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Abstract: Frequency analysis via electroencephalography (EEG) during general anesthesia is used to
develop techniques for measuring anesthesia depth. Variational mode decomposition (VMD) enables
mathematical optimization methods to decompose EEG signals into natural number intrinsic mode
functions with distinct narrow bands. However, the analysis requires the a priori determination
of hyperparameters, including the decomposition number (K) and the penalty factor (PF). In the
VMD analysis of EEGs derived from a noninterventional and noninvasive retrospective observational
study, we adapted the grey wolf optimizer (GWO) to determine the K and PF hyperparameters of
the VMD. As a metric for optimization, we calculated the envelope function of the IMF decomposed
via the VMD method and used its envelope entropy as the fitness function. The K and PF values
varied in each epoch, with one epoch being the analytical unit of EEG; however, the fitness values
showed convergence at an early stage in the GWO algorithm. The K value was set to 2 to capture the
α wave enhancement observed during the maintenance phase of general anesthesia in intrinsic mode
function 2 (IMF-2). This study suggests that using the GWO to optimize VMD hyperparameters
enables the construction of a robust analytical model for examining the EEG frequency characteristics
involved in the effects of general anesthesia.

Keywords: electroencephalogram; general anesthesia; grey wolf optimizer; Hilbert–Huang transform;
variational mode decomposition

1. Introduction

The decoding technology used to monitor electroencephalograms (EEGs) during
general anesthesia (GA) and extract the information required to understand the depth
of anesthesia or the state of consciousness is crucial not only for comprehending brain
function during GA but also for assessing the appropriateness of the anesthesia level [1–3].
There have been numerous reports on new technologies for EEG signal processing that
can significantly broaden the scope of EEG monitoring for assessing patients’ anesthetic
sedation states during GA [4,5]. In addition, there are growing expectations for advance-
ments in the intelligent sensors that are involved in detecting biological signals, spurred by
the rapid growth of flexible electronics [6,7]. The potential benefits of these technologies,
when combined with fast AI diagnostic algorithms, are significant. This combination holds
promise for more reliable clinical diagnostics, especially in the analysis of EEGs. However,
the analysis parameters of commercially available EEG monitors have only been optimized
for certain inhaled anesthetics and propofol, and other anesthetics or the effects of age
have not been accounted for [8–10]. Additionally, each algorithm is proprietary and not
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disclosed, which limits comparative studies and further developments. Therefore, estab-
lishing new technologies for effective feature extraction of EEGs during GA using open
algorithms is crucial for anesthesiologists who aim to provide safe and effective anesthesia.

Mode decomposition methods have emerged as a new approach to feature extraction,
with research on these methods beginning at the end of the 20th century [11]. We have
examined and assessed the usefulness of various mode decomposition methods for ex-
tracting features from EEG signals under GA [12,13]. The origin of mode decomposition
is the empirical mode decomposition (EMD) method of Huang et al. [11], which analyzes
nonstationary signals, and the use of EMD to analyze EEG waves during GA has been
reported. However, EMD has the drawback that it decomposes data into intrinsic mode
functions (IMFs) without band limitations, leading to frequency mixing issues and diffi-
culties in result interpretation. In 2013, Dragomiretsky and Zosso proposed variational
mode decomposition (VMD) [14], a method for overcoming the shortcomings of EMD.
VMD views the decomposition of signals as a variational problem, solving a functional
equation by applying mathematical optimization algorithms. This procedure continuously
updates the central frequency of each mode online in the frequency domain, decomposing
the signals into multiple narrowband IMFs. However, the VMD method heavily depends
on its hyperparameters, namely, the mode decomposition number (K) and the penalty
factor (PF), which affect the accuracy of capturing useful modality information features.
Determination of the K value requires some prior knowledge of the original signal, and the
bandwidth of each modality obtained through VMD is determined by the PF, with a larger
PF narrowing the bandwidth. Implementing the VMD method for EEG feature extraction
necessitates the careful selection of the acceptable values for these hyperparameters.

