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Abstract: In this paper, we study facial expression recognition (FER) using three modalities obtained
from a light field camera: sub-aperture (SA), depth map, and all-in-focus (AiF) images. Our objective
is to construct a more comprehensive and effective FER system by investigating multimodal fusion
strategies. For this purpose, we employ EfficientNetV2-S, pre-trained on AffectNet, as our primary
convolutional neural network. This model, combined with a BiGRU, is used to process SA images.
We evaluate various fusion techniques at both decision and feature levels to assess their effectiveness
in enhancing FER accuracy. Our findings show that the model using SA images surpasses state-
of-the-art performance, achieving 88.13% + 7.42% accuracy under the subject-specific evaluation
protocol and 91.88% =+ 3.25% under the subject-independent evaluation protocol. These results
highlight our model’s potential in enhancing FER accuracy and robustness, outperforming existing
methods. Furthermore, our multimodal fusion approach, integrating SA, AiF, and depth images,
demonstrates substantial improvements over unimodal models. The decision-level fusion strategy,
particularly using average weights, proved most effective, achieving 90.13% + 4.95% accuracy under
the subject-specific evaluation protocol and 93.33% + 4.92% under the subject-independent evaluation
protocol. This approach leverages the complementary strengths of each modality, resulting in a more
comprehensive and accurate FER system.

Keywords: light field cameras; facial expression recognition; multimodality

1. Introduction

In affective computing, methodologies can be divided into two main approaches:
unimodal affect recognition and multimodal affective analysis. The former focuses on
analyzing a single type of data, such as facial expressions, voice intonation, or physiological
signals, while the latter integrates various data sources to gain a more comprehensive
understanding of emotional states [1].

Although multimodal affective analysis represents a more robust and efficient system,
it faces challenges such as the complexity of synchronizing and integrating data from
multiple sources. Additionally, the use of several pieces of equipment can be intrusive,
potentially influencing the natural behavior and emotional responses of subjects [2]. In this
context, light field technology emerges as a promising solution.

Light field (LF) cameras, also presented as a plenoptic cameras, have the capability
to passively capture synchronized multi-view facial structures, which implicitly include
depth information. The imaging system’s architecture features a unique setup with a micro-
lens array positioned between the primary lens and the image sensor. This configuration
allows for the simultaneous capture of both the intensity (spatial information) and direction
(angular information) of light in a scene [3].
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As light passes through the array of micro-lenses, it follows a predetermined path.
Each micro-lens acts as a directional window, capturing light from various directions
originating from a 3D point within the scene, thereby creating a micro-image. These
collective micro-images, obtained from the entire array, enable the extraction of three
distinct types of data: sub-aperture, all-in-focus, and depth map images, as illustrated in
Figure 1. This feature is crucial for acquiring multi-directional light information, which
facilitates subsequent three-dimensional reconstruction.
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Figure 1. The IST-EURECOM Light Field Face Database (LFFD) [4] showcases sub-aperture, all-in-
focus, and depth map images, illustrating the diversity and multimodality of single-sensor imaging.

In this article, we explore the potential of multimodal fusion in facial expression
recognition (FER). This fusion is pivotal in our study, as it integrates varied facial structure
details embedded in both RGB and depth map images, which are essential for FER. Our
approach emphasizes multimodal fusion as a vital aspect, leveraging comprehensive data
to significantly enhance the recognition process. The integration of all modalities obtained
with an LF camera is a relatively unexplored territory in research.

To further clarify, we provide a detailed list of the data provided by the light field camera:

*  Sub-aperture images. Each sub-aperture (SA) image is formed by extracting pixels at
a specific position from each micro-image (see Figure 2). This method ensures that
each sub-aperture image captures directional information from the entire micro-lens
array after the decoding process, contributing to a comprehensive representation of
the scene’s multidirectional characteristics. The dimensions of each SA image, namely,
its height and width, depend on the number of micro-lenses. For instance, with the
Lytro Illum camera, it is possible to obtain a 15 x 15 matrix of SA images, totaling
225 SA images (see [5]). Each SA image has 434 x 625 pixels, representing the number
of micro-lenses available in the Lytro camera.

*  All-in-focus (AiF) image. Also known as the total focus image, is obtained by combin-
ing information from the SA images. This creates a visual representation of the scene
where all elements, regardless of their distance from the camera, are sharply focused.
Notably, this process emphasizes high resolution [6].

*  Depth map. Parallax calculation in light field cameras involves matching SA images to
measure the apparent displacement of points viewed from different positions. These
data are then used to generate a depth map, indicating the distance of each scene
point, relative to the camera, and corresponding to points in 3D space. Advanced
algorithms are subsequently applied to refine these depth maps, particularly in areas
with minimal or challenging parallax, thus enhancing the accuracy and precision of
the measurements [7].
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Figure 2. A schematic representation of sub-aperture image extraction.

With the aim of studying the benefits of light field cameras in facial expression
recognition, we first review existing works in this context in Section 2. Subsequently, in
Section 3, we elaborate on the preparation and processing stages and discuss the datasets
employed in this study. Following this, we present our model and the results obtained in
Sections 4 and 5, respectively. Finally, our study concludes with a discussion and future
perspectives in Section 6.

2. Related Work

Advances in light field camera technology have opened new perspectives in the field
of facial expression recognition (FER). Recent studies have delved into various methods
leveraging the capabilities of these cameras, including extracting detailed depth information
and providing multiple perspectives of a scene.

