given as the difference between the measured stress-
strain characteristic and the one predicted by the material model. Let C be the set of the c
vector of variable material coefficients and σi,e the measured stress for the i-th deformation
state, while the σ(c)i,r the stress predicted by the hyperelastic model. Minimizing the
objective function, which is calculated as a normalized mean absolute difference (NMAD),
is one way to find the copt, the vector of optimal material parameters

E
(
copt

)
W,NMAD = min

c∈C

1
N ∑N

i=1

∣∣∣∣∣σ(c)i,r − σi,e

σi,e

∣∣∣∣∣100%, (15)

where every pair of the stress-strain data set is taken into account with the same weight
under the curve fitting process. The process shown in Figure 6 is called the curve-fitting
method and is used to find hyperelastic material parameters. The average engineering
stress-strain data set from the uniaxial compression test, shown in Figure 5 and Table A1,
was used as input for the curve-fitting process.
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Figure 6. The process of curve-fitting method to find the hyperelastic material parameters.

Table 4 lists the material parameters that were determined by fitting the phenomeno-
logical material models Mooney-Rivlin, Yeoh, Gent, Arruda-Boyce, and Ogden. Drucker’s
stability test of the material models was performed for the load modes given in Table 1; only
the Ogden shows unstable behaviour when the biaxial compressive load mode exceeds the
εbia = −0.42 strain value.



Polymers 2024, 16, 2534 9 of 19

Table 4. Hyperelastic material parameters found by the curve fitting method.

Hyperelastic Model Material
Parameters Fitting Error E

(
copt

)
W,NMAD Drucker’s Stability

Mooney-Rivlin 3rd
c10 = 4.33252 (MPa)

0.721% stablec01 = 2.44690 (MPa)
c11 = 0.65050 (MPa)

Yeoh 3rd
c10 = 1.61168(MPa)

0.752% stablec20 = 0.46206(MPa)
c30 = 0.45899(MPa)

Gent
µ = 2.69532 (MPa)

4.711% stableJm = 3.77895 (−)

Arruda-Boyce µ = 1.51128(MPa)
4.833% stable

λL = 1.28813(−)

Ogden 3rd

µ1 = −1.07018 (MPa)

2.830%
not stable for biaxial

compression
εbia < −0.42

µ2 = 0.00018 (MPa)
µ3 = 43.17404 (MPa)

α1 = 0.00018 (−)
α1 = 30.15348 (−)
α1 = 0.11882 (−)

3.4. Verification of Material Models Using the Finite Element Model of the Compression Test

The finite element simulation of the uniaxial compression test with the material
parameters in Table 4 was used to evaluate the accuracy of the fitted material models.
Axisymmetric linear quadrilateral element (PLANE183) with the settings shown in Table 5
was chosen for the finite element discretization due to the isotropic material, the axisym-
metric geometry and boundary conditions. It should be noted that during the compression
tests, it is assumed that the stress distribution in the rubber specimen is homogeneous.
Consequently, the stress response can be obtained precisely with just one element.

Table 5. Settings for the finite element discretization.

Element Type, Order and Shape Axisymmetric Linear Quadrilateral

Number of elements 1
Material model Isotropic, hyperelastic according to Table 4.,κ = 1000 (MPa) [52]

At nodes 1 and 2 on the upper edge of the test specimen, the prescribed displacement
of 5.625 (mm) (45% compression) in direction −y is applied as a load; see UY in Figure 7.
Furthermore, to model the frictionless connection between the specimen and the compres-
sion platen, the displacement is constrained in the y direction at nodes 3 and 4 on the lower
edge; see TY in Figure 7.

Post-processing the biaxiality indication could be one way to interpret the strain state
of a rubber product under compressive load. The ratio of the smaller to larger principal
stress—ignoring the principal stress closest to zero—defines the biaxiality indication. Hence,
the locations of the uniaxial stress state are reported by a value of zero, pure shear by minus
one, and biaxial by one. According to Figure 7, the numerical test results of the compression
test show nearly zero biaxiality indication to the whole specimen, which was expected
under the uniaxial load case.
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Figure 7. The 2D axisymmetric discretized model of the compression specimen indicating the
boundary conditions (prescribed displacement UY in direction −y, roller support TY) and the post-
processed deformation state under 45% prescribed compressive load with the distribution of the
stress biaxiality in the contour plot.

The ANSYS Mechanical solver and Newton-Raphson numerical technique were used
to solve the nonlinear problem. The number of sub-steps was selected in the analysis
setup to match the number of data points on the average engineering σ-ε characteristic.
The engineering stress-strain characteristics were computed numerically using the fitted
hyperelastic models; see Figure 8 for the results.
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Figure 8. Comparison of the different hyperelastic models’ prediction with the laboratory test results
of the average engineering σ-ε characteristic.