Recently, the grey wolf optimizer (GWO) algorithm, a new heuristic algorithm for
optimization problems, was proposed to solve this issue [15–17]. The GWO algorithm,
developed by Mirjalili [18], is a swarm intelligence optimization method that mimics the
hunting behavior and leadership hierarchy of grey wolves, and it has been successful
in many real-world applications [19]. In this study, we used envelope entropy as the
fitness function for the GWO algorithm, which we used to optimize the VMD method by
determining the number of K modes and the PF in EEG signals during GA.

The signals analyzed are complex and volatile, making it challenging to determine
the two parameters influencing them. Therefore, selecting appropriate parameters is key
to analyzing signal data through VMD. Attempts to optimize VMD using intelligent algo-
rithms have been reported in various fields. It is essential to use an algorithm that is easy to
implement, has an adaptive convergence coefficient and information feedback mechanisms,
and balances local optimization with global search. The GWO algorithm, which mimics the
hunting behavior and leadership hierarchy of grey wolves, has been successful in many
real-world applications. In the same number of iterations, the GWO algorithm has been
reported to converge significantly better than other algorithms. Therefore, in this study, we
implemented the GWO algorithm in the EEG analysis process with the aim of optimizing
VMD. To do this, we used envelope entropy as the fitness function of the GWO algorithm
to optimize the number of K modes and the PF in EEG signals during GA. As the effects
of GA drugs diminish, there are changes in the frequency components of EEG signals. In
such dynamically changing EEG signals, it is assumed that the hyperparameters of VMD
also need to change dynamically. Based on this hypothesis, we conducted an experiment
where the hyperparameters of VMD were calculated in real time for each EEG analysis
epoch to optimize them. Specifically, during the approximately 10 min from the mainte-
nance of GA to awakening, we observed how VMD’s hyperparameters were determined
via the GWO algorithm and how the associated VMD process was optimized. We also
examined whether the extraction of EEG features using VMD could lead to the estimation
of anesthesia depth through the acquisition of IMF components and the analysis of their
characteristic frequency components. In this study, we report on the use of an optimized
VMD method for decomposing EEG data recorded under GA, demonstrating how it can be
used to acquire a series of IMF components and examining its utility.
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2. Materials and Methods
2.1. Anesthesia Management and Data Acquisition

All experimental protocols involving human participants adhered to the principles
outlined in the Declaration of Helsinki. The current study (No. ERB-C-1074) received
approval from the Institutional Review Board (IRB) for human experiments at the Kyoto
Prefectural University of Medicine (KPUM). For this noninterventional and noninvasive
retrospective observational study, the need for informed patient consent was waived by
the KPUM IRB. Nevertheless, patients were informed of their opportunity to opt out and
were provided this opportunity during their preoperative anesthesia clinic visit. The EEG
data recorded from three patients who were treated with total anesthesia using propofol
(for 10 min before waking from GA) were used for analysis (Table S1). The EEG dataset
used is available on the author’s GitHub site (https://github.com/teijisw/EEG_DataSet,
accessed on 4 July 2024) [20].

Anesthesia was induced with small doses of fentanyl (1 µg kg−1 per dose) and a
continuous intravenous infusion of remifentanil (0.125–0.25 µg kg−1 minute−1), followed
by a single intravenous injection of propofol (2 mg kg−1) and rocuronium (0.8–1.0 mg kg−1).
Tracheal intubation was performed, and anesthesia was maintained with propofol using a
target-controlled infusion pump (Terufusion™ TIC pump TE-371, Terumo, Tokyo), aiming
for a blood concentration of 3 µg/mL. Additional maintenance doses of fentanyl (1 µg/kg
per dose) and rocuronium (0.2 mg/kg at 20–30-minute intervals), along with a continuous
intravenous infusion of remifentanil (0.125–0.25 µg/kg per minute), were administered.
To acquire EEG data, we utilized the EEG Analyzer software (ver. 54_GP; available at
http://anesth-kpum.org/blog_ts/?p=3169 4 July 2024) [13,21]. Raw EEG signals were
recorded as text files on a personal computer via the RS-232 interface of a VISTA A-3000 BIS
monitor (32-bit raw EEG signals at a sampling frequency of 128 Hz, eight packets/s, VISTA
Application revision 3.22, Platform revision 2.03, Medtronic, Minneapolis, MN, USA) with
a BIS Quatro sensor mounted on the frontal regions, as previously reported [13].

