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Abstract: Eddy current testing (ECT) is a crucial non-destructive testing (NDT) technique extensively
used across various industries to detect surface and sub-surface defects in conductive materials.
This review explores the latest advancements and methodologies in the design of eddy current
probes, emphasizing their application in diverse industrial contexts such as aerospace, automotive,
energy, and electronics. It explores the fundamental principles of ECT, examining how eddy currents
interact with material defects to provide valuable insights into material integrity. The integration
of numerical simulations, particularly through the Finite Element Method (FEM), has emerged
as a transformative approach, enabling the precise modeling of electromagnetic interactions and
optimizing probe configurations. Innovative probe designs, including multiple coil configurations,
have significantly enhanced defect detection capabilities. Despite these advancements, challenges
remain, particularly in calibration and sensitivity to environmental conditions. This comprehensive
overview highlights the evolving landscape of ECT probe design, aiming to provide researchers and
practitioners with a detailed understanding of current trends in this dynamic field.
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1. Introduction to Eddy Currents

Eddy currents (EC), also known as Foucault currents, represent a fascinating aspect
of electromagnetism. These currents arise when a conductive material is subjected to a
changing magnetic field. They circulate within the material in closed loops, creating their
own magnetic fields in the process. This phenomenon was first observed and described by
the renowned French physicist Léon Foucault in 1855 [1].

Foucault’s discovery of eddy currents marked a significant milestone in the under-
standing of electromagnetic interactions. He demonstrated that when a conductor, such as
a metal plate, is exposed to a varying magnetic field, electric currents are induced within
the material. These currents arise due to the electromagnetic induction principle, whereby
a changing magnetic field induces an electromotive force and subsequently generates a
current flow. The interaction between the induced currents and the original magnetic field
results in the formation of secondary magnetic fields, which oppose the change in the
applied magnetic field [2,3]. Figure 1a contains a graphical representation of eddy currents
being generated on a metal plate through a bobbin coil and the inherent magnetic fields.

Eddy currents were initially perceived as unwanted since they can pose challenges
in various contexts, particularly in electrical systems and transformers, where they con-
tribute to energy losses through heat dissipation. Therefore, in Brazil, the term coined for
eddy currents is “parasite currents” (literal translation) since their presence is not always
desirable [4]. In electrical transformers and other electromagnetic devices, eddy currents
result in energy losses due to resistive heating in the conductive materials [1,5]. These
losses can lead to decreased efficiency and increased operating costs, making it imperative
to minimize their impact. Engineers and researchers have devised various strategies to
mitigate eddy current losses, including the use of laminated or segmented core materials
(Figure 1b), which effectively disrupt the continuous flow of eddy currents, reducing energy
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losses and improving overall efficiency [6–8]. Beyond electrical systems, eddy currents can
also complicate the design and operation of high-speed rotating machinery, such as genera-
tors, motors, and turbines [9–11]. In such applications, precise modeling and simulation
techniques are employed to predict and optimize the behavior of eddy currents, ensuring
the reliability and performance of critical systems [12–14]. In industrial processes involv-
ing magnetic materials, eddy currents can also interfere with desired outcomes, causing
distortions in magnetic fields and affecting material properties. For example, in magnetic
levitation (maglev) trains, eddy currents induced in the metallic rails can create drag forces,
reducing the efficiency and speed [15–17]. Similarly, in metal-forming processes, such
as induction heating and welding, eddy currents must be carefully managed to achieve
desired heating or joining effects without inducing unwanted distortions or defects [18–20].
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Figure 1. Illustration of eddy currents: (a) visualization of eddy currents (in red) and their associated
magnetic fields [21]; (b) eddy currents induced by magnetic field B in both solid and laminated
transformer cores [8].

Despite these challenges, eddy currents offer immense potential for beneficial applica-
tions across various industries, particularly in the realms of non-destructive testing (NDT)
and non-destructive evaluation (NDE), including materials’ characterization and defect
detection. NDT encompasses a range of inspection methods used to evaluate the integrity,
properties, and quality of materials, components, and structures without causing dam-
age [22]. NDT techniques are essential in various industries to ensure the safety, reliability,
and performance of critical assets. Common NDT techniques include ultrasonic test-
ing [23,24], radiographic testing [25], magnetic particle testing, dye penetrant testing [26],
thermography [27–29], terahertz inspection [30], and eddy currents [31]. Furthermore, NDT
techniques often intersect with Structural Health Monitoring (SHM), a field focused on
continuously monitoring the condition of structures to detect damage or degradation. SHM
integrates NDT methods with sensors [32], data analysis algorithms [33,34], and structural
models to provide real-time information on structural health [35,36], enabling proactive
maintenance and minimizing the risk of catastrophic failure [37–41]. This synergy between
NDT and SHM enhances asset management practices, ensuring the long-term reliability
and safety of critical infrastructure.

Eddy Current Testing (ECT) leverages the changes in the magnetic field induced
by eddy currents when they encounter heterogeneities within the material. As with any
electrical current, eddy currents tend to follow the path of least resistance. When they
encounter heterogeneities such as superficial cracks, voids, or material inconsistencies,
the paths of these eddy currents are inevitably changed. These disruptions in the eddy
current flow result in deviations in the secondary magnetic field, which can be precisely
measured and analyzed [42]. By interpreting these deviations, ECT technicians can identify
and evaluate defects within the material, providing valuable insights into its structural
integrity and quality.
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This capability makes eddy current testing invaluable in industries such as
aerospace [43,44], automotive, energy [45,46], manufacturing [47,48], and material sci-
ence [49], where the integrity and reliability of critical components are paramount.

Industrial Applications of ECT

The versatility of ECT extends far beyond defect detection, encompassing a wide range
of applications tailored to meet the specific requirements of diverse industries. This NDT
technique offers unparalleled flexibility in terms of the inspection speed [50], temperature
tolerance [51–53], and the ability to perform contact or non-contact inspections [54], making
it an indispensable tool in various sectors.

In the automotive industry, eddy current testing serves as a cornerstone of quality
control processes, particularly during the production of critical components such as engine
parts and chassis welds. ECT techniques are employed to inspect these components for
surface defects, cracks, or material inconsistencies that could compromise performance or
safety [55]. With its ability to rapidly assess large volumes of parts, eddy current testing
helps ensure that automotive components meet stringent quality standards and regula-
tory requirements. Moreover, eddy current testing is utilized for sorting and classifying
automotive components based on material properties such as conductivity or hardness. By
accurately categorizing parts according to their quality attributes, manufacturers can opti-
mize production efficiency and minimize waste, ultimately enhancing cost-effectiveness
and competitiveness in the automotive market [56].

In the aerospace sector, where safety and reliability are paramount, eddy current test-
ing plays a critical role in inspecting aircraft structures, engine components, and composite
materials for hidden defects or structural anomalies [57]. ECT techniques are employed
to detect surface cracks, corrosion, delamination, or disbonds that may compromise the
structural integrity of aerospace components [58].

Eddy current testing is particularly well-suited for inspecting complex geometries
and hard-to-reach areas, making it an indispensable tool for maintaining the airworthiness
of aircraft and ensuring compliance with rigorous safety standards. Whether conducting
routine maintenance inspections or evaluating newly manufactured components, aerospace
engineers rely on eddy current testing to identify and mitigate potential risks associated
with material degradation or manufacturing defects [59].

In the energy sector, eddy current testing plays a crucial role in inspecting critical
components such as pipelines, pressure vessels, and heat exchangers used in oil and gas
production, refining, and distribution [60,61]. ECT techniques are employed to detect cor-
rosion, erosion, and other defects that could compromise the structural integrity and safety
of these assets. By identifying potential issues early, ECT helps to prevent costly failures,
minimize downtime, and ensure the reliable operation of energy infrastructure [62,63].

In the electronics industry, eddy current testing is used for inspecting printed cir-
cuit boards (PCBs), electronic components, and assemblies for defects such as cracks,
delamination, and solder joint integrity issues [64]. ECT techniques enable the rapid and
non-destructive assessment of electronic devices, ensuring compliance with quality stan-
dards and reliability requirements. Additionally, eddy current testing is employed in the
semiconductor industry for wafer inspection, detecting defects such as cracks, voids, and
metal contamination that could affect the device performance and yield [65].

In material science research and development, eddy current testing is employed for
characterizing material properties, evaluating material microstructures, and studying elec-
tromagnetic phenomena. ECT techniques are used to measure parameters such as electrical
conductivity [66], magnetic permeability, and material thickness, providing valuable in-
sights into material behavior and performance [67–69]. Researchers leverage eddy current
testing to study the effects of heat treatment, alloy composition, and processing tech-
niques on material properties, enabling the development of advanced materials for various
applications, including aerospace, automotive, and renewable energy technologies [70].
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Despite being initially perceived as unwanted due to their potential to cause energy
losses and operational challenges, eddy currents have evolved into a pivotal aspect of
modern engineering and technology. By understanding and harnessing the electromagnetic
interactions underlying eddy currents, researchers and engineers have unlocked a plethora
of beneficial applications, particularly in the realm of NDT. This article seeks to shed light
on both the challenges posed by eddy currents and their immense potential for innovation
and advancement. Through a thorough exploration of eddy current principles, industrial
applications, and ongoing research efforts, this review aims to provide readers with a
comprehensive understanding of this fascinating phenomenon and its relevance in today’s
engineering landscape. Specifically, we will explore different inspection scenarios, includ-
ing various industries and materials, where eddy current techniques have been applied to
detect defects, characterize materials, and ensure the integrity of critical components.

2. Fundamentals of Eddy Current Testing

Eddy Current Testing (ECT) relies on the principles of electromagnetic induction
to assess the integrity of materials and components. When an alternating current flows
through a coil in the ECT probe, it generates oscillating magnetic fields near the surface of
the material being inspected (Figure 2a). These alternating magnetic fields induce eddy
currents (EC) to circulate within the conductive material, as seen in Figure 2b. The key
principle behind ECT lies in the interaction between these induced eddy currents and the
material under inspection. As eddy currents circulate within the material, they generate
their own magnetic fields (Figure 2c). The initial distribution of these eddy currents is
primarily influenced by the material’s electrical conductivity, magnetic permeability, and
geometrical properties. In turn, the behavior and distribution of the resulting secondary
magnetic fields are directly shaped by the eddy current pattern, which is modulated by
these material properties. Therefore, the material’s properties influence the secondary
magnetic fields indirectly through their control over the eddy current distribution. When
eddy currents encounter defects such as cracks, voids, or material inconsistencies, their
paths are deviated, as depicted in Figure 2d. This disruption in the eddy current flow leads
to changes in the secondary magnetic field surrounding the material. By measuring and
analyzing these changes, ECT technicians can detect defects within the material. ECT boasts
several advantages, making it a popular choice for non-destructive testing applications.
Firstly, ECT is highly sensitive to surface and near-surface defects in conductive materials,
allowing for the detection of flaws such as cracks, voids, and material inconsistencies.
This sensitivity makes ECT particularly useful in industries where component reliability is
critical, such as aerospace, automotive, and manufacturing.

Another advantage of ECT is its versatility. It can be applied to a wide range of mate-
rials, including metals, alloys, and non-ferrous materials, making it suitable for various
industrial applications. Additionally, ECT is relatively fast and efficient, enabling the rapid
inspection of components without the need for extensive preparation or dismantling. The
impact of velocity on eddy currents has been studied in straightforwardly shaped speci-
mens, such as bars, tubes, and wires, moving at high speeds. Simulations have explored
very low frequencies (e.g., 40 Hz) and velocities of up to 1000 m/s [71]. Moreover, ECT is
non-destructive, meaning it does not alter or damage the inspected material during testing.
This makes it an ideal choice for quality control and assurance, allowing manufacturers to
assess component integrity without compromising their structural or functional properties.