One of the earlier studies by Shen et al. [8] generated a private dataset containing both
depth maps and AiF images, capturing the six types of basic emotions and the neutral
state identified by Ekman [9]. The face area was cropped, and both the AiF image and
depth map were resized to 128 x 128 and 64 x 64 pixels, respectively. Subsequently, the
Histogram of Oriented Gradients was used for feature extraction, and a Support Vector
Machine was employed for FER. The study revealed that using only the AiF image resulted
in an average precision score of 45.55%. When the depth map was added, the precision
increased to 47.16%.

Research conducted by Sepas-Moghaddam et al. [10,11] introduced a novel approach
for FER using SA images from the Light Field Face Database (LFFD). The SA images,
acquired along the central vertical and horizontal lines of the sub-aperture mosaic, were re-
sized to 224 x 244 pixels. These images were fed into two VGG-Face models combined with
a Bidirectional Long Short-Term Memory (LSTM) network [12,13]. Both models were en-
hanced with an attention mechanism prior to classification. A fusion process was employed
to generate a final score. A comparative analysis among Neutrality, Angry, Happiness, and
Surprise expressions was conducted using the LFFD. This approach provided an accuracy
of 87.62% =+ 5.41% under the subject-specific evaluation protocol and 80.37% = 9.03% under
the subject-independent evaluation protocol.

The same authors extended their work by developing a second model based on the
CapsField framework [14]. This model incorporated two CNN sub-networks based on
VGG-16 [15] and ResNet-50 [16] architectures to extract spatial features from horizontal
and vertical SA sequences. By introducing a capsule network [17] to capture intricate
relationships among these features, the convolution operation is omitted in the primary
capsule layer. The classification process is executed through two independent dense layers
with a softmax activation, merging scores to predict final labels for FER. The comparison
focused on Neutral expressions and random facial expressions provided by Light Field
Faces in the Wild (LFFW). The results showed 100% accuracy for each category using
indoor data for training and outdoor data for testing. Additionally, when the training and
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testing settings were inverted, accuracies were 90.56% for Neutral and 93.71% for random
facial expressions.

In our previous research [18], we explored a variety of models using EfficientNetV2-S [19]
along with different recurrent neural networks (RNNs) such as LSTM [20], gated recurrent
unit (GRU) [21], bi-directional (Bi) GRU, and Bi-LSTM. The combination of CNN and RNN
allows for the extraction of both spatial and angular information from SA images, providing a
more comprehensive and accurate analysis of facial expressions. Notably, two configurations
achieved higher accuracies. The first one paired a dual-branch EfficientNetV2-S with LSTM,
and the second used a single-branch EfficientNetV2-S with Bi-LSTM. These configurations
were rigorously tested using exclusively diagonal images from the SA image mosaic, resized
to 60 x 60 pixels from the LFFD dataset. Notably, the dual-branch configuration with LSTM
was particularly effective, achieving an impressive average precision score of 82.88% =+ 6.47%.

In this paper, we focus on exploring FER using three modalities obtained from the
Light Field Face Database (LFFD): SA images, depth maps, and AiF images. Our objective
is to construct a more comprehensive and effective FER system by investigating multimodal
fusion strategies.

In the field of affective computing, multimodal fusion involves integrating various
data modalities, including images, videos, audio, and bio-electrical signals such as EEG
or ECG [22-25]. Our study specifically delves into the nuances of multimodal fusion by
examining the intricate details captured by the LF camera. By leveraging this approach, we
aim to uncover complex patterns within these diverse data sources, thereby enhancing our
understanding and improving the capabilities of FER systems.

The study of LF images, by exploiting all the information they provide, remains a
largely unexplored area. Our research seeks to bridge this gap by thoroughly analyzing the
rich data from LF images, which could lead to significant advancements in the field of FER.

3. Pre-Training Dataset Selection and Model Configuration for FER

In this section, we outline the steps involved in preparing our model and processing
the datasets used for FER. We present the datasets used for pre-training our model. The
model obtaining the best score on AiF images is used to synthesize depth maps. This
approach aims to develop a robust model capable of recognizing facial expressions using
both RGB and depth images.

3.1. FER Datasets

For our study, we employed EfficientNetV2-5 [26], a CNN known for its performance,
efficiency, and scalability in image classification tasks. This CNN was pre-trained on multi-
ple datasets specifically designed for FER to provide a broad spectrum of emotional data.
This initial pre-training aims to enhance the accuracy and effectiveness of our FER models.

The datasets used for pre-training include the following:

*  FER2013: The Facial Expression Recognition 2013 (FER2013) dataset [27] was specifi-
cally proposed for FER research. It comprises 35,887 facial images, each one classified
into one of seven distinct expressions: Anger, Disgust, Fear, Happiness, Sadness, Sur-
prise, and Neutrality. Each grayscale image is 48 x 48 pixels, providing a consistent
format for analysis and model training.

¢ CK+48: The Extended Cohn-Kanade (CK+48) dataset [28] was also proposed for FER
research. It contains 980 grayscale 48 x 48 pixel images. The dataset covers seven
distinct facial expression categories: Fear, Disgust, Sadness, Happiness, Neutrality,
Surprise, and Anger, offering a comprehensive array of expressions for analysis.

e AffectNet: The AffectNet dataset [29] contains 291,650 facial images, a blend of RGB
and grayscale, all standardized to a size of 224 x 224 pixels. Each image is manu-
ally annotated by 12 experts. These annotations encompass eight facial expressions:
Neutrality, Happiness, Anger, Sadness, Fear, Surprise, Disgust, and Contempt. Addi-
tionally, the dataset provides annotations for the intensity of valence and arousal. This
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wealth of data makes AffectNet a comprehensive tool for studying facial expressions
and affect in naturalistic settings.