Figure 9 shows the errors of the stresses predicted to the specific elongation values
ε = {0 : 0.01 : 0.45} of the fitted hyperelastic models that were determined relative to the
stresses measured on the laboratory test. Based on these results, in the range of strains above
10%, the Yeoh and Mooney-Rivlin material models approximate the measured stress-strain
characteristic of the rubber within the error of less than 5%. The prediction of the Mooney-
Rivlin and Yeoh material models differ significantly from rubber’s linear behaviour in
the strain region below 10%. This difference can be attributed to the polynomial function
approximation used to approximate the deformation energy density. The reason for this
phenomenon can be caused by the use of the polynomial form to approximate the deviatoric
strain energy density function.
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Figure 9. The variation in the relative error of the different hyperelastic models compared to the
average σ-ε characteristic measured on the specimens.

Figure 10 shows the mean relative absolute error (MRAE) calculated using the values
of the relative errors previously determined in Figure 9 can be used to determine generally
the goodness of the material model’s prediction capability. The Gent, Arruda-Boyce and
Ogden material models have close to 10% MRAE, mostly because the predicted stress
values in the upper strain range are more accurate. Thus, it is not recommended to use
these models to predict the material stress-strain behaviour over the whole range of a given
strain. The results showed that the Mooney-Rivlin and Yeoh material models can predict
the material response to the compressive load with less than 2.5% MRAE.
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4. Verification of Material Models Using the Finite Element Model of the Rubber
Bumper Compression Test

The finite element analysis of the compression test of the rubber bumper was used to
evaluate the prediction capability of the hyperelastic models, fitted for the compression test,
for different strain states. The inhomogeneous strain state within the rubber product under
compressive load is due to the complex geometry, large deformation and connections. This
investigation requires post-processing of the numerical analysis results for each of the
material models to determine the predicted working characteristics of the product. These
results must then be compared to the laboratory test results shown in Figure 1. Figure 11
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shows the geometric dimensions and the meridian section of the compression platens and
the product.
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Mesh locking under large deformations is a phenomenon that can be observed in
meshes discretized with nearly incompressible material. In such a case, for the meshing,
linear quadrilateral elements that are less prone to mesh locking must be used. To reduce the
numerical error in the determination of the operating characteristic of the rubber bumper
a force convergence test was carried out while changing the mesh density. Investigating
Figure A1, by choosing an element size of 1 (mm), the numerical solution error is under
0.5%. Table 6 contains the settings for the finite element discretization, while the resulting
finite element mesh for the bumper is seen in Figure 12.

Table 6. Settings for the finite element discretization.

Element Type, Order and Shape Axisymmetric Linear Quadrilateral

Element size 1 (mm)
Material model for

the compression platens
Isotropic, linearly elastic
E = 2·105(MPa), ν = 0.3

Material model for
the bumper

Isotropic, hyperelastic according to
Table 4., κ = 1000 (MPa) [52]

The rubber bumper contacts the upper and lower compression platens as it operates
while resulting in a 30% reduction in height. Hence, A and B frictional edge-to-edge
connections were defined, where the contact elements were created on the rubber bumper,
while the target elements were created on the compression platens according to Figure 12.
The static friction coefficient was selected as s = 0.6 [47]; thus, the state of contact between
the contacting elements is mostly sticking under the compression test. At the edge of
the upper compression platen, the prescribed displacement of 28 (mm) in direction −y is
applied as a load; see UY in Figure 12. Furthermore, the displacement is constrained in the
x and y directions at the edge of the lower compression platen; see TX, TY.
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Figure 12. The 2D axisymmetric discretized model of the rubber bumper indicating the boundary
conditions and contact regions and the post-processed deformation state under 30% prescribed
compressive load with the distribution of the stress biaxiality in the contour plot.