Despite its many advantages, ECT also has some limitations and challenges. One
drawback is its sensitivity to surface conditions such as roughness and cleanliness. Surface
irregularities can affect the accuracy of ECT inspections by altering the lift-off distance
between the probe and the material surface, leading to inaccurate results [72,73]. Addition-
ally, ECT is primarily limited to conductive materials, as it relies on the induction of eddy
currents to detect defects. This restricts its applicability in industries where non-conductive
materials are prevalent.
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Figure 2. Illustration of ECT principles: (a) Coil with alternating current in air, or with a very high
lift-off, generating an alternating magnetic field around the coil. In this situation, the magnetic field
does not effectively reach the conductive material, resulting in no EC being induced. (b) When the
coil is over a conductive material, the alternating magnetic field from the coil generates EC in the
material. (c) Eddy currents generate their own magnetic field (secondary magnetic field) which
opposes the original magnetic field from the coil. (d) In the presence of a defect in the material, the
ECs divert around the defect, causing a disturbance in their normal flow and the secondary magnetic
field, indicating the presence and location of the defect.

A significant challenge of ECT is its limited penetration depth. Eddy currents gen-
erated by the probe are primarily confined to the surface or near-surface regions of the
material, a phenomenon known as the skin effect. This effect causes the density of eddy
currents to decrease exponentially with depth according to Equation (1), making ECT less
effective for detecting deep defects. Equation (1) shows how the current density, Ix [A·m−2],
varies with depth, x [m], where I0 [A·m−2] is the current density at the surface, f [s−1]
excitation frequency, µ [H·m−1] is the magnetic permeability (µ = µ0 · µr), and σ [S/m] is
the electrical conductivity.

Ix = I0·e−x
√

π· f · µ · σ (1)

The maximum EC penetration depth, often referred to as the standard penetration
depth, δ [m], is defined as the depth at which the current density (Ix) is e−1 (approximately
37%) of the current density at the material surface (I0), assuming a plane wave magnetic
field. This calculation assumes an idealized plane wave magnetic field, which is a condition
rarely achieved in conventional coil probe setups. Nevertheless, this approximation remains
useful for estimating the penetration depth in ECT applications. The standard penetration
depth is calculated using Equation (2) where f [s−1] is the excitation frequency, µ [H · m−1]
is the magnetic permeability (µ = µ0 · µr), and σ [S/m] is the electrical conductivity [74].

δ( f ,µ,σ) =
1√

π· f · µ · σ
(2)

In practice, EC can penetrate deeper than this standard depth of penetration. De-
pending on the probe geometry, it is possible to achieve current densities slightly higher
than 37% at greater depths. This extended penetration capability has been experimentally
validated in certain EC probes [75].

The skin effect’s intensity depends on the frequency of the excitation current and
the material’s properties. Higher frequencies result in shallower penetration depths, and
materials with high conductivity and magnetic permeability exhibit more pronounced



Sensors 2024, 24, 5819 6 of 42

skin effects, further reducing the penetration depth. Several strategies can be employed
to address this challenge. Utilizing lower frequencies can increase the penetration depth
(Figure 3a,b), although this may reduce the resolution and sensitivity for detecting smaller,
surface-level defects. Pulsed Eddy Current (PEC) Testing, which uses transient or pulsed
signals instead of continuous sinusoidal waves, can provide information about deeper
layers by analyzing the decay of induced eddy currents over time.

The edge effect in ECT is a phenomenon that occurs when the eddy current probe is
placed near the edge or boundary of a conductive material [76,77]. This effect is character-
ized by a distortion in the eddy current flow and the resulting magnetic field, leading to
variations in the signal detected by the probe (Figure 3c). The edge effect can significantly
impact the accuracy of defect detection and characterization, as it introduces noise and false
indications that can be mistaken for flaws. This is particularly problematic in components
with complex geometries or small surface areas, where edges are more prevalent [78].
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In eddy current testing, the excitation current plays a crucial role in determining the
performance and effectiveness of the eddy current probe. The key parameters—magnitude,
frequency, and phase—each significantly impact the probe’s capabilities. The magnitude
of the excitation current affects the overall signal strength and sensitivity of the probe. A
higher magnitude enhances the ability to detect smaller or subtler defects by increasing
the induced eddy currents in the material [79]. However, if the magnitude is too high,
it can lead to signal saturation and potential overheating, which might compromise the
measurement accuracy. Therefore, it is important to find an optimal balance to achieve
both high sensitivity and reliable signal interpretation.

The frequency of the excitation current directly influences the depth of penetration
and the resolution of the probe. Higher frequencies result in shallower penetration, making
the probe more adept at detecting surface and near-surface defects, but less effective for
deeper flaws [80]. Conversely, lower frequencies allow for deeper penetration, enabling
the detection of defects at greater depths, but potentially reducing the sensitivity to finer
surface details. Thus, the choice of frequency must align with the specific requirements of
the inspection task and the properties of the material being tested.

The phase of the excitation current also plays a critical role in eddy current testing
by affecting the phase relationship between the induced eddy currents and the detected
signal. Adjustments to the phase can enhance the probe’s sensitivity to specific types of
defects or material variations by altering the phase of the detected signal relative to the
excitation current [81]. This capability is especially useful in complex inspection scenarios
that require precise defect characterization.

Understanding and optimizing the magnitude, frequency, and phase of the excitation
current are essential for maximizing the performance of eddy current probes. By carefully
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tuning these parameters, it is possible to tailor the probe’s functionality to meet specific
inspection needs, thereby improving the accuracy and reliability of the testing process.

Building upon the fundamental principles of the excitation current, ECT has evolved
through several advanced techniques. These advancements include single-frequency [82],
which provides a basic approach to defect detection, multiple-frequency [55,83], which
enhances sensitivity across various depths, swept-frequency ECT [84,85], which allows for
a dynamic inspection across a range of frequencies, and pulsed or transient ECT [86,87],
which offers improved resolution and defect characterization by analyzing the response
to short-duration pulses. Each of these methods leverages the principles of an excitation
current in different ways to address diverse inspection challenges. Initially, ECT primarily
employed single-frequency methods, which remain prevalent for detecting surface and
near-surface cracks. This basic technique typically uses a sinusoidal current, with frequen-
cies ranging from hundreds of Hz to several MHz, chosen based on the material and defect
depth [88]. Higher frequencies are used for surface defects, while lower frequencies are
better for deeper flaws. Single-frequency systems generally include an oscillator, an excita-
tion coil, one or more sense coils, signal processing components, and an impedance plane
display for data interpretation. The coils can be integrated into a single unit or separated,
with designs tailored to specific applications.

However, single-frequency ECT has limitations in identifying multiple test conditions.
To address this, multi-frequency techniques have been introduced, providing enhanced
results, especially for ferromagnetic materials [89]. These methods offer a better analysis
of complex flaws and can distinguish between defects and variations in conductivity,
permeability, geometry, and probe lift-off by subtracting characteristic signals from these
variations [90].

Pulsed Eddy Current (PEC) technology, with its broad frequency spectrum, can assess
various parameters such as the defect size, location, and probe lift-off. PEC systems can
also measure thickness at large lift-off distances (up to 100 mm), making them useful for
detecting corrosion under insulation [91]. PEC techniques show promise for materials with
high conductivity, such as copper, where single-frequency methods often fail [92]. This
approach enables the simultaneous detection of both near-surface and deeper flaws without
changing the probe or frequency. The development of PEC has been supported by advances
in computing and signal processing, though its adoption is limited due to the nascent stage
of transient response interpretation [93]. PEC, also known as a transient eddy current,
involves driving a large, pulsed current through the excitation coil, creating transient eddy
currents in the specimen. The resulting signal, rich in low-frequency components, provides
insights into subsurface defects. Longer return times for deeper signal components facilitate
quantitative NDT, as each component reflects different depths.

2.1. ECT Probe Configurations and Operation Modes

ECT employs a range of probe configurations and operational modes tailored to
specific inspection requirements. This section covers single coil probes, valued for their
simplicity, and extends to multiple coil probes, which include differential, reflection, and
bridge modes, each enhancing defect detection capabilities. These probes are integral in
inspecting diverse materials and structures, demonstrating the versatility and adaptability
of ECT technologies.

2.1.1. Single-Coil Probes

Single-coil probes, also known as absolute probes, use a single coil for both excitation
and sensing (Figure 4a). This coil generates the eddy currents in the test material and the
same coil then measures the response of these currents, providing an absolute signal. In
the absolute mode, the probe directly measures the total signal, making it suitable for appli-
cations where a baseline or reference measurement is not required. This design is simple
and effective for detecting surface and near-surface defects. However, it is less sensitive to
sub-surface defects and more affected by lift-off variations and surface roughness.
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2.1.2. Multiple-Coil Probes

Multiple-coil probes incorporate several coils configured in various ways to enhance
defect detection. These probes provide increased flexibility, improved spatial resolution,
and greater sensitivity, making them suitable for more complex inspection tasks. They offer
better depth penetration and defect characterization, but are more complex in design and
implementation, requiring advanced signal processing.

2.1.3. Multiple Coil Probes—Differential

Differential probes are used to measure the differential response between two points
on the material surface, helping to improve inspection accuracy and sensitivity. By mea-
suring the difference in response between two points on the material surface, differential
probes enhance the sensitivity to subtle variations in the eddy current behavior. This
heightened sensitivity allows for the detection of smaller defects or inconsistencies that
may not be discernible with single-coil probes. They also help to minimize the impact of
environmental factors such as temperature variations or electromagnetic interference. This
can result in more reliable and consistent inspection results, particularly in challenging
operating environments. Differential probes can operate in two configurations: differen-
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tial excitation and differential pick-up. In differential excitation, two coils are driven by
opposing currents, which accentuates local variations caused by defects while cancelling
out uniform background signals. In differential pick-up, the response difference between
two closely spaced sensing coils is measured, enhancing the detection of small, localized
defects. These probes can be used in conjunction with both reflection and absolute mode
configurations, offering versatility in inspection techniques. This versatility allows one
to tailor the approach based on the specific requirements of the inspection, ensuring an
optimal performance across a wide range of materials and geometries.

2.1.4. Multiple-Coil Probes—Reflection Probes

Reflection probes, or transmission probes, use separate excitation and detection coils.
The driver coil induces eddy currents in the material, while one or more pick-up coils
measure the response. This separation allows for the clearer detection of the induced
eddy currents and their response, leading to improved signal-to-noise ratios and enhanced
sensitivity in defect detection. It also provides greater flexibility in probe design [94].
These probes can operate in the absolute mode, measuring each pick-up coil’s response
independently, as depicted in Figure 4b, or in the differential mode, comparing responses
between multiple pick-up coils to detect anomalies, as shown in Figure 4c. The ability to
switch between these modes offers adaptability in various inspection scenarios. In the
differential mode, the probe becomes more sensitive to local variations and can better
detect small defects by comparing the differences between signals from adjacent pick-up
coils. Keeping the excitation and sensing coils separate minimizes the signal interference
between them. The positioning and orientation of each coil can be optimized to maximize
the signal strength and accuracy, adapting the probe to specific inspection requirements and
geometries. Ona et al. found that both the coil gap and lift-off influence probe sensitivity
which can be optimized through the selection of a driver-pick-up coil gap and lift-off [95].

2.1.5. Multiple-Coil Probes—Bridge Probes

Bridge probes feature a configuration where two coils act as both the driver and pick-
up coils, typically measured in the differential mode, as seen in Figure 4d. This setup forms
a bridge circuit, allowing the probe to detect changes in the magnetic field caused by defects
by measuring the imbalance between the coils. Bridge probes are highly sensitive to small
changes in material properties, making them particularly effective for detecting minor
defects or subtle variations in conductivity. Additionally, the differential configuration
helps to effectively minimize noise and interference, enhancing signal clarity by cancelling
out common-mode signals such as background noise or uniform material variations.