VMD and GWO programming codes were constructed in the computer programming
languages Python (ver.3.8) and Processing (ver.4.3), with the Apache Common Mathematics
Library (https://commons.apache.org/proper/commons-math/, 4 July 2024, ver.3.6.1),
Digital Signal Processing in Java (JDSP ver.0.5.0, https://jdsp.dev 4 July 2024), and Float-
Table.pde from Example for Visualizing Data by Ben Fry (https://benfry.com/writing/
archives/3/ 4 July 2024), as shown in Supplementary Program Codes #1 and #2.

2.2. Algorithm for VMD and the Hilbert Transform

VMD divides an input signal f into k narrowband IMFs uk characterized by a dis-
crete central frequency ωk with a particular sparsity property [14]. The following three
mathematical steps are involved in the VMD algorithm [14]:

1. The first step computes the analytic signal associated with each IMF according to the
Hilbert transform (Formula (1)).(

δ(t) +
j

πt

)
∗ uk(t) (1)

where * is the convolution, uk(t) is the kth IMF, and δ(t) is the pulse signal.

2. The second step involves demodulating the analytic signal to the baseband by multi-
plying it with an exponential function, which is adjusted to the respective estimated
central frequency ωk.

∂t

[(
δ(t) +

j
πt

)
× uk(t)

]
e−jωkt (2)

3. The third step estimates the bandwidth by using theH1 Gaussian smoothness of the
demodulated signal, which involves calculating the squared L2 norm of the slope of
the demodulated analytic signal. It then computes the associated analytic signal using
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the Hilbert transform to obtain the one-sided frequency spectrum of each intrinsic
mode uk.

The constrained variational evaluation of a given signal x(t) is described as

min
{uk},{ωk}

{
∑k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
× uk(t)

]
e−jωkt

∥∥∥∥(2
2

)}
, s.t.∑k uk = f (t), (3)

where uk and ωk are shorthand notations for the sets {u1, . . .. . ., uk} and {ω1, . . .. . ., ωk},
representing all modes and their central frequencies, respectively. The sum ∑k :=∑K

k=1 of
all mode functions uk is equal to the specified time series signal f (t).

This constrained variational problem is addressed by incorporating a quadratic penalty
term and introducing the Lagrange multiplier, λ, into the mathematical optimization
method. This methodology effectively transforms the problem into one that involves an
unconstrained extended Lagrangian function, denoted as L in Formula (4).

L({uk}, {ωk}, λ)
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α ∑k

∥∥∥∂t

[(
δ(t) + j

πt

)
× uk(t)

]
e−jωkt

∥∥∥2

2
+∥ f (t)−∑k uk(t)∥(2

2) + ⟨λ(t), f (t)−∑k uk(t)⟩
(4)

The solution to this minimization problem is found as a saddle point of the augmented
Lagrangian L in a series of iterative partial optimizations called the alternating direction
method of multipliers (ADMM, Algorithm 1).