After the converged nonlinear numerical analysis, Figure 12 shows the deformation
state under maximum compressive displacement, allowing the appropriate operation of
the discretized model and connections to be verified. Additionally, the stress biaxiality
indication in the contour plot shows, in line with previous intuition, that the stress state
of the rubber bumper varies significantly by location. In a significant part of the inside of
the rubber bumper, the state of stress is nearly uniaxial; however, close to the compression
platen where the contact is sticking, it is biaxial, while shear also occurs near the diameter.
In locations where the biaxiality indicator deviates significantly from zero, the prediction of
the material models may differ significantly from the material real behaviour, as the fitted
hyperelastic material models lack information for load cases other than the uniaxial com-
pression. After running the finite element analysis with the different hyperelastic models,
Figure 13 shows to what extent the predicted characteristics differ from the measured one.
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Figure 14 shows the error of the reaction forces predicted by the hyperelastic models
for ten uniformly distributed compression levels relative to compressive force from the
laboratory test. The Gent, Arruda-Boyce and Ogden material models have large deviations
in the simulated compressive force under almost the whole compressive displacement. In
comparison to the characteristics measured and simulated by the Yeoh material model, the
numerical result analysed with the Mooney-Rivlin material model shows a stiffer behaviour
in almost the whole compressive displacement. This is due to the strain energy based
hyperelastic model fitted to the uniaxial compressive load case, which cannot accurately
predict material responses different from the known strain state.
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A deviation of more than 10% can be observed when investigating the MRAE shown
in Figure 15 for the Gent, Arruda-Boyce, and Ogden models. In comparison to the values
observed during the finite element run of the compression test, the MRAE of the Yeoh
material model increased by 3% and the Mooney-Rivlin increased by 7% based on simula-
tion results shown in Figure 10. Nevertheless, the material response to an inhomogeneous
strain state can be estimated by the Mooney-Rivlin and Yeoh material models with an error
significantly below 10%, which is acceptable in engineering simulation problems.
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5. Conclusions

Designing rubber products requires special consideration of the numerical discretiza-
tion process due to the nonlinear behaviours (material nonlinearity, large deformation,
connections). Modelling considerations were presented for the finite element analysis of
the rubber bumper. If the rubber behaviour is only determined for the specific load of the
product, which, in the case of rubber bumpers, is the compression, the time needed for the
laboratory test can be significantly decreased.

Based on the foregoing, my research aimed at fitting and selecting a hyperelastic
material model suitable for the finite element modelling of the working characteristic of a
rubber product under compressive load. The Mullins effect as well as the viscoelastic and
hysteretic material behaviours were not modelled because the time dependence was not
taken into consideration during the product testing of the rubber bumpers.

Rubber samples for compression tests were machined out of the product because
the content of the rubber compounds is a trade secret. The stress-strain characteristics of
the uniaxial compression test of rubber samples were used to fit the hyperelastic material
models (Mooney-Rivlin, Yeoh, Gent, Arruda-Boyce, and Ogden). The results showed that
the Mooney-Rivlin and Yeoh material models fitted for the uniaxial compression data set
can predict the material response up to 45% uniaxial compressive deformation with less
than 2.5% MRAE if the stress state is homogeneous. Nevertheless, the Gent, Arruda-Boyce
and Ogden material models are unable to properly predict material response even in a
homogeneous stress state. The resulting 10% MRAE is mostly because the predicted stress
values in the upper strain range are more accurate; therefore, the use of these material
models in the investigated strain range is not recommended in the case of compressive
load. The laboratory and numerical tests of the rubber bumper were used to determine the
accuracy of the material models if the stress state is changing. The distribution of the stress
biaxiality in the contour plot is a good measure to determine which load mode is required
for the curve fitting of the hyperelastic model. The results showed that if only uniaxial
compression test data are available for the curve fitting of the material model, the Yeoh
model performs the best in predicting how the rubber product behaves under compressive
load and complex strain state.

The research pointed out that the constitutive modelling error in complex strain state
could be significantly below 10% when using only the uniaxial compression data set to
calibrate the Yeoh or Mooney Rivlin material models. This is acceptable in nonlinear
engineering simulation problems. Non-standard mechanical tests like simple shear and
biaxial could therefore be eliminated, saving a significant amount of time and money, which
would help increase market competitiveness.

The developed process opens up numerous new research possibilities. One area is
the investigation of other load modes or different strain ranges, for which the product can
be selected using the introduced biaxiality measure. Other hyperelastic materials like 3D-
printable thermoplastic polyurethane blends could be investigated to shorten the specimen
preparation and the product manufacturing time. Using the introduced biaxiality measure,
an extension of the research could be to develop a strain distribution-based material model
calibration method.
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Appendix A

Table A1. Stress values are interpolated to discrete strain values between the points of the engineering
σ-ε characteristic curve of the specimens measured by the uniaxial compression test.