This design can operate in both differential excitation and differential pick-up modes,
further enhancing its adaptability based on specific inspection needs. In the differential
excitation mode, two coils are driven by alternating currents in opposite directions. This
setup creates opposing magnetic fields that cancel each other out in areas without defects,
producing minimal output. When a defect is present, the symmetry is disrupted, causing
a detectable change in the output signal. This configuration enhances the sensitivity to
local defects while minimizing background noise. In the differential pick-up mode, the
probe uses closely spaced sensing coils to compare the response at two adjacent points on
the material. In areas without defects, the signals from both coils are nearly identical and
cancel each other out. However, when a defect is encountered, the imbalance between the
signals becomes evident, allowing for defect detection. This mode is particularly useful
in environments with varying material properties or geometries, where it is crucial to
isolate small defects from broader variations. Bridge probes can switch between these
differential modes based on inspection needs, offering flexibility in a wide range of testing
scenarios. However, the complexity of the calibration and precise coil alignment remain
critical challenges, as any misalignment can lead to incorrect readings or reduced sensitivity.
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2.2. ECT Probe Technologies and Sensing Solutions

The evolution of ECT probes includes a transition from traditional wound probes to
innovative planar probes, such as those utilizing printed circuit board (PCB) technology.
Array probes, designed for efficient large-area coverage, are also highlighted, along with
advanced sensor types like Hall effect sensors, Giant Magnetoresistance (GMR) sensors,
and Superconducting Quantum Interference Devices (SQUIDs). This section delves into
these diverse designs and sensors, showcasing advancements in ECT that enhance the
precision, sensitivity, and application scope.

2.2.1. Wound Probes

Traditional wound probes embody a time-tested approach to eddy current probe
design. These probes typically feature a coil wound around a core material, such as ferrite
or laminated iron, forming the primary component of the probe assembly. The winding
process involves wrapping conducting wire around the core in a precise configuration,
ensuring optimal electromagnetic coupling and sensitivity to variations in the material
under inspection. Alternatively, some probes may utilize air as the core material (no
core), which simplifies the design and eliminates the potential magnetic interference from
core materials, as depicted in Figure 5a. The design may vary based on factors such
as the probe size, frequency range, and intended application, with larger probes often
featuring multiple windings to enhance the sensitivity and signal strength. Additionally,
the choice of the core material plays a crucial role in determining the probe’s performance
characteristics, with different materials offering varying degrees of magnetic permeability
and electrical conductivity.
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Ferrite shields, in particular, are often employed in these probes to enhance the
performance by concentrating the magnetic field within the core and reduce the external
electromagnetic interference. This improves the signal-to-noise ratio and overall sensitivity
of the probe. By focusing the magnetic field, ferrite shields also help to improve the
spatial resolution of the probe, making it more effective at detecting small defects. Despite
advancements in probe technology, traditional wound probes remain a cornerstone in NDT
applications, valued for their reliability, simplicity, and effectiveness in detecting defects
and anomalies in a wide range of materials and geometries.

2.2.2. Planar Probes—Print Circuit Board (PCB)

Planar ECT probes, such as those based on printed circuit board (PCB) technology,
represent a modern and innovative approach to eddy current testing (Figure 5b). By
leveraging the principles of PCB technology, these probes offer compact, lightweight, and
highly customizable inspection tools [96]. Unlike traditional coil winding processes, PCB
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probes use etched conductive traces on a PCB substrate to form the primary sensing el-
ement [97]. This design allows for precise control over the coil geometry, spacing, and
configuration, enhancing the sensitivity and signal-to-noise ratio. Additionally, the scala-
bility of PCB manufacturing facilitates rapid prototyping and mass production tailored to
specific inspection needs [98]. The integration of advanced electronics and signal processing
capabilities directly onto the PCB substrate enables real-time data acquisition, analysis,
and communication. This integration supports seamless operation with automated inspec-
tion systems and data logging software. Furthermore, PCB probes can be customized for
various configurations, including single-coil, multi-coil arrays, and multiplexed designs,
catering to diverse inspection scenarios and material types. PCB probes are also versa-
tile and adaptable to emerging technologies and industry trends [99]. Advancements in
materials science, miniaturization, and manufacturing processes continue to improve the
performance, reliability, and functionality of these probes in NDT applications. Industries
such as aerospace, automotive, manufacturing, and infrastructure increasingly rely on PCB
probes for efficient, cost-effective, and high-performance solutions for defect detection and
material characterization [100].

The PCB probes can also be manufactured using flexible substrates, offering additional
advantages due to the inherent properties of these materials. Flexible PCB probes are
composed of thin, flexible materials that allow them to conform to curved or irregular
surfaces with ease, as seen in Figure 5c. This capability makes them particularly suitable for
inspecting components with complex geometries, such as turbine blades, pipes, and curved
surfaces, where traditional rigid probes may not provide optimal contact or coverage.
These flexible PCB probes maintain high sensitivity and reliability by integrating advanced
electronics onto flexible substrates. They offer improved maneuverability and contact
with the inspected surface, ensuring the effective inspection of components in aerospace,
automotive, and manufacturing industries where flexibility, adaptability, and precision are
critical. However, challenges such as thermal management and mechanical durability must
be addressed in the design of flexible PCB probes. Flexible PCB materials typically have
a lower thermal resistance compared to rigid PCBs, which may limit their operation in
high-temperature environments without adequate thermal mitigation strategies. Ensuring
robust mechanical reliability and consistent electrical performance over time are critical
considerations in deploying flexible PCB probes for long-term NDT applications. Despite
these challenges, the adaptability, lightweight nature, and customization capabilities of
flexible PCB probes make them increasingly valuable in modern NDT practices. Their
ability to efficiently detect defects and characterize materials with high precision and
flexibility positions them as essential tools in enhancing quality assurance and asset integrity
management across diverse industrial sectors.

2.2.3. Array ECT Probes

Eddy current arrays (ECA) are advanced configurations of eddy current testing probes
designed to enhance inspection capabilities and efficiency. Unlike traditional single-coil
probes, ECA systems use multiple coils arranged in a specific pattern, allowing for simul-
taneous data acquisition over a larger area, as depicted in Figure 6. This arrangement
significantly reduces the inspection time and increases the probability of defect detection.
The primary advantage of ECA is its ability to provide detailed and comprehensive cov-
erage, which is particularly useful for inspecting complex geometries and large surfaces.
ECAs can detect both surface and subsurface defects with high precision, and their ability
to produce C-scan images enables better visualization of defects.

ECA systems employ multiplexing techniques to manage the simultaneous operation
of multiple coils, which helps in minimizing interference and optimizing data quality. This
multiplexing capability allows for faster area coverage and the generation of high-resolution
C-scans and B-scans, providing valuable insights into the material’s condition [101].
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The design of ECA probes can vary, with both three-dimensional and planar config-
urations available. The coils in these arrays can be either traditional wound coils or PCB
coils, each offering distinct advantages. Wound coils typically provide higher sensitivity
and deeper penetration, making them suitable for detecting subsurface defects. In contrast,
PCB coils are more versatile and can be precisely manufactured to fit specific inspection
requirements, especially for planar surfaces [102].

Despite their numerous advantages, ECA systems also have some disadvantages. They
are generally more expensive than traditional single-coil probes due to their complexity
and the need for sophisticated data acquisition and processing systems. Additionally,
the increased complexity of ECA systems can lead to a more challenging calibration and
interpretation of results, requiring highly skilled operators. Another challenge is that the
resolution of ECA may be limited by the spacing of the coils in the array; closely spaced
defects may be difficult to distinguish [103].

ECA technology addresses several problems inherent in traditional eddy current
testing, such as limited coverage and the need for multiple scans, by providing faster, more
reliable, and detailed inspections, making it an invaluable tool in various industries.

2.2.4. Other Sensors Used in ECT

In addition to traditional coil-based ECT, several advanced sensor technologies en-
hance ECT capabilities and address specific inspection challenges such as Hall effect sensors,
Giant Magnetoresistance (GMR) sensors, and SQUID (Superconducting Quantum Inter-
ference Device) sensors. These sensors can be integrated into planar or three-dimensional
coil designs, allowing for versatile application in ECT and enabling detailed magnetic field
mapping and high-precision flaw detection in various materials.

Hall Effect Sensors

Hall sensors are highly sensitive and capable of detecting minute changes in magnetic
fields, which is crucial for identifying small or subsurface defects. This precision makes
them versatile, allowing integration into both planar and three-dimensional coil designs.
This versatility ensures that Hall effect sensors can be used across various applications,
from inspecting flat surfaces to complex geometries. In real-world applications, Hall
sensors are instrumental across several industries. In pipeline inspection, for example, Hall
sensors detect corrosion and cracks, allowing for early defect detection and preventing
leaks and potential failures [104–106]. The aerospace industry utilizes Hall sensors for the
safety-critical inspection of aircraft components, identifying cracks and corrosion in metal
parts to ensure structural integrity [107,108]. Similarly, the automotive sector benefits from
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Hall sensors in inspecting welds and metal components, contributing to vehicle safety
and reliability. In power generation, Hall sensors help detect stress corrosion cracking in
turbines and other critical infrastructure, ensuring an uninterrupted power supply and
safety. Several case studies illustrate the effectiveness of Hall effect sensors. In Pipeline
Inspection Gauges (PIGs), Hall sensors detect very small changes in the magnetic field
caused by defects in pipeline walls [109–112]. In aircraft wheel inspections, Hall sensors
identify subsurface cracks, critical for the maintenance and safety of aircraft. Electric vehicle
battery inspections also benefit from Hall sensors, ensuring the safety and longevity of
battery packs by detecting defects in the battery casing. Integrating Hall effect sensors into
ECT provides a higher level of defect detection and analysis, enhancing the safety and
reliability of critical components. Their sensitivity, precision, and versatility make Hall
effect sensors a valuable addition to traditional ECT methods [113].

Giant Magnetoresistance Sensors

Giant Magnetoresistance (GMR) sensors have transformed ECT by offering high sensi-
tivity and spatial resolution for detecting magnetic fields associated with eddy currents.
GMR sensors excel in identifying minute changes in magnetic fields, making them particu-
larly effective for detecting small and deep-seated defects that traditional ECT methods
might overlook [114–116]. One of the significant advantages of GMR sensors is their ability
to provide high-resolution measurements. This allows for the more detailed imaging and
mapping of defects within materials. GMR sensors can be incorporated into both planar
and three-dimensional configurations, enhancing their applicability in inspecting various
geometries and complex structures. Their compact size and high sensitivity enable them to
be used in applications where space is limited and precise defect detection is critical [117].
Several case studies highlight the effectiveness of GMR sensors in ECT. For example, in
aerospace applications, GMR sensors have been used to detect corrosion under insulation
(CUI) in aircraft fuselage panels, providing early detection and preventing potential fail-
ures [118–120]. In the automotive industry, GMR sensors have been utilized to inspect spot
welds in vehicle bodies, ensuring strong and reliable joints [121]. In power generation,
GMR sensors have been applied to monitor turbine blades for cracks and other defects,
ensuring the reliability and safety of power plants [122,123]. Integrating GMR sensors into
ECT systems significantly enhances the ability to detect and analyze defects, providing
high-resolution and precise measurements. Their sensitivity, compact size, and versatil-
ity make GMR sensors a valuable addition to traditional ECT methods, improving the
reliability and safety of critical components across various industries [124–126].

Superconducting Quantum Interference Devices

Superconducting Quantum Interference Devices (SQUIDs) represent an advanced
technology in ECT, offering unparalleled sensitivity to magnetic fields. SQUIDs operate
at extremely low temperatures and utilize superconducting loops containing Josephson
junctions to detect even the faintest magnetic signals generated by eddy currents. This
extreme sensitivity allows SQUIDs to detect very small defects and to measure magnetic
fields generated deeper within materials compared to traditional ECT sensors [127,128].
Unlike conventional probes, SQUIDs do not transmit magnetic fields, but instead detect the
weak magnetic responses from eddy currents at greater depths. The use of SQUIDs in ECT
is particularly beneficial in applications requiring the detection of subtle flaws or inclusions
within conductive materials. For example, in the aerospace industry, SQUIDs have been
employed to identify micro-cracks and other minute defects in critical components like
turbine blades and aircraft fuselages. Their ability to detect these defects at an early stage
enhances the safety and longevity of aerospace components [129,130]. SQUIDs have also
been applied in the energy sector, particularly in the inspection of nuclear reactors and
other critical infrastructure [131,132]. Their capability to detect tiny cracks and other defects
in reactor components ensures the continued safe operation of these facilities, preventing
potential failures and reducing maintenance costs. While the implementation of SQUIDs in
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ECT presents significant advantages, including high sensitivity and the ability to detect
deep-seated defects, there are also challenges [133]. The requirement for extremely low
operating temperatures and the complexity of SQUID technology can make these systems
costly and difficult to maintain [134]. However, ongoing advancements in cryogenics and
SQUID technology are helping to mitigate these challenges, making SQUID-based ECT an
increasingly viable option for a wide range of applications.