Algorithm 1. Optimization Concept for VMD [14].

initialization
{

û1
k
}

,
{

ω̂1
k
}

, λ̂1, n ← 0
repeat

n← n + 1
for k = 1 : K do

Update ûk for all ω ≥ 0 :

ûn+1
k (ω)← f̂ (ω)−∑i<k ûn+1

i (ω)−∑i>k ûn
i (ω)+ λ̂(ω)

2

1+2α(ω−ωn
k )

2 (5)

Update ω̂k :

ωn+1
k =

∫ ∞
0 ω

∣∣∣∣∣
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(ω)
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2

dω
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0
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pressed as 

(ω)

∣∣∣∣∣
2

dω

(6)

end for
Dual ascent for all ω ≥ 0 :

λ̂n+1 ← λ̂n + τ
(

f̂ (ω)−∑k ûn+1
k (ω)

)
(7)

until convergence:
∑k∥ûn+1

k −ûn
k ∥(2

2)

∥ûn
k ∥(2

2)
< ϵ (8)

For an EEG signal x(t), VMD decomposes it into a series of IMFs, Cn (where n = 1, 2, . . .,
N), with N being the total number of IMFs. After VMD, the signal x(t) can be expressed as

x(t) =
N

∑
i=1

im f (t)u (9)

Applying the Hilbert transform to the IMF components, it follows that

Z(t) = im f (t) + iH[im f (t)] = a(t)ei
∫

ω(t)dt (10)

in which
a(t) =

√
im f 2(t) + H2[imf(t)] (11)
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ω(t) =
d
dt

[
artan

{
H[im f (t)]

im f (t)

)]
(12)

h(ω) =
∫

H(ω, t)dt (13)

where a(t) is the amplitude of the IMF and ω(t) is the instantaneous frequency for obtaining
a time–frequency distribution for signal x(t) and the Hilbert amplitude spectrum H(x, t).

2.3. Grey Wolf Optimizer

In the original VMD method, users need to provide the number of K modes and the
PF in advance, although there is no guarantee whether these parameters are optimal or
whether they will achieve satisfactory results [21,22]. The smaller the PF, the larger the
bandwidth of each IMF component. Furthermore, improper selection of the number of K
modes can directly lead to signaling component distortion and unrealistic denoising effects.
In practice, the two influencing parameters are usually difficult to determine because the
actual signal to be analyzed is complex and changeable. Thus, selecting suitable parameters
is key to the VMD method. Next, we introduce the principle of the GWO algorithm
(Figure 1) and its convergence and the steps of the parameter-optimized VMD method.

Figure 1. Flowchart of grey wolf optimization (GWO) for variational mode decomposition (VMD).

The GWO is an optimization algorithm simulating the social hierarchical relationships
and hunting behaviors of grey wolves in nature [18]. To mathematically model the social
hierarchy of wolves, the population (a candidate group of hyperparameter values to be
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optimized) corresponding to a pack of wolves is divided into four social classes, and the
optimal solution is considered to be an alpha (α) wolf. The second and third best solutions
are treated as the beta (β) and delta (δ) wolves, respectively, and the remaining candidate
solutions in the swarm are allocated to the omega (ω) wolves. In the GWO algorithm,
hunting (optimization) is guided by the top three solutions—α, β, and δ—with the ω

wolf following these three wolves. Although it is unclear during the analysis where the
optimal solution will be, it is assumed that a possible optimal solution is surrounded by
three optimal solutions and that the movement of the ω wolf population approaching
the optimal solutions (α, β, and δ) is randomly controlled. We adopted a method that
approaches the optimal solution by incorporating and repeating variables, introducing a
fitness function, and sequentially replacing the α, β, and δ wolves in the population.

Convergence of the GWO algorithm: Grey wolves surround their prey when hunting.
To mathematically model this enveloping behavior, the following equation is proposed
(Figure 2).

→
D =

⌈→
C ·
→
Xp(i)−

→
X(i)

⌉
(14)

→
X(i + 1) =

⌈ →
Xp(i)−

→
A·
→
D
⌉

(15)

where i indicates the current iteration,
→
A and

→
C are the coefficient vectors,

→
Xp is the position

vector of the prey, and
→
X indicates the position vector of a grey wolf.