Figure 3 presents a sample image for each facial expression from these datasets,
providing a visual representation of the data types used in our analysis.

Anger Contempt Disgust Fear Happiness Sadness Surprise Neutrality
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Figure 3. Sample emotion representations across datasets: FER2013, CK+48, and AffectNet.
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Using these specified datasets on EfficientNetV2-S yielded notable accuracies: 66.51%
for FER2013, 94.87% for CK+48, and 76.46% for AffectNet.

3.2. Depth Map for FER Dataset

Since there is no existing dataset for FER with depth maps, we synthesize these images
from the dataset that yields the best performance on AiF images. We consider that AiF
images are similar to RGB images obtained from standard cameras in our approach.

To create these depth maps, we use the Depth Anything model [30], enabling us to
generate depth information for facial expression images. The DAM is a recently released
foundation model for monocular depth estimation (MDE). It is based on a vision trans-
former architecture and has been trained on a vast dataset of approximately 63.5 million
images, including 1.5 million labeled and 62 million unlabeled images. This model lever-
ages advanced deep learning techniques to accurately predict depth information from 2D
images, making it highly effective for generating high-quality depth maps that capture
intricate details and variations in facial structures. By incorporating these synthesized
depth maps, we aim to enhance our facial expression recognition system, providing a richer
and more comprehensive understanding of emotional expressions.

Figure 4 illustrates the depth images synthesized from the RGB images of the Affect-

Net dataset.
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Figure 4. The AffectNet dataset provides diverse sample emotion representations, complemented by
synthesized depth maps, illustrating the range and complexity of data used in the study.

4. Detailed Methodology and Implementation of the Proposed Approach

In this section, we provide a detailed exploration of the architectures developed for
handling SA images, depth maps, and AiF images. We describe the designs of both our
unimodal and multimodal architectures.
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Studying unimodal and multimodal approaches is essential for understanding the
benefits of the data obtained from the LF camera in enhancing FER performance. Addition-
ally, we discuss the hyperparameters used in our model, their importance in improving its
effectiveness, and the evaluation protocols we have implemented.

4.1. Unimodal Approaches

In order to study facial expression recognition from AiF images and depth maps
separately, our model employs EfficientNetV2-S as the CNN backbone. This backbone is
augmented by two successive blocks comprising dense layers, batch normalization, and
dropout layers. The dense layers fully connect the network, allowing it to learn complex
patterns in the data. Batch normalization layers stabilize and accelerate the training process
by normalizing the input to each layer, thereby improving the model’s performance and
convergence. Dropout layers prevent overfitting by randomly setting a fraction of input
units to zero during training, which helps the model generalize better to new data. The
architecture concludes with a classification layer using a softmax function to output the
probabilities of each facial expression class.

The architectural details of this model are illustrated in Figure 5. We refer to the model
used for AiF images as “Model_1" and the model used for depth images as “Model_2".
Both models share the same architecture.

@ c
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Figure 5. Architecture of Model_1 and Model_2 for AiF and depth images, respectively, using
EfficientNetV2-S.

For the model dedicated to SA images, referred to as “Model_3”, we use EfficientNetV2-
S to extract spatial information, similar to the approach used for AiF images and depth
maps. Following this, BiGRU is employed to extract angular information from the SA
images. Next, two stacks of dense, batch normalization, and dropout layers are applied.
For the first stack, each layer is wrapped in a TimeDistributed layer to handle the angu-
lar aspect of the data. An attention mechanism is integrated between these two stacks
to enhance the model’s focus on the most relevant features by fusing the angular and
spatial information vectors. The attention layer calculates alignment scores for each time
step of the input sequence, converts these scores into attention weights using a softmax
function, and produces a context vector that captures the most pertinent information from
the input sequence. This allows the model to emphasize the important parts of the input,
improving its ability to recognize facial expressions accurately. The model concludes with
a classification layer using a softmax function.

The detailed architecture of “Model_3”, dedicated to SA images, is depicted in Figure 6.
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Figure 6. Architecture of Model_3 for SA images, using EfficientNetV2-S.
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4.2. Data Fusion Strategies

A key feature of our method is the fusion layer tailored for light field camera data,
treating AiF, SA, and depth images as separate modalities.

We explored two fusion strategies: decision level and feature level. Decision-level
fusion combines final model outputs, boosting accuracy and reliability by leveraging
strengths of different classifiers. In contrast, feature-level fusion integrates the data from
diverse modalities before classification, enriching the feature set for a more holistic analysis
(see Figure 7).

This setup aims to investigate both fusion types within our framework, potentially
enhancing the robustness and accuracy of facial expression recognition. By comparing
these strategies, we seek to identify the optimal approach for integrating data from multiple
modalities, thereby improving the performance and reliability of our emotion recognition
models. Our evaluation of the best fusion technique will specifically focus on the integration

of AiF with SA images.
Model_1 Model_3
for AiF images for SAimages

| Softmax (Model1) | [ Softmax (Model 3) | |Feature Level Fusion ‘

I |
!
| Decision Level Fusion ‘ Softmax

Model _1 Model_3

for AiF images for SAimages

(a) Fusion in Decision Level (b) Fusion in Feature Level
Figure 7. A comparative diagram of decision-level and feature-level fusion strategies.