3. Eddy Current Probes’ Designs and Solutions

Eddy current testing (ECT) probes are designed to accommodate a wide range of
inspection scenarios and conditions, each tailored to address specific challenges and envi-
ronments. From inspecting planar metallic surfaces to complex geometry, internal surfaces
of tubes, and high-speed or high-temperature applications, ECT probes are engineered for
precision and adaptability. The orientation of the eddy currents (EC), particularly their
transversal alignment to defects, plays a crucial role in maximizing detection sensitivity,
as depicted in Figure 7. Consequently, the shape and design of the coils are paramount in
determining the efficacy of the inspection. This section delves into the diverse array of ECT
probes and systems developed for various inspection needs, emphasizing the importance
of the coil orientation and its impact on defect detection.
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Figure 7. Schematic illustrating the impact of defects on EC flow: A defect positioned transversely to
the EC direction can cause a significant deviation in the EC path, which can be detected by the probe
due to the altered electromagnetic response. In contrast, a defect aligned with the EC direction causes
minimal or no disruption to the EC flow, making it more challenging to detect [135].

3.1. ECT Probe Solutions for Planar or Linear Inspections

Traditional eddy current testing uses a pancake circular-shaped excitation coil, as
shown in Figure 5a. It causes a circular eddy current flow pattern. This design provides
strong induction but is susceptible to lift-off effects from uneven surfaces, leading to
impedance changes and potential false readings. Additionally, defects parallel to the eddy
current distribution are often overlooked [136–138]. In addressing the challenges of the
lift-off variation, particularly in measuring the metallic plate thickness, Yin et al. designed
a triple-coil sensor operating in a multifrequency mode. The sensor consisted of three
helicoidal circular coils, all of the same dimensions, arranged coaxially and spaced equally.
This design allowed the sensor to function as two distinct coil pairs: the bottom and middle
coils as one pair, and the middle and top coils as another. By positioning the second pair
further from the test sample, it effectively simulated a higher lift-off while maintaining a
constant lift-off difference between the two pairs throughout the operation. Measurements
were conducted by exciting the middle coil and capturing induced voltages from the bottom
and top coils. This approach not only saved time by allowing simultaneous measurements,
but also reduced measurement errors associated with switching between coil pairs. The
method demonstrated strong immunity to lift-off variations, a critical advantage given that
such variations are often unavoidable in practical settings [73]. Machado et al. developed
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an ECT system for inspecting automobile laser-brazed welds, featuring customized probes,
digital ECT instrumentation, and a robotized arm for automated inspections. They used
cylindrical helical probes with ferrite cores and small dimensions. The bobbin coils had
an outer diameter of 2 mm and a height of 1.65 mm, while the weld bead profile was
around 2.3 mm in width. The probes consisted of two cylindrical helicoidal bobbin coils
operating in a bridge differential mode, enhancing sensitivity by comparing the inspected
weld with a reference weld in good condition (Figure 8). Additionally, the operation at
two frequencies, high and low, allowed for the detection and differentiation of surface and
sub-surface defects [55,56].
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Janousek et al. proposed a novel method to enhance crack sizing capabilities in eddy
current non-destructive testing. This approach involved using multiple probes driven at
the same frequency, but generating different eddy current distributions. They utilized two
mutual-inductance-type eddy current probes, each consisting of two exciting coils and one
pick-up coil. The exciting coils, coaxially rectangular and tangentially positioned relative
to the test surface, drove the eddy currents. A pancake pick-up coil located between the
exciting coils sensed the signals, which were then linearly superposed. The feature value
of the superposition ratio provided a clear indication of the crack’s depth. This method
demonstrated the ability to size cracks deeper than the standard penetration depth, using
notches measuring 40 mm in length, 0.5 mm in width, and 10 to 20 mm in depth, introduced
into a SUS316L plate specimen with a thickness of 25 mm. This approach represented
a significant step forward in the precision and effectiveness of ECT for detecting and
sizing cracks [139]. Pereira et al. developed and validated a fast and accurate method
of computer-aided sensor design, focusing on six defect types commonly found in weld
overlay Inconel claddings. They considered a superficial sensor with two coaxial coils
operating in the transmit-receive mode, simulated using COMSOL Multiphysics. The
prototype was tested on identical blocks, showing excellent agreement, validating this
robust design strategy [140]. Tytko et al. advanced flaw detection in conductive materials by
replacing the traditional air-cored coil model with an ideal filamentary coil. This adaptation
not only simplified the calculations, but also enhanced the design and calibration processes
for both magnetic and non-magnetic materials [141,142]. They developed an analytical
model of a filamentary coil positioned above a three-layer plate with a hole, which achieved
accuracy comparable to that of air-cored coils. This approach facilitated the modeling of
various defect types and was validated through experiments and finite element method
(FEM) simulations [142].
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In contrast to the widely utilized circular probe coils, rectangular coils have emerged
in eddy current inspections of plates, offering notable advantages in certain applica-
tions [143,144]. These rectangular coils are particularly effective in crack detection due
to their directional properties and their ability to create more uniform eddy current dis-
tributions compared to circular coils [145]. Rosado et al. introduced a new eddy current
probe design aimed at detecting small surface-breaking defects in friction stir welding
(FSW) aluminum joints [146]. This probe features a planar disposition and operates on a
differential basis, which significantly enhances its sensitivity to defects aligned with specific
orientations, such as those found along welded joints [75]. The probe generates eddy
currents by flowing an alternating current through a driver trace located symmetrically
between two sensitive D-shaped spiral coils. The sensing of the magnetic field is achieved
through these two coils, which share a terminal. The probe, produced using printed circuit
board (PCB) technology on a single substrate, measures the sum of induced voltages from
the coils. In symmetrical conditions, these voltages are equal in magnitude but out of
phase, resulting in a net output of zero. The presence of defects alters the magnetic field
and the voltage equilibrium, leading to a non-zero output voltage. Defect detection is
based on characterizing the complex ratio between the output voltage on the sensing coils
and the input current in the driver trace [147]. Finite element modeling was employed to
study the probe’s operation and assess the defect’s impact on its response. Experimental
validation confirmed a good agreement between simulated and measured responses for
various defects, demonstrating the accuracy of the simulation model [148]. The probe
successfully detected root defects as small as 60 µm [149]. However, the original design
faced limitations in detecting defects oriented perpendicular to the sensitivity axis. To
address this, an improved probe structure was developed, featuring additional driver and
sensing elements. This new design includes four driver traces forming a cross pattern with
four sensing coils, enabling the modification of the eddy current pattern during testing. The
sensing coils are arranged with alternate winding directions to enhance the defect detection
capabilities [150]. ECT often struggled to detect defects aligned parallel to the primary field
direction of the static magnetic fields. To overcome this limitation, researchers explored
the use of rotating field techniques in ECT probe design. One notable advancement in this
area was the development of the rotating focused-field eddy current sensing technique.
This method involved rotating the magnetic field generated by the probe to improve defect
detection. The rotation was achieved using multiple coils arranged in specific configura-
tions within the probe, with the controlled energization of these coils producing a rotating
magnetic field around the probe [151]. This rotating field enabled the detection of defects
in various orientations, enhancing both the sensitivity and accuracy. This technique proved
especially effective for inspecting complex geometries and materials with anisotropic prop-
erties, offering improved resolution and clarity by concentrating the field in specific areas.
Consequently, it provided a more comprehensive inspection solution, particularly in cases
where traditional static field ECT might miss certain defect orientations [152,153]. Building
on this concept, Xu et al. further advanced rotating field techniques by developing a
sensor with four identical excitation coils arranged in an inverted pyramid configuration,
combined with a giant magneto-resistive (GMR) detection element. These coils formed two
Figure 8-shaped focusing sub-probes, driven by two identical harmonic currents with a
90-degree phase difference. This innovative design exemplified the effective application
of rotating focused field techniques, significantly enhancing the ability to detect defects
oriented arbitrarily and broadening the range of ECT applications [154]. Ge et al. proposed
an innovative approach to translating the outcomes of rotating eddy current testing (RECT)
into results that reflect uniform eddy current testing for specific orientations. Their ECT
probe featured two rectangular orthogonal exciting coils paired with a circular pickup coil.
This design aimed to enhance detection capabilities and broaden the applicability of RECT
in directional non-destructive testing scenarios. However, this study found that additional
currents induced by RECT could introduce noise. Therefore, careful signal processing and
analysis became essential to account for the orientation of the induced eddy currents [155].
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Chen et al. proposed a planar eddy current NDT probe based on Koch curve fractal geome-
try excitation coils to improve the probe sensitivity by inducing multi-radius eddy currents
in the conductive material. Traditional circular excitation coil probes struggle to detect
cracks significantly smaller than the radius of the excitation coils [156]. Thus, the Koch
curve was used to design the new excitation coil geometry that can induce a multi-radius
EC in the test sample [157]. To address this, Chen et al. employed Koch curve fractal geom-
etry to design a new excitation coil that induces smaller-radius eddy currents. The probe,
which integrates Koch curve fractal geometry excitation coils and circular pick-up coils on a
Four-layer PCB, demonstrated improved detection capabilities for defects shorter than the
sensor’s size without reducing the sensor size itself [158–160]. However, the probe’s abso-
lute sensor design made it susceptible to lift-off noise, and its spatial resolution was limited
due to the 18 mm sensor size. To overcome these limitations, a differential Koch coil exciting
planar EC probe was proposed [161], and further developments in higher-dimensional
Koch curve fractal geometries have shown promise in enhancing detection sensitivity for
defects at various depths and angles [162]. She et al. introduced a multiple floral eddy
current probe made from flexible PCB material to address the sensitivity to lift-off distance
variations while maintaining high accuracy and sensitivity. This probe features a planar
arrangement of helicoidal circular coils, with a central reception coil surrounded by several
transmission coils. To minimize the interference from the magnetic field generated by
the transmission coils, the TX coils are connected sequentially in reverse order, and the
excitation currents in adjacent TX coils flow in opposite directions, thereby cancelling out
the induced magnetic fields in the RX coil. This design resulted in improved sensitivity
and a significantly reduced the lift-off effect. The probe was validated on an aluminum
plate and its flexibility suggests potential benefits for non-planar surfaces, though further
testing on such surfaces is needed [163]. Machado et al. explored the innovative use of
high magnetic permeability substrates, created through additive manufacturing, to shape
eddy currents for NDT applications. Traditional EC probes often rely on complex coil
geometries to direct currents perpendicular to defects, enhancing detection but posing man-
ufacturing challenges. Machado’s approach shifts this complexity to the magnetic substrate,
simplifying the coil design while leveraging the advantages of additive manufacturing.
Figure 9 shows how a simple linear coil can generate a zigzag pattern EC flow using this
technology. Although the study showed promising results, practical implementation in
real-world industrial settings requires further validation. Future research should focus on
long-term durability, the impact of different materials, and the scalability of the additive
manufacturing process for mass production [135].

Brun et al. proposed an innovative solution for integrating sensors directly onto the
parts being inspected, addressing issues of reproducibility and minimizing human error.
This method also proves advantageous for use in confined or hazardous environments. The
study explored two printing techniques on flexible substrates: dispenser printing and screen
printing. Dispenser printing involved using an ink syringe to deposit conductive ink onto a
substrate. This method successfully created a 10-turn spiral coil within a 150 mm2 area. In
contrast, screen printing employs a mesh to transfer ink onto the substrate, with a blocking
stencil preventing ink in specific areas. This technique offers benefits such as enhanced
reproducibility and higher resolution, which enables the creation of more turns within a
given area. The effectiveness of these printed sensors was validated through the detection
of a small diameter hole using a permanently printed sensor. These sensors demonstrated
good adhesion to the test parts and provided electromagnetic responses comparable to
traditional portable sensors. However, for structural monitoring applications, further
development is needed to ensure the long-term viability of these devices. Additionally, the
performance of the printed sensors compared to flexible PCBs remains unclear, suggesting
that more research is necessary to fully assess their effectiveness and durability in practical
scenarios [164].
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3.2. ECT Probe Solutions for Complex/Curved Parts

Inspecting cracks on complex curved surfaces presents significant challenges in ECT,
particularly concerning lift-off immunity and the probe’s detection capabilities [165]. Li
et al. tackled these challenges by designing a flexible differential eddy current probe
specifically for inspecting cracks on complex curved surfaces. Their probe, fabricated using
flexible printed circuit technology, features a multilayered structure that adapts to the
geometry of irregular surfaces. It includes a driver coil located on the third layer and a
pick-up coil situated across the first and second layers. The driver coil consists of square
coils arranged at the probe’s corners, while the pick-up coil comprises two 8-shaped coils
oriented orthogonally, as shown in Figure 10. This configuration, based on the transmission
model, improves the detection of cracks with varying orientations and addresses lift-off
challenges by conforming to the surface geometry of objects like rail treads. Both simulation
and experimental validations demonstrated that this probe is effective at detecting cracks
of different orientations on complex curved surfaces [166].