εe(−)
σe(MPa)

No.1 No.2 No.3 No.4 Average Median Standard Deviation

−0.01 −0.11 −0.10 −0.11 −0.11 −0.106 −0.107 0.004
−0.02 −0.22 −0.21 −0.22 −0.21 −0.214 −0.214 0.006
−0.03 −0.35 −0.33 −0.32 −0.32 −0.332 −0.329 0.013
−0.04 −0.47 −0.45 −0.44 −0.43 −0.448 −0.443 0.018
−0.05 −0.59 −0.56 −0.55 −0.54 −0.560 −0.556 0.023
−0.06 −0.71 −0.67 −0.66 −0.64 −0.670 −0.665 0.030
−0.07 −0.82 −0.78 −0.77 −0.75 −0.781 −0.775 0.030
−0.08 −0.94 −0.89 −0.87 −0.86 −0.889 −0.881 0.036
−0.09 −1.05 −1.01 −0.98 −0.96 −0.998 −0.992 0.041
−0.10 −1.17 −1.11 −1.08 −1.07 −1.107 −1.096 0.044
−0.11 −1.29 −1.22 −1.19 −1.17 −1.218 −1.205 0.051
−0.12 −1.40 −1.33 −1.30 −1.27 −1.326 −1.313 0.056
−0.13 −1.51 −1.44 −1.41 −1.39 −1.435 −1.423 0.052
−0.14 −1.63 −1.56 −1.52 −1.50 −1.550 −1.539 0.059
−0.15 −1.76 −1.67 −1.64 −1.60 −1.667 −1.653 0.067
−0.16 −1.87 −1.80 −1.75 −1.72 −1.784 −1.773 0.069
−0.17 −2.00 −1.91 −1.88 −1.83 −1.906 −1.893 0.071
−0.18 −2.14 −2.03 −1.99 −1.95 −2.026 −2.008 0.081
−0.19 −2.26 −2.15 −2.12 −2.06 −2.147 −2.134 0.083
−0.20 −2.39 −2.28 −2.23 −2.20 −2.276 −2.258 0.085
−0.21 −2.53 −2.42 −2.37 −2.33 −2.412 −2.396 0.088
−0.22 −2.68 −2.55 −2.50 −2.45 −2.547 −2.528 0.098
−0.23 −2.82 −2.70 −2.65 −2.59 −2.691 −2.675 0.099
−0.24 −2.98 −2.85 −2.79 −2.73 −2.838 −2.822 0.108
−0.25 −3.15 −3.00 −2.95 −2.88 −2.994 −2.976 0.115
−0.26 −3.32 −3.18 −3.10 −3.03 −3.159 −3.140 0.122
−0.27 −3.50 −3.33 −3.29 −3.19 −3.327 −3.309 0.128
−0.28 −3.68 −3.53 −3.46 −3.36 −3.509 −3.495 0.135
−0.29 −3.89 −3.72 −3.66 −3.54 −3.703 −3.689 0.145
−0.30 −4.09 −3.91 −3.86 −3.74 −3.899 −3.882 0.147
−0.31 −4.33 −4.13 −4.06 −3.94 −4.113 −4.091 0.163
−0.32 −4.56 −4.37 −4.29 −4.17 −4.347 −4.329 0.162
−0.33 −4.81 −4.62 −4.53 −4.41 −4.593 −4.577 0.170
−0.34 −5.09 −4.88 −4.78 −4.65 −4.852 −4.834 0.184
−0.35 −5.38 −5.17 −5.09 −4.92 −5.140 −5.130 0.194
−0.36 −5.72 −5.50 −5.41 −5.23 −5.464 −5.453 0.200
−0.37 −6.09 −5.82 −5.72 −5.54 −5.795 −5.773 0.227
−0.38 −6.48 −6.23 −6.11 −5.87 −6.171 −6.169 0.255
−0.39 −6.89 −6.68 −6.59 −6.33 −6.624 −6.635 0.234
−0.40 −7.43 −7.18 −7.07 −6.73 −7.101 −7.126 0.291
−0.41 −7.95 −7.75 −7.61 −7.24 −7.635 −7.679 0.301
−0.42 −8.66 −8.37 −8.15 −7.76 −8.234 −8.258 0.382
−0.43 −9.39 −9.17 −8.85 −8.43 −8.959 −9.007 0.419
−0.44 −10.17 −10.08 −9.76 −9.27 −9.820 −9.920 0.402
−0.45 −11.19 −11.21 −10.82 −10.18 −10.851 −11.006 0.480

Appendix B

Every tenth sub-step of the numerical analysis was used to perform the force conver-
gence test, which involved splitting the prescribed displacement of 28 mm into ten equal
parts. Figure A1 shows the investigated element sizes. The Mooney-Rivlin hyperelastic
material model was used for modelling in all instances, and the compressive force values
obtained with an element size of 0.2 (mm) were used as the relative values. Based on the
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results, Figure A1 shows the mean relative absolute error of the numerical solution for
different mesh densities.
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