4.3. Multimodal Approaches

Given our interest in exploring the contribution of LF cameras to FER, and recogniz-
ing that the data provided by these cameras come in three distinct types, we aimed to
understand the contribution of each type individually, as well as in combinations of two
modalities and all three together. To investigate this, we compared pairs of models at a
time, then all three together, and merged them using an averaging layer.

Model_4 represents the fusion of the model for SA images with the model for depth
images. Model_5, on the other hand, is the fusion of the model for SA images with the
model for AiF images. Model_6 combines the models for AiF and depth images. Finally,
Model_7 integrates all three modalities.

4.4. Light Field Camera Dataset

The IST-EURECOM Light Field Face Database (IST-EURECOM LFFD) [4] stands as a
unique resource for FER research using an LF camera, featuring 100 subjects each captured
with a Lytro Illum camera. This extensive database, with two sessions per subject and
20 samples each, encompasses a range of facial expressions, activities, poses, lighting
conditions, and occlusions. It include raw LF images, AiF images, depth maps, and
detailed metadata.

In our study, we specifically analyze the facial expressions available in the dataset.
It contains only three of the six basic emotions—anger, joy, and surprise—along with the
neutral state, using SA, depth map, and AiF images from IST-EURECOM LFFD.

The SA images can be extracted from the raw images using MATLAB’s LFtoolbox
V0.4 [31].
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4.5. Image Selection from LFFD

We use AiF images and depth maps, each representing a single image per subject,
as well as SA images, which constitute a series of images that vary slightly in terms of
viewing position.

Consequently, we do not use the entire array of SA images to examine depth information
and facial structure. Instead, we employ a selected subset of images from the 15 x 15 SA
image mosaic. Through comprehensive testing of various SA image sets, we have identified
that those located on the upward and downward diagonals with a step of 3 are the most
effective, as illustrated in Figure 8.

u |

- .

Figure 8. Used set of SA images.

4.6. Preprocessing and Data Augmentation

We implement data augmentation techniques on the pre-training dataset to enhance
model robustness. Transformations include rotations (—15 to 15), zoom adjustments (—0.15
to 0.15), brightness changes (0.6 to 1.2), shear modifications (—0.15 to 0.15), and horizontal
flipping. These adjustments train the model to handle variable angles, scales, lighting
conditions, and expressions. We apply the ‘Nearest’ fill_mode to maintain image quality
during transformations. For both AiF and SA images, we use the Yolo Face algorithm [32]
for cropping to 100 x 75 pixels while maintaining the aspect ratio, before proceeding with
training and testing.

4.7. Hyperparameters

For our models, we use an input resolution of 100 x 75 pixels, training for 1000 epochs
with a batch size of 16. The networks are compiled using categorical cross-entropy as the
loss function, the Adam optimizer, and accuracy as the performance metric.

During training, we employ a ModelCheckpoint callback that focuses on the perfor-
mance of the final output layer, saving the best weights based on maximum validation
accuracy. This ensures the retention of the most effective weights.

Additionally, an EarlyStopping callback is used to monitor the final validation output,
with a patience setting of 10 epochs. This stops training if no improvement is observed in
the target metric for the specified number of epochs, preventing overfitting and reducing
computational cost.

Lastly, the ReduceLROnPlateau callback adjusts the learning rate based on perfor-
mance of the final output validation. It decrements the learning rate by a factor of 0.5
upon no metric improvement, with a patience of 5 epochs and a minimum learning rate of
1 x 10 . This approach aids in refining the model, making more precise weight adjust-
ments as it converges to the optimal solution, thus enhancing overall model performances.

4.8. Protocols for Model Evaluation

To compare our proposed method to state-of-the-art techniques, our model is evaluated
using two distinct protocols: subject-specific evaluation and subject-independent evaluation.
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*  Subject-specific evaluation (SSE). This method uses data from the first session to train
the model and data from the second session for testing and vice versa. The average of
the two test results provides insights into the model’s consistency and reliability over
time for the same individuals. It tests the model’s ability to generalize across different
times for the same person.

*  Subject-independent evaluation (SIE). This uses a Leave-Ten-Subjects-Out Cross-
Validation approach. The model is trained on 90% of subjects and tested on the
remaining 10%. This is repeated until all subjects have been used for testing, providing
an average score that reflects how well the model can predict emotions on people it has
never seen before, highlighting its potential real-world effectiveness and adaptability.

These protocols offer a comprehensive assessment of the model’s performance, relia-
bility, and applicability in varied real-world scenarios.

5. Evaluation Results and Comprehensive Discussion

In this section, we investigate the outputs derived from the pre-training phase of the
EfficientNetV2-S model. We compare the performances of various fusion models against
the individual results obtained from processing SA, AiF, and depth map images separately.

5.1. Pre-Training Model

In the initial phase of our study, as detailed in Section 3.1, the EfficientNetV2-S exhib-
ited varying levels of accuracy across the CK+48, FER2013, and AffectNet databases, with
respective accuracies of 94.87%, 66.51%, and 76.46%. These variations reflect the inherent
complexities and diversities within each database, while also highlighting the adaptability
and sensitivity of our model to different data characteristics.

Upon implementing Model_1, which processes AiF images, as delineated in Section 4.1,
and pre-training on these three databases for emotion recognition under SSE, we noted a
marked uniform enhancement in performance metrics. Notably, AffectNet demonstrated
the most significant improvement, achieving an average accuracy of 88.38% with a standard
deviation (STD) of 8.18%, as illustrated in Table 1.