Sensors 2024, 24, x FOR PEER REVIEW 19 of 43 
 

 

challenges by conforming to the surface geometry of objects like rail treads. Both simula-

tion and experimental validations demonstrated that this probe is effective at detecting 

cracks of different orientations on complex curved surfaces [166]. 

 

 

(a) (b) (c) 

Figure 10. Schematic diagram of the proposed probe structure (a) and EC interaction with crack (b); 

(c) PCB of the pick-up coil [166]. 

Zhang et al. developed a flexible eddy current array probe designed for scanning 

defects on the last-stage blades of steam turbines, utilizing a Cartesian coordinate robot. 

Steam turbine low-pressure rotor blades are subjected to extreme conditions, including 

high rotational forces, elevated temperatures, corrosion, and erosion during operation. 

The proposed flexible EC array sensor addresses these challenges by offering flexibility 

and adaptability. Unlike traditional eddy current sensors, this array probe can be bent or 

folded, accommodating the complex geometries of turbine blades. Standard inductors, 

rather than printed traces, were used in the coil design to achieve a higher number of 

windings, though this resulted in an increased probe height. The probe’s effectiveness is 

demonstrated through signal processing and fitting equations that account for height and 

inductance changes, which allows for accurate three-dimensional imaging of the blade 

surface. The experimental results validated the probe’s ability to detect and image defects 

such as erosion, pitting, and edge defects on the blade surface [167]. Similarly, Xie et al. 

introduced a novel flexible eddy current array specifically designed for measuring fatigue 

crack lengths. This array features a transmission/reception (T/R) coil structure with etched 

coils on polyimide film, employing flexible printed circuit board (PCB) technology. The 

array includes a large uniform exciting coil and 64 sensing coil elements arranged in an 

inclined zig-zag orientation, providing a spatial resolution of 0.8 mm and an effective cov-

erage length exceeding 50 mm. The four-layer structure of the sensor array includes excit-

ing coils on the top and bottom layers, with sensing coils on the middle layers, intercon-

nected via bridges. This flexible design facilitates close contact between the sensor and 

complex surfaces, improving detection capabilities. Finite element simulations using 

AC/DC module in the COMSOL Multiphysics software were conducted to evaluate the 

sensor’s performance, and the experimental results confirmed that the array is sensitive 

to microcracks and capable of accurately sizing crack lengths. The consistent alignment of 

the experimental and simulated results underscores the array’s effectiveness in detecting 

and measuring fatigue cracks [168]. In another innovative approach, She et al. developed 

a flexible differential butterfly-shaped array of eddy current sensors designed specifically 

for detecting defects on the surface of iron screw threads. The sensor comprises a butter-

fly-shaped coil, which consists of two rectangular coils connected at the center by a bridge, 

and additional sets of differential planar circular helical RX coils, along with a top RX coil 

Figure 10. Schematic diagram of the proposed probe structure (a) and EC interaction with crack (b);
(c) PCB of the pick-up coil [166].



Sensors 2024, 24, 5819 19 of 42

Zhang et al. developed a flexible eddy current array probe designed for scanning
defects on the last-stage blades of steam turbines, utilizing a Cartesian coordinate robot.
Steam turbine low-pressure rotor blades are subjected to extreme conditions, including
high rotational forces, elevated temperatures, corrosion, and erosion during operation.
The proposed flexible EC array sensor addresses these challenges by offering flexibility
and adaptability. Unlike traditional eddy current sensors, this array probe can be bent or
folded, accommodating the complex geometries of turbine blades. Standard inductors,
rather than printed traces, were used in the coil design to achieve a higher number of
windings, though this resulted in an increased probe height. The probe’s effectiveness is
demonstrated through signal processing and fitting equations that account for height and
inductance changes, which allows for accurate three-dimensional imaging of the blade
surface. The experimental results validated the probe’s ability to detect and image defects
such as erosion, pitting, and edge defects on the blade surface [167]. Similarly, Xie et al.
introduced a novel flexible eddy current array specifically designed for measuring fatigue
crack lengths. This array features a transmission/reception (T/R) coil structure with etched
coils on polyimide film, employing flexible printed circuit board (PCB) technology. The
array includes a large uniform exciting coil and 64 sensing coil elements arranged in an
inclined zig-zag orientation, providing a spatial resolution of 0.8 mm and an effective
coverage length exceeding 50 mm. The four-layer structure of the sensor array includes
exciting coils on the top and bottom layers, with sensing coils on the middle layers, in-
terconnected via bridges. This flexible design facilitates close contact between the sensor
and complex surfaces, improving detection capabilities. Finite element simulations using
AC/DC module in the COMSOL Multiphysics software were conducted to evaluate the
sensor’s performance, and the experimental results confirmed that the array is sensitive to
microcracks and capable of accurately sizing crack lengths. The consistent alignment of
the experimental and simulated results underscores the array’s effectiveness in detecting
and measuring fatigue cracks [168]. In another innovative approach, She et al. developed a
flexible differential butterfly-shaped array of eddy current sensors designed specifically for
detecting defects on the surface of iron screw threads. The sensor comprises a butterfly-
shaped coil, which consists of two rectangular coils connected at the center by a bridge,
and additional sets of differential planar circular helical RX coils, along with a top RX
coil positioned over the bridge. This configuration enhances the sensitivity by addressing
the lift-off problem commonly encountered in screw thread defect detection. Both the
simulation and experimental validations confirm the sensor’s high performance and low
error rate, demonstrating its capability to detect defects as small as 0.35 mm and 0.22 mm on
iron screw thread surfaces effectively [169]. Zhang et al. introduced a novel in-plane differ-
ential coil array probe on a flexible PCB that operates at high frequencies with exceptional
sensitivity. The probe features 16 coils arranged perpendicularly to the PCB plane, with a
four-layer structure and a total of 16 turns per coil. It covers a rectangular area of 52.5 mm
in width and uses a differential setup to minimize background signal interference, with
only one pair of coils active at a time. Testing on turbine blades and CFRP tubes showed
the probe’s capability to detect defects with various orientations and micro-dimensions
effectively. However, further improvements are needed, including the optimization of coil
parameters and advanced image processing algorithms for field applications [170].

3.3. ECT Probe Solutions for Holes Inspection

The timely detection of fatigue cracks is crucial for ensuring the fail-safe operation of
long-term exploited aircraft structures and for implementing damage tolerance approaches.
ECT has been introduced in the aircraft industry as a method for inspecting cracks in
bolt and rivet holes [171,172]. To enhance the detection and characterization of cracks
around fastener holes in multilayer structures without the need to remove the fasteners,
Knopp proposed model-based approaches that support the design of advanced EC systems.
His work validated and applied models to simulate EC inspections as part of the design
process [173]. Joubert et al. developed an EC probe designed to rapidly and accurately
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capture C-scan images related to surface-breaking defects. Given the cylindrical geometry
of the components being inspected, the probe featured a global inducer composed of a large
coil coaxial with the bore hole, facilitating effective electromagnetic coupling with the part.
This configuration induced a uniformly oriented eddy current flow within the inner wall
of the bore hole. In the absence of defects, symmetry ensured that no radial component
of the magnetic field was generated. However, the presence of a surface-breaking defect
altered the eddy current flow locally. The inducer was designed as a single-layer bobbin
coil, measuring 58 mm in length and 48.8 mm in diameter, featuring 76 turns wound with
1.25 mm diameter copper wire to minimize the capacitance. The sensing array comprised
pickup coils that were 1.4 mm long and had an outer diameter of 1.4 mm, featuring 460 turns
distributed across 10 layers of 46 turns, wound with 50 µm-diameter copper wire. The test
subject was a bore hole with a diameter of 52 mm, machined into a 170 mm × 100 mm ×
50 mm mock-up made from 2024 T3 aluminum alloy. The mock-up contained three defects,
labeled D1, D2, and D3, which were machined using an electrical discharge machining
(EDM) process. These defects were semi-circular, with a 200 µm aperture, and diameters of
0.4 mm, 0.8 mm, and 2 mm, respectively. The experimental results demonstrated the probe’s
effective sensing capability within the 10–800 kHz frequency range, achieving a peak signal-
to-noise ratio (PSNR) higher than 36 dB for defects as small as 0.4 mm in diameter [174].
To further enhance the sensitivity, Chen proposed a rosette-like eddy current array sensor.
This design utilized a driver pickup coil probe system with an array configuration that
allowed for same-direction exciting currents, thereby preventing local eddy current loops
that could disturb the measurements. The layout of the pickup coils improved the angular
resolution of the sensor, making the eddy current distribution more sensitive to defect
propagation [175]. Shao et al. developed an automatic system for detecting rivet hole
defects in aircraft structures using a custom EC sensor array and image analysis algorithm.
The multi-channel sensor array, with sixteen coils wound with copper wire arranged in two
staggered rows, ensures the continuous coverage of the sensing area. Each coil contains
200 turns of wire. The system, tested on a 2 mm-thick aluminum plate with 5 mm-diameter
holes, including one with a crack, used simulations with ANSYS MAXWELL software
to optimize the sensitivity and penetration depth. The system successfully detected and
located fatigue cracks, providing an automatic, real-time, and accurate inspection method
for the riveted joints [58].

3.4. ECT Probe Solutions for Tube Inspection

Conventional bobbin probes used for inner pipe inspections typically feature circum-
ferential windings that induce circumferential eddy currents. In this configuration, defects
oriented transversely to the direction of the eddy currents generate output signals with
a greater amplitude, whereas defects aligned parallel to the eddy current direction yield
smaller output signals [176]. In exploring analytical solutions for pipe inspections, several
methods have been proposed to optimize the detection capabilities. These solutions often
involve mathematical modeling to predict eddy current behavior in various scenarios,
contributing to the design of more effective inspection systems [177,178]. Huang et al.
developed an arrayed multi-coil probe specifically for testing and sizing cracks in steam
generator tubes. This innovative probe utilizes a multi-coil arrangement that facilitates
rapid detection across the entire tube without the necessity for rotation. The design consists
of a simple configuration of 3 × 10 circular coils, each with a diameter of 2 mm. Various
exciting and sensing patterns can be employed, allowing the coils to function as either
drivers or pickup coils. Four distinct patterns were examined, although the experimental
results indicated that while the probe demonstrated high detectability, the optimal pattern
for performance remained unclear [179]. Sun et al. proposed a flexible arrayed eddy current
sensor to inspect the hollow axle inner surface of a high-speed train [180]. Four-layered
flexible PCB with excitation traces and sensing traces was rolled and mounted on the sensor
holder which was 28.6 mm in diameter. The sensor was configured as a transmit/receive
type. The sensor consisted of 28 rectangular sensing traces and two independent excitation
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traces with the same alternating current flowing that traveled around the outer perimeter
of the sensing coils. The results from the simulations and experiments show that the sensor
is capable of detecting both longitudinal and transverse defects with depths as small as
0.5 mm. However, the sensor is more sensitive to the transverse defects [181]. In another
advancement, Machado et al. experimentally validated a probe for inspecting the inner
surfaces of austenitic steel jackets used in the ITER project, focusing on improving the
detectability of circumferential defects. Their proposed linear array of trapezoidal spiral
sensing coils effectively eliminated the blind zones associated with traditional circular
spiral coil arrays. This design enhanced the accuracy of the defect location in the circumfer-
ential direction, as a single array with N coils can distinguish between 2N regions. The use
of a flexible substrate allowed the coils to be positioned closer to the tube surface, thereby
increasing the sensitivity. The excitation coil was twisted at an angle to enhance the distur-
bance of the eddy currents caused by both circumferential and axial defects. The pickup
mechanism incorporated an array of planar trapezoidal spiral coils arranged on a flexible
substrate around a cylindrical chassis, with the sensitive plane oriented perpendicular to
the radial direction. The number of coils and their dimensions can be adjusted based on the
desired spatial resolution; increasing the number of coils leads to an improved resolution.
The probes demonstrated superior sensitivity, successfully detecting defects with a depth
of 0.5 mm and a thickness of 0.2 mm [63,182]. Bobbin coils and bobbin-type Hall sensor
arrays have been proposed as alternatives for crack inspections within small-bore piping
systems. This method enables the high-speed imaging of cracks without the need for
a scanner, as the electromagnetic (EM) field is distorted by the presence of defects. An
array comprising 32 × 32 Hall sensors, achieving a spatial resolution of 0.78 mm, was
embedded in a cylinder with a diameter of 15 mm and a length of 24.96 mm. A bobbin coil
operating at 5 kHz of alternating current was placed inside the piping system, while the
sensor array was positioned externally. This configuration was evaluated using specimens
made of titanium alloy, with simulations conducted using finite element modeling (FEM)
in ANSYS [183]. To overcome the limitations associated with conventional probes, various
innovative approaches have been explored. One such method involved the inclination of
the bobbin windings, allowing for different orientations between the pickup and excitation
coils—these orientations can be parallel, symmetric, or twisted. This design alteration
meant that the eddy currents were no longer aligned strictly with the circumferential direc-
tion, leading to improved sensitivity in detecting defects. However, challenges remained;
in certain circumferential positions, defects could still align parallel to the coils, potentially
leading to missed detections without the mechanical rotation of the probe [184]. Another
noteworthy approach for pipe inspection is the use of a rotating-field eddy current probe
featuring a bobbin pickup coil that generates a rotating magnetic field, thereby negating the
need for mechanical rotation [185–188]. This design utilized three identical coils positioned
at 120◦ angles, powered by a balanced three-phase source [189]. The vector sum of the
magnetic fields produced a circumferentially rotating field around the pipe. The validation
of the probe involved artificial defects characterized by through-wall square holes mea-
suring 3.5 × 4 mm2 and 4 × 4 mm2 in Inconel® 600 pipes, which have a conductivity of
9.69 × 105 S/m. The probe demonstrated sensitivity to defects of all orientations, allowing
for the estimation of both the depth and location from a single line scan. Subsequently,
the research group enhanced the probe design by integrating a giant magneto-resistive
(GMR) sensor, yielding promising results. This prototype was sensitive to both axial and
circumferential notches, with C-scan imaging clearly delineating the defect location and
orientation [190]. Figure 11a shows the magnetic flux density components Ba, Bb, and Bc,
associated with three windings (AX, BY, and CZ), oriented perpendicular to the plane of
each winding.
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These components combine to create a total magnetic flux density vector B, which
maintains a constant amplitude over time while rotating in sync with the excitation source.
In the cross-section of the pipe, the magnetic field primarily rotates radially, circulating
around the radial axis, thus enhancing sensitivity to cracks of all orientations. When no
defect is present, the magnetic flux predominantly flows in the radial direction, with no
axial magnetic flux evident. However, the introduction of a defect near the center plane
disrupts the radial magnetic fields, resulting in the emergence of an axial magnetic field
component [191]. Daura et al. developed a transmitter–receiver (Tx–Rx) flexible printed
coil (FPC) array utilizing a wireless power transfer (WPT) approach with dual resonance
responses. This innovative design allows for the extraction of multiple parameters from
samples, defect characteristics, lift-offs, and material properties. The flexibility of the
coil array facilitates the area mapping of complex structures. To validate this method,
experimental investigations were conducted using a single excitation coil coupled with
multiple receiving coils based on the WPT principle. These tests were performed on
the curved surface of a pipe exhibiting a natural dent defect. The FPC array comprised
one excitation coil and 16 receiving coils, which were employed to measure the dent by
collecting data from 21 C-scan points on the designated sample. The gathered experimental
data served as a foundation for training and evaluating the dual resonance responses
concerning multiple feature extractions, selections, and fusions aimed at a quantitative
non-destructive evaluation (NDE). Four specific features were investigated, including the
resonant magnitudes and principal components of the two resonant areas. These features
were analyzed through correlation analysis to facilitate feature selection and fusion using
deep learning techniques. The results indicated that deep learning-based multiple-feature
fusion significantly enhanced the performance of 3D defect reconstruction in WPT-based
flexible printed coil eddy current testing (FPC-ECT). This approach showcased the potential
for advanced defect characterization and mapping in complex geometries, emphasizing
the benefits of integrating modern machine learning techniques in NDE applications [192].

3.5. ECT Probe Solutions for Wire Inspection

The steel wire rope serves as a critical tensile and load-bearing component, exten-
sively utilized across major industries, including agriculture and services [193]. However,
when employing ECT for detecting broken wires in spiral ropes, the alternating peaks and
valleys of the rope surface can complicate defect identification. Cao et al. designed an
adjustable, annular testing device featuring probes arranged in radial symmetry, leveraging
low-frequency transmission eddy current testing. This innovative device aims to address
common limitations associated with eddy current techniques, such as the lift-off effect,
edge effect, and skin effect. Specifically, the lift-off effect is mitigated by adjusting the
spacing between the two probes, while the appropriate selection of the excitation frequency
effectively avoids the skin effect. Additionally, the mechanical adjustment of the circumfer-
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ential position of the probes within a combined bracket transforms the edge effect into a
lift-off effect, minimizing its adverse impact on damage detection, provided that the edge
remains constant [194]. Steel wire ropes, constructed from high-carbon steel wire, typically
consist of several strands wound around a central core. The variability in lift-off between
the bottom of the coil and the rope surface during scanning detection results in a sinusoidal
variation of the output voltage [195]. Therefore, the influence of the spiral structure on
the eddy current signal induced by broken wires is a critical consideration. To enhance
the detection of broken wires, Yanfei developed an eddy current array differential probe.
This probe features a pair of symmetrically placed coils that are differentially connected,
with the detection signal being the output voltage of the differential bridge [196]. When
scanning over an intact section of the rope, the surface beneath the coils exhibits symmetry,
resulting in a zero-output voltage. However, the presence of broken wires disturbs this
symmetry, leading to a non-zero output voltage above the damaged areas. By analyzing
the voltage output from the differential bridge, it becomes possible to detect surface-level
broken wires. The design effectively mitigates external disturbances, such as a temperature
drift and the inherent characteristics of the wire rope’s peaks and valleys. As the probe
passes over broken wires, a significant increase in the output voltage is observed. The
scanning signal is then processed using a wavelet-based denoising method to enhance
the signal-to-noise ratio. The experimental results demonstrate that the proposed method
effectively identifies the extent of damage in surface-broken steel wires. The simulation
results further confirm that the influence of the alternating peaks and valleys of the rope
surface on the eddy current response signal of broken wires can be effectively eliminated
through the use of the proposed eddy current differential probe [196].

3.6. ECT Probe Solutions for High-Temperature Applications

One notable application in the realm of in-service high-temperature component inspec-
tion is the monitoring of steam transportation pipelines, which must endure temperatures
exceeding 300 ◦C [197]. This necessitates the development of tailored inspection and con-
dition monitoring methods suitable for such extreme conditions. While several solutions
exist for pipe inspections, examples specifically addressing high-temperature applications
and customized equipment remain scarce [198–201]. The literature highlights various
high-temperature NDT applications, including the permanent inspection of hot wire [198]
and in situ monitoring using techniques like eddy currents [202] and ultrasound [203,204].
Unlike acoustic properties, the electromagnetic characteristics of materials exhibit less
variability with temperature, presenting a unique challenge for ECT. The primary concerns
in high-temperature ECT involve ensuring the proper thermal isolation of the probe and
managing the resulting lift-off effect. Research has documented the temperature’s influence
on ECT measurements, with some studies focusing on characterizing and compensating for
minor temperature variations to enhance the measurement accuracy [205]. For instance, the
inspection of fuel rods and plates in nuclear reactors has been studied, where temperature
effects were modeled using empirical functions [206]. In other cases, parts experience
significant temperature fluctuations during processes such as heat treatment [207]. The
capacity to conduct high-temperature inspections facilitates the continuous monitoring of
industrial components during regular operations, thereby minimizing the downtime and
associated costs. Santos et al. developed an automated NDT system specifically for the
in-service inspection of orbital welds on tubular components operating at temperatures
as high as 200 ◦C [51]. This system integrates ultrasonic and eddy current techniques, in-
corporating specialized strategies to address high-temperature conditions. In their design,
eddy currents were utilized to detect surface and subsurface cracks. The testing involved
a standard block with a tubular geometry featuring two butt welds, constructed from
P235GH steel, which is well-suited to high-temperature and high-pressure applications.
Two customized ECT probe prototypes were created: one aimed at detecting defects in the
pipe’s base material and the other focused on weld bead defects. The first probe, depicted
in Figure 12, featured two rectangular planar coils operating in a differential bridge mode,
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which enhanced the sensitivity through closer contact with the inspected material. These
coils were fabricated using printed circuit board (PCB) technology, with a high-performance
FR-4 epoxy core selected for its glass transition temperature of 180 ◦C, making it suitable
for prolonged high-temperature inspections [51].
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probe. (a) Assembled PCB probe with lid; (b) CAD cross-section of the probe; (c) bottom view of the
assembled PCB probe and lid; and (d) complete probe assembly [51].

The second probe, designed for weld bead defect detection, also employed two coils
in the bridge-differential mode, ensuring consistent positioning along the weld bead. This
configuration minimized the probe’s response to variations in the weld bead profile, which
could otherwise obscure the detection of smaller defects. The innovative design included
orthogonal crossing coils, commonly used in inspecting other welded components. To
facilitate the high-temperature operation, a water-cooled chassis was developed, com-
prising an insulating cup and a metallic cover. The probe was secured to an aluminum
cover featuring connectors and water inlets for cooling. The insulating cup was crafted
from machined Teflon, enhancing the thermal management. Despite the elevated lift-off
required for high-temperature ECT, both differential probes demonstrated an impressive
performance, with the PCB probe achieving a higher signal-to-noise ratio. Importantly,
high temperatures did not adversely affect the results, attributed to the effective cooling
systems in place, with an experimental validation showing a negligible impact even at
temperatures reaching 300 ◦C [51].

3.7. ECT Probe Solutions for Additive Manufacturing

Additive manufacturing (AM) is a cutting-edge production technique that builds
parts by sequentially fusing thin material layers to create three-dimensional products of
desired sizes and shapes [208,209]. Initially used mainly for rapid prototyping to speed up
model development, AM has since evolved to produce functional parts, including those
made from metals. This development opens up opportunities for using ECT to inspect
and monitor these parts. ECT, leveraging electromagnetism, is particularly well-suited
to evaluating surface and subsurface layers in metal AM products, making it ideal for
detecting defects, especially when performed inline after each deposited layer [210].