The model’s high accuracy and reduced STD, when pre-trained on AffectNet, highlight its
robustness, consistency, and reliability in emotional recognition tasks across diverse emotional
states. AffectNet, with its significantly larger volume and more extensive variety of emotional
expressions compared with CK+48 and FER2013, has been instrumental in achieving these
results. The ability to handle and learn from such a large, diverse dataset underscores the
model’s adaptability and the distinct advantages offered by AffectNet’s comprehensive data
in enhancing precision, improving performance and generalization capabilities.

Table 1. Performance metrics of Model_1 on CK+48, FER2013, and AffectNet under SSE protocol
with LFFD.

Emotions CK+48 (%) FER2013 (%) AffectNet (%)
Angry (%) 76.50 76.00 77.00
Happy (%) 92.50 85.50 96.50
Neutral (%) 82.00 80.00 90.00
Surprise (%) 85.00 90.00 90.00
Avg(%) = STD (%) 84.00 + 6.67 82.88 + 6.14 88.38 + 8.18

To extend our results, we generated depth maps from the RGB images of AffectNet
using the Depth Anything model. The model achieved a score of 81.74%.

The contribution of the synthesized depth images to FER is significant. Compared with
a score of 76.46% obtained using only RGB images, the use of depth maps has considerably
improved performance. Depth maps provide additional information about the three-
dimensional structure of faces, which is crucial for accurately identifying facial expressions,
especially under varying pose and lighting conditions.
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By pre-training the CNN on both RGB and depth images, we were able to create a
more robust and generalizable model. This approach enables a better understanding of the
nuances of emotional expressions by incorporating three-dimensional information, which
is not always evident in two-dimensional images. The combination of RGB data and depth
maps enriches the model, allowing it to discern subtle details of facial expressions, thus
improving the accuracy and reliability of emotion recognition.

5.2. Results of Unimodal Architectures

We tested the unimodal models using SSE and SIE protocols on the LFFD dataset.
Table 2 represents the performance of the models under an SSE protocol.

Table 2. Performance of different unimodal models on the LFFD dataset under SSE protocol and
comparison with the state of the art.

Angry (%) Happy (%) Neutral (%) Surprise (%) Avg (%) £ SD (%)
Model of [11] (SA images) 88 94 81 87.50 87.62 + 5.41
Model_1 with AiF images 77 96.50 90 90 88.38 + 8.18
Model_2 with Depth images 43.50 52.50 33 39.50 4213 £8.17
model_3 with SA images 80.50 94.50 86.50 91 88.13 +7.42

The model by Sepas-Moghaddam et al., which uses SA images, achieved an average
accuracy of 87.62% with an STD of 5.41%. In comparison, our Model_3, also using SA
images, achieved a slightly higher average accuracy of 88.13% with a higher STD of 7.42%.
This demonstrates that our model not only matches but slightly surpasses the performance
of the Sepas-Moghaddam et al. model in terms of accuracy, while still maintaining a robust
performance across various emotional states.

Our Model_1 with AiF images achieved the highest average accuracy among our
models, with an accuracy of 88.38% and an STD of 8.18%. This model excelled particularly
in recognizing the “Happy” (96.50%), “Neutral” (90%), and Surprise (90%) emotions,
outperforming all other models in these categories.

Model_2, which uses depth images, performed the poorest among all the models, with
an average accuracy of 42.13% and an STD of 8.17%. This model struggled significantly
with recognizing all the emotions. This suboptimal performance can be attributed to
the inadequate calibration of the LFFD dataset, where the depth range was not properly
adjusted. Additionally, our model was pre-trained on synthesized depth images, which,
although it improved the score to some extent, was insufficient to extract the detailed
information stored in the LF depth maps necessary for effective emotion recognition.

Model_3, which uses SA images, demonstrated strong performance, achieving an
average accuracy of 88.13% and an STD of 7.42%. This model showed strong performance
across all emotions, particularly in recognizing the Angry (80.50%), Happy (94.50%), and
Surprise (91%) emotions, making it comparable with the AiF image model.

Overall, Model_1 using AiF images demonstrated the highest overall performance
in terms of average accuracy and emotional recognition, particularly excelling in the
recognition of Happy, Neutral, and Surprise emotions. Model_3 with SA images also
showed strong performance, surpassing the state-of-the-art model by Sepas-Moghaddam
et al. in terms of average accuracy, although with slightly higher variability. Model_2 with
depth images showed that depth information alone is insufficient for robust FER.

As seen in Table 3, our Model_1 with AiF images achieved the highest performance,
with an average accuracy of 94.11% and an STD of 4.08%. This model excelled in recognizing
the Angry (88.57%), Happy (97.14%), Neutral (92.86%), and Surprise (97.87%) emotions,
outperforming all other models in these categories.
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Table 3. Performance of different unimodal models on the LFFD dataset under SIE protocol and
comparison with the state of the art.

Angry (%) Happy (%) Neutral (%) Surprise (%) Avg (%) = SD (%)
Model of [11] (SA images) 80.50 86 71.50 83.50 80 +9.03
Model_1 with AiF images 88.57 97.14 92.86 97.87 94.11 + 4.08
Model_2 with Depth images 64.29 67.14 48.57 57.86 59.46 +7.17
model_3 with SA images 86.67 95 94.17 91.67 91.88 + 3.25

On the other hand, Model_2, which employed depth images, recorded an average
accuracy of 59.46% with an STD of 7.17%. This model faced considerable difficulties in
recognizing all emotions, underscoring the insufficiency of depth information alone for
effective emotion recognition.

Model_3, using SA images, also demonstrated strong performance, achieving an average
accuracy of 91.88% and an STD of 3.25%. This model was particularly effective in recog-
nizing the Happy (95%), Neutral (94.17%), and Surprise (91.67%) emotions, highlighting its
robustness and reliability. The model developed by Sepas-Moghaddam et al. achieved an
average accuracy of 80.37% with an STD of 9.03%. Despite performing reasonably well, it was
outperformed by Model_3.

Overall, Model_1 with AiF images demonstrated the best performance across both
protocols, highlighting the effectiveness of all-in-focus images for unimodal emotion recog-
nition tasks. Model_3 with SA images also showed strong performance, further empha-
sizing the potential of SA images. Conversely, Model_2 with depth images indicated the
limitations of relying solely on depth information for such tasks.

5.3. Results for Fusion Strategies

In this section, we compare decision-level versus feature-level fusion methods, elabo-
rated in Section 4.2. Table 4 summarizes the fusion approaches using an EfficientNetV2-S
model pre-trained on AffectNet, following an SSE protocol. Our objective is to enhance
the FER process by leveraging detailed data from LF camera technology, such as AiF and
SA images, aiming to deepen our understanding of how different fusion strategies affect
computational emotion analysis.

Table 4. Comparative analysis of decision-level fusion and feature-level fusion techniques on
Model_5.

Decision-Level Fusion

Fusion Type  Angry (%)  Happy (%) N?;t)r al Surprise (%)  Avg (%) + SD (%)
o
Sum 89.00 87.50 88.50 83.00 87.00 +2.74
Maximum 80.00 85.50 90.50 89.50 86.38 £ 4.77
Multiply 83.50 80 86.50 95 86.25 + 6.41
Average 77.00 93.00 91.00 90.50 87.88 +7.33
Feature-Level Fusion
Fusion Type  Angry (%)  Happy (%) Ni;t)r al Surprise (%)  Avg (%) + SD (%)
o
Sum 87.00 84.00 88.50 88.00 86.88 + 2.02
Maximum 79.00 84.50 91.50 89.50 86.13 + 5.59
Multiply 84.50 79.00 89.00 90.50 85.75 £ 5.17
Concatenation 85.00 94.50 80.50 82.00 85.50 + 6.28
Average 78.00 91.00 90 86.50 86.38 +7.33

We employed various fusion strategies, including sum, maximum, multiply, average,
and concatenation, each with unique advantages for enhancing the FER process.
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Decision-level fusion methods showed promising outcomes. The sum fusion approach,
which integrates complementary data to enhance robustness, achieved an average accuracy
of 87.00% with an STD of 2.74%. This method’s ability to consolidate diverse information
sources likely contributed to its consistent performance. Similarly, the maximum fusion
method, which prioritizes the most salient features, resulted in an average accuracy of
86.38% with an STD of 4.77%. The multiply fusion method, emphasizing commonalities
across inputs, achieved an accuracy of 86.25% but exhibited higher variability with an STD
of 6.41%.

Among the decision-level fusion strategies, the simple average method, which balances
the inputs to ensure data consistency, stood out with an average accuracy of 87.88% and
an STD of 7.33%. This approach’s balanced handling of input data may account for its
superior performance across a range of facial expressions.

Feature-level fusion methods exhibited varied performances. The sum fusion method
at the feature level achieved an average accuracy of 86.88% with an STD of 2.02%, indicating
its consistent performance. The maximum approach yielded an average accuracy of 86.13%,
but with a higher STD of 5.59%, suggesting greater variability. The multiply method
resulted in an average accuracy of 85.7% with an STD of 5.17%, while the concatenation
method showed an average accuracy of 85.50% with an STD of 6.28%. The simple average
approach achieved an accuracy of 86.38% with an STD of 7.33%, indicating a balanced yet
variable performance.

The use of LF camera technology, which captures both AiF and SA images, significantly
enriched the data available for FER. This technology proved particularly beneficial for
decision-level fusion strategies. The average approach, which achieved an average FER
score of 87.88%, exemplifies how leveraging detailed LF data can enhance the accuracy and
robustness of emotion recognition models. The superior performance of the decision-level
fusion methods underscores the importance of integrating diverse data sources to capture
the nuances of facial expressions effectively.

Overall, the results indicate that while all fusion strategies can effectively leverage
varied data, decision-level fusion, particularly using the simple average method, offers
a balanced performance across different emotional states. The inclusion of LF camera
data further enhances the capability of these models, demonstrating significant improve-
ments in accuracy and reliability. These findings highlight the potential of advanced
fusion techniques and sophisticated imaging technologies in advancing computational
emotion analysis.

5.4. Benefits of Multimodal Information

Using an SSE protocol on the LFFD dataset, we evaluated the performances of the
multimodal models. Table 5 summarizes the results.

Model_4, which integrates SA and depth images, achieved an average accuracy of
86.00% with an STD of 8.00%. This model demonstrated strong performance in recognizing
the Angry (75.00%), Happy (88.00%), Neutral (87.00%), and Surprise (94.00%) emotions.
Despite its robust performance, Model_4 exhibited slightly less consistency compared with
other multimodal combinations.

Model_5, which combines SA and AiF images, demonstrated an average accuracy
of 87.50% with an STD of 7.33%. This model excelled in recognizing the Angry (77.00%),
Happy (93.00%), Neutral (91.00%), and Surprise (90.50%) emotions. This combination
showed a balanced performance across different emotional states.