Selective Laser Melting (SLM) is a specific AM technology that uses a high-power laser
to transform metal powder into solid layers [211–214]. Gel’atko et al. investigated the effec-
tiveness of ECT for identifying defects in AM stainless steel parts and analyzed variations
in eddy current data due to various artificial defects, using absolute cylindrical helicoidal
probes [210]. Du, W, et al. [48], tested an ECT device for detecting subsurface defects in a
Ti-6Al-4V part produced by additive/subtractive hybrid manufacturing (ASHM), which
aims to enhance the quality of printed parts. This study, along with similar research on SLM
Inconel 738LC alloy using a differential EC probe with two oppositely wound coils, demon-
strated high sensitivity to defect-induced magnetic field changes. The sample was heated
from 25 to 300 ◦C to simulate real-world conditions, revealing that edge effects significantly
impacted the ECT results [215]. Duarte et al. compared various non-destructive testing



Sensors 2024, 24, 5819 25 of 42

techniques, including ECT, for defect identification in SLM-manufactured parts [23]. Farag
et al. investigated two distinct eddy current probe designs to assess their effectiveness in
detecting artificial defects in parts made from stainless steel (316) and titanium (Ti-6Al-4V).
The study involved two types of probes. One type was a circular helicoidal coil probe
operating in absolute mode. This design proved particularly effective in detecting notches,
making it well-suited for identifying defects such as cracks and incomplete fusion holes
in the material. The second type was a reflection probe, which featured two concentric
cylindrical helicoidal coils. In this configuration, the outer coil functioned as the pickup
coil, while the inner coil served as the driver coil. This reflection probe was found to be
more effective in detecting small-diameter blind holes, particularly those with diameters of
less than 0.2 mm. It demonstrated a superior performance in identifying these tiny defects
compared to the absolute probe [216]. In a separate study, Spurek et al. performed in situ
monitoring of metals during powder bed fusion (PBF) using ECT. The ECT equipment was
integrated into a commercial PBF machine to enable the layer-by-layer monitoring of the
relative density of parts as they were being produced. The ECT probe used was a commer-
cial ferrite pot core coil configured in a bridge setup, which included an identical coil for
balancing. The system operated in absolute mode, and the measurement data revealed that
layer-to-layer differences at a relative density of about 0.1% could be effectively detected us-
ing ECT. This demonstrated the probe’s capability to monitor and assess the quality of parts
in real-time during the additive manufacturing process [217]. In a related development,
Barrancos et al. introduced a novel eddy current testing array probe and associated readout
electronics aimed at improving layer-wise quality control in metal additive manufacturing
using powder bed fusion. Their proposed design approach focused on several key benefits,
including the scalability of sensor numbers, exploration of alternative sensor elements, and
minimalistic signal generation and demodulation techniques [218]. The solutions proposed
were intended to enhance one-dimensional ECT array probes by adjusting sensor pitch
and readout speed to enable effective layer-wise imaging while being installed on the
recoater units of PBF machinery [218]. One significant aspect of their work was the use of
mass-produced, commercially available discrete surface-mounted device (SMD) coils as
an alternative to custom-made coils and magneto-resistive (MR) sensors. The motivation
for this choice was based on the low cost, design flexibility, and ease of integration with
readout electronics [219]. To improve the measurement sensitivity, the researchers preferred
absolute ECT coil measurements, which directly relate to surface conductivity. To address
the challenge of low impedance sensitivity, they employed a compensation coil wired in a
bridge-differential configuration. The coils were tested on a reference feature with a 0.8 mm
diameter and 0.8 mm depth hole in a stainless steel 316 part produced via laser powder
bed fusion (LPBF). Various coil models were evaluated to optimize their sensitivity while
maintaining high spatial resolution. The findings confirmed that wire-wound, ferrite-cored
inductors are a viable option for ECT sensor implementation. Although the study did
not produce a large ECT array probe, the specifications of the developed probe and its
electronics achieved the necessary acquisition speed for effective online, layer-wise imaging
during the PBF process [218]. Saddoud et al. developed two new ECT probes specifically
for inspecting stainless steel 316 L mock-ups produced with powder bed fusion. One probe
was designed to detect notches as small as 1 mm in length, 0.3 mm in width, and 0.1 mm in
depth, while the other was intended for detecting engraved letters with a depth of 1 mm.
Using the CIVA non-destructive testing software package for simulations, several sensor
designs and their parameters were tested to determine the most optimal configurations.
Ultimately, they designed two types of sensors: a separate transmitter/receiver sensor and
an isotropic sensor [220]. The separate transmitter/receiver sensor features an overlapping
design consisting of a transmitter coil and a receiver coil etched onto a Kapton flexible film
(thickness 0.07 mm). In this design, one coil is used for excitation while the other receives
the signal from the part under test. This arrangement enhances the defect signal in the
impedance plane for homogeneous planar parts [221]. Although Kapton film allows for
the inspection of parts with complex geometries, it was not utilized for typical L-PBF (laser
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powder bed fusion) technique-fabricated parts. The overlapping design helps mitigate
variations in lift-off between the two coils, improving defect signal detection. The isotropic
sensor pattern consists of a transmitting coil and two receiving coils, also engraved on
Kapton film. The transmitting coil is placed on top, while the two receiving coils are
disposed coaxially, one on the inside and the other on the outside. The winding direction
of the coils alters their polarity. The reference winding direction is aligned with the trans-
mitting coil, and the receiving coils can be designed either in the same or opposite winding
direction as the transmitting coil. The comparison results indicated that the isotropic sensor
provides a better spatial resolution and signal-to-noise ratio (SNR) for detecting letters. For
defect detection, particularly when defects are aligned with the scanning direction (which
is optimal for eddy current detection), the separate transmitter/receiver sensor offers a
superior SNR. However, for detecting defects with unknown orientations, the isotropic
sensor proves to be more effective [220].

Wire arc additive manufacturing (WAAM) falls under the category of directed energy
deposition (DED-arc) and involves using an electric arc as a heat source combined with a
wire as the feedstock material. The process builds upon established welding techniques
such as gas metal arc welding (GMAW) [222], plasma arc welding (PAW) [223], and gas
tungsten arc welding (GTAW) [224]. Bento et al. developed an ECT probe for the layer-
by-layer monitoring of the WAAM process. This new three-dimensional probe, based on
the Ionic probe [75,146–150], was adapted to accommodate the weld bead curvature of the
final layer. However, the results were less promising due to excessive noise caused by the
inherent roughness of the part from the process [225]. Serrati et al. explored a different
probe configuration that yielded better, though still not ideal, results. Their probe featured
a “square” exciting coil designed to follow the semicircular geometry typical of the top of
the WAAM part, and two “semicircular–triangular” sensing coils. These sensing coils were
symmetrical but had their symmetry planes misaligned and oblique to the symmetry plane
of the wall in the probe’s travel direction. The coils were wound in opposite directions to
provide differential readings (Figure 13). This configuration improved the performance
and a flexible PCB version of the probe was tested and validated [226].
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3.8. ECT Probe Solutions for CFRPs

Carbon fiber-reinforced polymers (CFRP) are increasingly used in lightweight applica-
tions such as aerospace and automotive manufacturing due to their high strength-to-weight
ratio [227–229]. However, production defects like fiber misalignment, missing bundles, and
wrinkles, as well as operational issues such as cracks, delamination, and impact damage,
can lead to significant quality problems and increased costs [228,230]. Despite CFRP’s low
electrical conductivity compared to metals, which makes conventional ECT challenging,
the method still holds potential for defect inspection. CFRP’s conductive fibers and their
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inhomogeneous arrangement create a complex scenario for ECT compared to homogeneous
metal samples. Addressing issues such as the appropriate test frequency, probe shape, and
signal processing is crucial for the effective application of ECT to CFRP [231]. ECT has been
employed to inspect various aspects of CFRP, including undulations in carbon fiber rein-
forcement fabrics, stacking sequence quality, fiber orientation, and curing effects [232–234].
It also helps characterize electrical properties across different orientations [235,236]. Given
CFRP’s anisotropy and low conductivity, square coils can enhance electromagnetic coupling
between the carbon fibers and coil wires. Wu et al. developed an ECT probe specifically for
CFRP, featuring two planar square spiral coils, each with 5 mm sides printed on FR4, oper-
ating in transmission mode. The transmitter and receiver coils are aligned along the fiber
orientation. In traditional transmission–reception (T-R) probes, eddy currents primarily
develop in the probe’s middle area. However, due to CFRP’s strong anisotropy, the induced
eddy currents in unidirectional laminates are stretched along the fiber orientation, making
coils aligned with the fibers more sensitive. Therefore, square spiral coils were chosen
over circular ones to better match the fiber alignment. When the transmitter and receiver
coils are arranged perpendicular to the fiber orientation, the probe’s operation changes
significantly. In this configuration, the coupling mainly depends on the middle area of
the probe, which performs well in orthogonal directions, but less effectively for fibers in
other orientations, though it can still be used to characterize fiber orientation [237]. Yin
et al. designed multi-frequency eddy current sensors for a range of applications including
bulk conductivity measurements, directionality characterization, and fault detection and
imaging in CFRP samples [238,239]. They developed three sensors: the first was a circular
air-cored coil for estimating bulk conductivity; the second, a ferrite-cored rectangular coil
pair (one transmitter and one receiver); and the third, a smaller circular air-cored coil used
for imaging damage sites. Both simple analytical and finite element (FE) models were used
to describe the sensor responses, and these models showed good agreement with the exper-
imental results [238,239]. Mizukami et al. focused on detecting fiber waviness in CFRPs
by developing an eddy current (ET) probe specifically designed to detect both in-plane
and out-of-plane waviness. The probe features three rectangular coils arranged in line: the
first and third coils are identical and oriented perpendicular to the CFRP surface, while
the center coil is oriented orthogonally to the other two. This setup allows the probe to
perform three functions: detecting in-plane waviness, detecting out-of-plane waviness, and
characterizing fiber orientations. The probe operates in different modes depending on the
function being performed [240]. Additionally, the plane waviness size was studied using a
probe with a vertical rectangular driver coil positioned above the waviness zone in the fiber
direction, along with a pickup coil. The driver coil generates a magnetic field and induces
eddy currents, while the pickup coil measures the resulting magnetic field generated by
the drive current and the eddy currents [241]. Mizukami also proposed a method to select
carbon fiber layers for inspection using a probe with rectangular driver and pickup coils
oriented perpendicular to each other. By changing the in-plane azimuth of the probe, eddy
currents can be concentrated in layers aligned with the fiber direction. This method was
used to detect artificially induced in-plane waviness in cross-ply CFRP laminates [242].
Delamination detection has been explored using various techniques [243]. Notable methods
include using artificial delamination created with interplay release film [244] and detecting
extensive delamination during tension testing [245]. Mook et al. developed high-frequency
eddy current sensors for the non-destructive characterization of CFRP. They designed two
probes: a rotating probe with two bobbin coils operating in reflection mode and a static
differential probe. The rotating probe can detect the fiber orientation without needing
lateral movement, while the static probe is capable of visualizing the fiber orientation, local
imperfections, resin-rich zones, delaminations, and impact damages [243]. Zhou et al. intro-
duced a novel triple rectangular coil probe for delamination detection in CFRPs [246]. This
probe comprises one horizontal rectangular coil for detection and two vertically aligned
rectangular coils for excitation. The use of two excitation coils enhances eddy currents in
the vertical direction within the sample, thereby improving the detection sensitivity. The
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spatial arrangement of the excitation and detection coils minimizes mutual inductance and
reduces interference signals. The probe is designed to detect delaminations ranging from
10 mm to 30 mm in size and 0.05 mm to 0.15 mm in thickness. Simulations using COMSOL
Multiphysics indicated that the probe could detect delaminations from both the top and
bottom surfaces of a CFRP sample, including those deeper within the material. However,
experimental tests have not yet been conducted [246]. Wu et al. addressed the challenges
of signal interference and reduced sensitivity caused by variations in the probe-to-sample
distance and random noise from lift-off changes. To mitigate these issues, they replaced the
traditional circular transmitter (TX) coil in a T-R probe with an 8-shaped coil. This design
ensures that the primary electromagnetic fields generated by the upper and lower rings
of the 8-shaped coil are equal in strength but opposite in direction, as shown in Figure 14.
Consequently, the total magnetic flux penetrating the receiver (RX) coil is zero, minimizing
the impact of the primary EM field on the probe’s output. The probe operates within a
frequency range of 10 MHz to 25 MHz and is suitable for in-plane waviness detection,
defect identification, and characterizing fiber orientation in CFRPs [230]. Schmidt et al.
investigated high-frequency ECT for quality assurance (QA) and process monitoring of
CFRP parts produced by automatic fiber placement (AFP), a common production method
in the aerospace industry [247,248]. They used a set of cured plates with various defects
and uncured prepreg material to evaluate the effectiveness of EC testing in layup processes.
Testing was conducted with three types of probes: a high-frequency absolute probe, a
differential probe, and a transmission probe, all featuring helicoidal cylindrical coils. The
differential probe was found to be unsuitable due to high noise levels, which complicated
the image analysis. Both the transmission and absolute probes were capable of observing
fiber orientations, with the transmission probe providing higher contrast and the absolute
probe offering better resolution. Small defects as tiny as 6 × 6 mm could be detected at
depths of several layers, with the transmission probe proving more effective for uncured
prepreg and overlap detection due to its high contrast and resolution [247]. Advanced
modeling approaches for eddy current propagation in CFRP showed good agreement with
the experimental results [249–252].
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Figure 14. Principle of Lift-Off Insensitivity: The RX coil, designed in an 8-shaped configuration, has
upper and lower rings that generate primary electromagnetic fields of equal strength but opposite
directions along the equidistant line. This results in a total magnetic flux of zero penetrating the RX
coil. Consequently, the RX coil’s output remains unaffected by the primary electromagnetic field
produced by the TX coil [230].