Model_6, combining AiF and depth images, achieved an average accuracy of 85.88%
with an STD of 9.50%. This model performed well in recognizing the Angry (72.00%),
Happy (92.50%), Neutral (87.50%), and Surprise (91.50%) emotions. Despite the good
performance, the higher standard deviation indicates more variability in its results.

Model_7, which integrates all modalities (SA, AiF, and depth images), demonstrated
the best performance, achieving an average accuracy of 90.13% with an STD of 4.95%. This
model showed excellent performance across all emotions, particularly in recognizing the
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Angry (86.50%), Happy (95.00%), Neutral (85.50%), and Surprise (93.50%) emotions. The
integration of all modalities provided a comprehensive understanding of facial expressions,
leading to the highest accuracy and the lowest variability.

It is important to note that the depth images in the LFFD dataset were not optimally cali-
brated during capture, leading to a lack of detailed facial structure information. Additionally,
the model was pre-trained on synthesized depth images, which did not effectively extract the
nuanced information present in the light field depth images. These factors contributed to the
lower performance scores observed when using depth images alone. However, the fusion
strategy employed in Model_7 effectively leveraged the complementary strengths of SA and
AiF images to extract the most pertinent information from the depth modality. By relying
on the strengths of the other modalities, Model_7 was able to mitigate the limitations of the
depth images, thereby achieving superior overall performance.

Compared with the unimodal models, the multimodal fusion models demonstrated
significant improvements in performance. Model_1, which used AiF images alone, achieved
the highest accuracy among unimodal models with an average of 88.38%. However, the
multimodal Model_7 surpassed this, achieving an accuracy of 90.13%. This demonstrates
the substantial benefit of combining multiple modalities, as it allows the model to draw on
a richer set of features and improve its recognition capabilities.

Table 5. Performance of different multimodal models on the LFFD Dataset under SSE protocol.

Angry (%) Happy (%) Neutral (%) Surprise (%) Avg (%) = SD (%)
Model_4 using SA + Depth images 75.00 88.00 87.00 94.00 86.00 + 8.00
Model_5 using SA + AiF images 77.00 93.00 91.00 90.50 87.50 +7.33
Model_6 using AiF + Depth images 72.00 92.50 87.50 91.50 85.88 +9.50
Model_7 using all modalities 86.50 95.00 85.50 93.50 90.13 + 4.95

Otherwise, we evaluated the multimodal models using an SIE protocol on the LFFD
dataset. Table 6 represents the performance of these models.

Model_4 achieved an average accuracy of 90.18% with an STD of 6.26%. This model
demonstrated robust performance, particularly in recognizing Angry (85.71%), Happy
(95.71%), Neutral (78.57%), and Surprise (89.29%) emotions. However, the higher variability
indicates that the combination of SA and depth images is less consistent compared with
other multimodal configurations.

Model_5 demonstrated an average accuracy of 95.18% with a standard deviation (STD)
of 5.06%. This model excelled in recognizing Angry (87.14%), Happy (99.29%), Neutral
(95.71%), and Surprise (98.57%) emotions. The fusion of SA and AiF images provided a
well-balanced and robust performance across various emotional states.

Model_6, which combines AiF and depth images, achieved an average accuracy of 86.04%
with an STD of 4.02%. This model performed well in recognizing Angry (80.00%), Happy
(90.83%), Neutral (88.33%), and Surprise (85.83%) emotions. However, the relatively higher
standard deviation suggests more variability in its results, indicating that the combination of
AiF and depth images is less consistent compared with other multimodal approaches.

Model_7, which integrates all modalities, demonstrated the best performance, achiev-
ing an average accuracy of 93.33% with an STD of 4.92%. This model showed excellent
performance across all emotions, particularly in recognizing Angry (86.67%), Happy (100%),
Neutral (91.67%), and Surprise (95%) emotions. The integration of all modalities provided
a comprehensive understanding of facial expressions, resulting in high accuracy and
low variability.

Compared with the unimodal models, the multimodal fusion models demonstrated
significant improvements in performance. Model_1, which used AiF images alone, achieved
the highest accuracy among unimodal models with an average of 94.11% under an SIE
protocol. However, the multimodal Model_5 surpassed this, achieving an accuracy of
95.18%. This demonstrates the substantial benefit of combining multiple modalities, as it
allows the model to draw on a richer set of features and improve its recognition capabilities.
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In conclusion, Model_5 demonstrated the highest performance and robust emotion
recognition across various states, indicating the effectiveness of combining SA and AiF
images. Model_7, which integrated all modalities, also performed exceptionally well with
low variability, highlighting the benefits of a comprehensive multimodal approach. While
Model_4 and Model_6 showed strong performance, their higher variability suggests that
certain combinations, such as SA and depth images, may be less consistent. Overall, these
findings underscore the substantial benefits of multimodal fusion in enhancing the accuracy
and robustness of facial emotion recognition.

Table 6. Performance of different multimodal models on the LFFD Dataset under SIE protocol.

Angry (%) Happy (%) Neutral (%) Surprise (%) Avg (%) = SD (%)
Model_4 with SA + Depth images 85.71 95.71 78.57 89.29 90.18 + 6.26
Model_5 with SA + AiF images 87.14 99.29 95.71 98.57 95.18 + 5.06
Model_6 with AiF + Depth images 80.00 90.83 88.33 85.83 86.04 + 4.02
Model_7 with all modalities 86.67 100 91.67 95 93.33 +4.92

Diving deeper into the evaluation under an SIE protocol, we aim to provide a more
granular understanding of our model’s performance. In one of the test instances, our
approach yielded accuracy scores of 90% for ‘Angry’, 100% for ‘Happiness’, 95% for
‘Neutral’, and 100% for ‘Surprise’, reaching an impressive average accuracy of 96.25%.
While these scores are promising, we seek to further dissect the results. To gain insights into
the model’s behavior, we showcase images that were incorrectly classified by our model,
shedding light on areas where improvement is possible (see Figure 9).

Img 1 Img 2 Img 3
Predicted : Angry Predicted : Neutral Predicted : Angry
Expected : Neutral Expected : Angry Expected : Neutral

Figure 9. Misannotated images by the fusion model for one of the SIE protocol test instances.

To further our analysis, we engaged 32 individuals to answer a questionnaire to rate on a
scale from 1 to 5 for four facial expressions ("Angry’, ‘Happiness’, ‘Surprise” and ‘Neutral’),
specifically for those three misannotated images. Figure 10 gives the scores for each emotion
across the three images, providing a nuanced view of human perception in relation to the
model’s misclassifications. This approach allows for a more detailed understanding of the
subtleties involved in FER and highlights potential areas for enhancing the model’s accuracy.

Regarding the data illustrated in Figure 10 concerning the three misannotated images,
we analyze the feedback provided by the participants based on the graph.

First, the graph likely presents the distribution of scores for each emotion for the
three images. This is essential to observe the trends and patterns that emerge from the
participants’ ratings.
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Figure 10. Participant rating distribution for misannotated emotion predictions.

For Image 1 of Figure 9 with the predicted “Angry” and expected ‘Neutral’, we might
observe a higher concentration of ratings around the median for ‘Neutral’, as indicated
by the average score of 2.75. This central tendency could suggest a general agreement
among participants towards a neutral expression, despite the model’s prediction of ‘Angry’.
The lower scores for ‘Angry’, ‘Happiness’, and ‘Surprise’ might be spread out or clustered
towards the lower end of the scale, indicating less agreement or confidence in these facial
expressions for Image 1.

Moving to Image 2 of Figure 9, predicted ‘Neutral’ but expected ‘Angry’, the graph
might show a more even distribution of scores for “Angry” and ‘Neutral’, reflecting the
closer average scores (1.72 for ‘Angry” and 2.66 for ‘Neutral’). This could suggest a divided
perception among participants, with some leaning towards a neutral expression and others
perceiving anger. The distribution of ‘Happy’ and ‘Surprise’ scores might again show
lesser variance and lower averages, reinforcing the idea that these were not the dominant
perceived emotions for this image.

Finally, for Image 3 of Figure 9, with a prediction of ‘Angry’ but an expectation of
‘Neutral’, the graph might show a pronounced peak or a higher average for ‘Neutral” at
3.03, indicating a strong consensus towards a neutral expression among participants. The
‘Angry’ score, while lower, might show a broader spread or a secondary peak, reflecting a
significant minority of participants who align with the model’s prediction. The scores for
‘Happy’ and ‘Surprise” might remain consistently low, as with the other images.

In summary, the graph in Figure 10 provides a visual representation of these distribu-
tions and tendencies, offering a clearer picture of the collective human judgment versus
the model’s predictions. It is important to note that the dataset contains simulated images,
and in some cases, the facial expressions of certain subjects are ambiguous. This ambiguity
may be a contributing factor to the discrepancies observed between the model’s predictions
and human perception. By dissecting these patterns, we can better understand where the
model aligns or diverges from human perception and how emotion recognition might be
fine-tuned for improved accuracy and understanding.

6. Conclusions

This article aims to study the contribution of different modalities obtained with a light
field (LF) camera for facial expression recognition (FER). We present the optical imaging
system used and the variety of information it provides. We explore the contribution of each
modality separately and test various fusion strategies to combine these modalities effectively.

Our findings demonstrate the potential of using light field cameras to enhance facial
expression recognition through multimodal fusion strategies. Our experiments show
that combining sub-aperture, all-in-focus, and depth images significantly improves FER
accuracy and robustness. The decision-level fusion, particularly with average weights,
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achieved the highest performance, underscoring the importance of integrating varied
data sources.

Compared with unimodal models, the multimodal fusion models exhibited superior
performance, highlighting the advantages of using comprehensive data from LF cameras.
Notably, our multimodal model, which integrates all three modalities, achieved the best
results, with an accuracy of 90.13% + 4.95% under the subject-specific evaluation protocol
and 93.33% + 4.92% under the subject-independent evaluation protocol. These results
indicate the effectiveness of our fusion strategy in capturing nuanced emotional expressions.

Furthermore, the observed misclassification in some instances can be attributed to the
difficulty certain subjects encountered in simulating the required emotions. This empha-
sizes the need for training datasets to include more naturalistic emotional expressions.

Looking ahead, we plan to develop a new dataset using a plenoptic 2.0 camera,
focusing on the six basic emotions and the neutral state. This dataset is calibrated to
optimize the depth range for facial images, allowing for more precise FER. This future work
aims to create a robust system capable of recognizing facial expressions using the rich data
provided by light field cameras, further advancing the field of affective computing.
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The following abbreviations are used in this manuscript:

AiF all-in-focus

Bi bi-directional

CNN  convolutional neural network
FER facial expression recognition
GRU  gated recurrent unit

LF light field

LSTM  Long Short-Term Memory
RNN  recurrent neural network

SA sub-aperture
SIE subject-independent evaluation
SSE subject-specific evaluation

STD standard deviation
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