Zhang et al. developed a flexible ECT probe with a front-end differential setup for
inspecting CFRP samples with curved surfaces. This probe operates at very high excitation
frequencies and is designed to handle irregularly shaped structures [253]. The probe
consists of two spiral coils fabricated on a flexible printed circuit board (FPCB), which
can conform to the surface of the test sample. Each coil has 16 turns distributed across
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four layers of the FPCB. The prototype probe was tested on CFRP plates and tubes with
machined defects, as well as curved CFRP samples with both machined and naturally
occurring impact damages. It successfully detected small defects (2 mm length, 1 mm
width, and 0.4 mm depth) on curved CFRP surfaces, demonstrating high sensitivity. The
study also discussed the effect of the excitation frequency, recommending a medium
frequency of around 20 MHz, and included a 3D FEM model to analyze the eddy current
distribution and the impact of CFRP’s anisotropic electrical conductivity [253]. Berger et al.
introduced a sensor concept for detecting textile defects during the preforming of semi-
finished carbon fiber parts. They developed a reflection probe using printed circuit boards
(PCBs), which features one emitting coil with a circular cross-section (12 mm diameter and
12 turns, as seen in Figure 15) and 12 pickup coils with rectangular shapes (8 mm × 12 mm,
10 turns each) [245]. This approach aims to create static eddy current arrays that can be
integrated into the preforming stage of Resin Transfer Molding. The implementation of
this technology significantly reduces the measurement times during the quality inspection
of carbon fiber preforms. The results demonstrated that fiber tow orientations could be
determined with high reliability using this system [254].
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Unidirectional carbon fiber-reinforced polymer composites (UD CFRP) are high-
performance materials for structural components; however, they exhibit low damage
tolerance [255,256]. Condition monitoring is, therefore, required in safety-critical appli-
cations. Machado et al. developed a customized EC system capable of detecting fiber
breaks [257,258] and delaminations [54,259] in UD CFRP. Their system could perform
inspections at high speeds (4 m/s). For detecting fiber breaks, they used a probe featuring
two 45◦ parallelogram spiral coils operating in differential bridge mode with a 3 mm lift-off.
The PCB configuration was chosen to maximize the proximity of the winding to the CFRP
surface, enhancing the sensitivity due to a closer interaction with the eddy current changes.
The 45◦ parallelogram spiral coils demonstrated an excellent performance, successfully
detecting lateral cuts of a 0.2 mm width in CFRP with a clear signal [258].

For delamination detection, the challenge arises from the highly anisotropic nature
of the material, making inspection and probe design particularly difficult. Machado et al.
employed two rectangular coils operating in bridge differential mode, oriented vertically.
To control the spread of the EC along the length direction, the coils were configured
to induce currents in both clockwise and counterclockwise directions, as illustrated in
Figure 16. Under normal conditions, without defects, the EC flows symmetrically within
the coils’ plane, resulting in a balanced magnetic field and equal impedance in both coils.
However, when a delamination defect is present, it disrupts the vertical EC flow at the
ends of the coils, leading to changes in the probe’s response. Multilayered PCBs were
used to achieve the required coil turns, with an innovative vertical disposition allowing for
multiple windings. Each PCB, 1.55 mm-thick, consisted of eight layers, enabling each coil
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to have the desired 40 windings. This design proved effective in detecting both horizontal
and vertical delaminations and showed sensitivity to most fiber breaks [54].
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Figure 16. Representation of the eddy currents flow: (a) one coil where the high anisotropic effect can
be seen in the EC flow; (b) two coils excited with opposite current direction; and (c) two coils excited
with opposite current direction when a delamination-type defect is present and its consequence to
the EC flow [54].

In the context of aluminum honeycomb sandwich structures with CFRP panels, Ren
et al. conducted an experimental study using ECT. The structure, known for its high
specific strength, stiffness, heat insulation, and anti-fatigue properties, is commonly used
in aerospace, shipbuilding, and automotive industries [260–262]. Ren et al. designed an
EC probe with two 6 mm-diameter pancake coils, wound around a cylindrical ferrite core,
one positioned above and one below the core. The probe operates in a bridge differential
mode with each coil having 100 turns and shielded by a copper cover. The amplitude of
the differential voltage was measured at various positions during scanning. The results
demonstrated that the probe was effective in detecting core defects and impact damages
within the sandwich structure [57].

3.9. ECT Probe Solutions for GFRPs

ECT can be adapted for inspecting non-conductive materials, such as Glass Fiber
Reinforced Polymers (GFRP), which are valued in industries like aerospace and automotive
for their strength and corrosion resistance [263–265]. One adaptation involves permittivity
sensing, which differs from traditional ECT by focusing on how a material responds to an
electric field rather than its electrical conductivity. Permittivity sensing measures how much
resistance a material offers to the formation of an electric field within it. In GFRP inspection,
this technique involves modifying the ECT setup to detect changes in the permittivity
caused by defects such as delaminations, voids, or variations in the material composition.
Defects alter the permittivity compared to the surrounding intact material, which can be
detected by capacitive sensors or electrodes integrated into the ECT probe. As the probe
scans the GFRP surface, it measures the electric field and analyzes deviations to identify
potential defects. The key benefits of permittivity sensing include its non-contact nature,
which preserves the material’s integrity, and its capability to detect subsurface defects
without needing direct access to both sides of the material. It is particularly useful for
complex shapes and structures where traditional methods might be impractical. However,
implementing permittivity sensing presents challenges. Precise calibration is required to
account for variations in the material composition, thickness, and environmental condi-
tions. Factors such as temperature and humidity can affect the permittivity measurements,
necessitating careful control and compensation to ensure accurate defect detection [266].

4. ECT Simulation for Probe Design

Numerical simulations play a pivotal role in enhancing the effectiveness and un-
derstanding of eddy current testing (ECT), particularly in the design of ECT probes. By
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allowing the detailed analysis of electromagnetic fields and their interactions with conduc-
tive materials, the simulations provide crucial insights that complement the experimental
methods. Central to these simulations are Maxwell’s equations, which govern electromag-
netic phenomena. Using techniques like the Finite Element Method (FEM), researchers
can model eddy currents (EC) and the resulting magnetic fields in response to varying
probe configurations and material properties. One of the primary advantages of a nu-
merical simulation is its ability to model various defect types—such as cracks, voids, and
inclusions—within the test material [267]. By altering the geometry, orientation, and size
of these defects, researchers can predict their impact on the eddy current response. This
predictive capability is essential for optimizing the design of ECT probes, as it helps identify
the most effective configurations and operational parameters, such as the probe geometry
and excitation frequency, to enhance defect detection. In addition to optimizing designs, nu-
merical simulations also provide a means for the calibration and validation of experimental
setups. By comparing the simulation results with the actual experimental data, engineers
can refine their models, ensuring that the numerical approach accurately reflects real-world
conditions. This iterative process bolsters confidence in both the simulation outcomes and
the efficacy of the ECT system. Furthermore, simulations can be integrated with other
NDT methods, such as ultrasonic testing or thermography, creating a hybrid approach
that allows for the comprehensive evaluation of components and leverages the strengths
of each technique to enhance the overall defect detection capabilities [268–270]. Various
software packages, including ANSYS [48,55,56,183], COMSOL Multiphysics [140,166], and
CST Studio Suite [182,271], offer robust platforms for simulating ECT. These tools often
feature built-in libraries for material properties and defect models, simplifying the mod-
eling process and enabling the rapid prototyping of different ECT configurations. As the
computational power continues to grow and algorithms advance, the fidelity of numer-
ical simulations in ECT is poised for improvement. Future developments may include
real-time simulations that adapt to changing conditions during inspections and enhanced
machine learning techniques that analyze simulation data to further optimize inspection
strategies. Through these innovations, numerical simulations stand to significantly enhance
the precision and applicability of eddy current testing across various industries. With
the advent of artificial intelligence (AI) and deep learning, the field of ECT simulation is
experiencing a paradigm shift. AI algorithms, particularly those based on deep learning,
can analyze vast amounts of simulation data to identify patterns and optimize probe de-
signs in ways that were previously unimaginable [272,273]. These advanced techniques
can enhance the predictive capabilities of simulations, allowing for real-time adaptations
during inspections and improved accuracy in defect detection [274]. Machine learning
models can also be trained to recognize subtle variations in eddy current responses that
might indicate early-stage defects, thus enhancing the sensitivity and reliability of ECT
systems [275,276]. As computational power continues to grow and algorithms advance,
the fidelity of numerical simulations in ECT is poised for significant improvement. Future
developments may include real-time simulations that adapt to changing conditions during
inspections and enhanced machine learning techniques that analyze simulation data to
further optimize inspection strategies. Through these innovations, numerical simulations
stand to significantly enhance the precision and applicability of eddy current testing across
various industries [277].

In summary, numerical simulations significantly aid in the design and optimization
of ECT probes, providing valuable insights that improve defect detection capabilities. By
facilitating the comparison between the simulation and experimental results, researchers
can refine their approaches, ensuring that the ECT systems are both accurate and effective
in real-world applications. The integration of AI and deep learning into this process
promises even greater advancements, paving the way for more intelligent and adaptive
ECT solutions.



Sensors 2024, 24, 5819 32 of 42

5. Conclusions

This work has highlighted significant advancements and ongoing challenges in the
field of eddy current testing (ECT) probe design for non-destructive testing (NDT) appli-
cations. The integration of numerical simulations, primarily through techniques like the
Finite Element Method (FEM), has revolutionized the design process. These simulations
enable a detailed analysis of electromagnetic interactions, providing invaluable insights
into optimizing probe configurations for enhanced defect detection. The ability to model
various defect types and predict their impact on the eddy current response has proven cru-
cial for refining probe designs and operational parameters. By comparing simulated results
with the experimental data, researchers can iteratively improve their models, ensuring
accuracy and effectiveness in real-world applications.

Several innovative probe designs have been developed to address specific challenges
in ECT, including detecting small defects in complex geometries and improving real-time
monitoring capabilities. Advances in material properties, sensor configurations, and signal
processing have all contributed to the improved performance of ECT probes. Despite these
advancements, challenges remain, particularly in achieving precise calibration to account
for variations in the material composition and environmental conditions.

Future research directions include enhancing the fidelity of numerical simulations and
exploring real-time adaptive simulations that respond to changing inspection conditions.
Additionally, the application of machine learning techniques to analyze simulation data
and optimize inspection strategies holds significant potential. Continued innovation in
ECT probe design and simulation will undoubtedly enhance the precision and applicability
of eddy current testing across various industries.

In addition to these simulation-focused advancements, there are several non-simulation-
related research avenues worth exploring. One area is the development of high-temperature
ECT probes that can maintain sensitivity and reliability under extreme conditions, such
as in power plants or aerospace applications, where standard probes often fail. Another
promising direction is the design of hybrid ECT probes that integrate multiple sensing
techniques (e.g., combining eddy current with ultrasonic or infrared sensors) to enable
comprehensive inspections in complex environments. Furthermore, research could focus
on the improvement of ECT probes for multi-material interfaces, addressing the challenges
of inspecting joints and interfaces between different materials, such as metal–composite or
metal–ceramic, to provide accurate readings across diverse material types.

In summary, the advancements in ECT probe design and numerical simulations
have significantly improved the capabilities of non-destructive testing, making it more
accurate and reliable. However, ongoing research and development are essential to address
existing challenges and fully realize the potential of these technologies in diverse industrial
applications.
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