Figure 2. Position updating algorithm for the wolves in the grey wolf optimizer. Three leader/subleader
wolves, α, β, and δ, surround the prey, and the position of the prey is inferred from the positions of
these three leader wolves, assuming that they surround it. Vectors A and C are coefficient vectors and
are calculated for each coordinate. The other wolves in the pack, ω, locate the leader wolves’ positions,
which are initially adjusted with a coefficient C and then gradually adjusted in each loop to better
approximate the leader wolves’ positions. A random coefficient D is then applied to their distance,
allowing them to approach the leader wolves within a range of −1 to +1. As a result, wolves that are
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closer to the prey than the leader wolves may replace them as the new leaders, enabling the pack to
surround the prey more closely. The algorithm specifies three leader wolves and divides the obtained
average position by the number of leaders. If the positions of α, β, and δ are 6, 8, and 3, respectively,
then the position of the prey would be the midpoint, calculated as (6 + 8 + 3)/3 = 5.7, and the integer
5 becomes the updated position for the prey. The new position of the ω1 wolf is adjusted according
to the leaders’ positions, taking into account its current position.

The vectors
→
A and

→
C are calculated as follows:

→
A =

→
a ·
⌈

2·→r1 − 1
⌉

(16)

→
C = 2·→r2 (17)

Here, the components of
→
a in Formula (16) decrease linearly from 2 to 0 throughout

the iterations, and
→
r1 and

→
r2 in Formulas (16) and (17) are random vectors in [0, 1]. The

coefficient vector
→
A of Formula (15) is related to the distance

→
D between each wolf

→
X(i) and

the prey
→
Xp. However, the position of the prey

→
Xp itself is also multiplied by a coefficient

vector
→
C within a random range of [0, 2] in Formula (14), providing random weight to

the prey by either emphasizing (
→
C > 1) or de-emphasizing (

→
C < 1) it. This allows GWO to

exhibit more random behavior throughout the optimization, facilitating exploration and

avoidance of local optima. The random variation in
→
A, which initially ranges from −2 to

+2, decreases gradually with each loop, forcing the search agents also to move away from
the prey. This emphasis on exploration enables the GWO algorithm to search globally. To
mathematically simulate the hunting behavior of grey wolves, we need to know the location
of the prey. However, we cannot actually know it directly. Therefore, GWO assumes that
α, β, and δ are related to the potential location of the prey. In other words, it is assumed
that the prey position (optimal solution) is surrounded by three wolves, α, β, and δ. The
first three best solutions obtained thus far are preserved, and it is mandated that the other
search agents (including ω) update their positions according to the positions of the best
search agents. In this regard, the following formula is proposed. In this case, the positions

of wolves α, β, and δ are used instead of the prey position (
→
Xp) in Formulas (14) and (15),

and the ω wolf position is updated in three ways using the following formula.

→
Dα =

⌈→
C1·

→
Xα −

→
X
⌉

,
→
Dβ =

⌈→
C2·

→
Xβ −

→
X
⌉

,
→
Dδ =

⌈→
C3·

→
Xδ −

→
X
⌉

(18)

→
X1 =

⌈→
Xα −

→
A1·

→
Dα

⌉
,
→
X2 =

⌈ →
Xβ −

→
A2·

→
Dβ

⌉
,
→
X1 =

⌈→
Xα −

→
A1·

→
Dα

⌉
(19)

The center of the three possible updated positions is selected as a new ω wolf update
position candidate, as follows:

→
X(i + 1) =

→
X1 +

→
X2 +

→
X3

3
(20)

However, the position will be updated only when the fitness function shows better
fitting, and after updating the positions of the wolves in the entire pack using this method,
the top three wolves showing the best values will be updated using the fitness function.
By repeating the task of specifying the α, β, and δ wolves a specified number of times, we
hope that most of the wolves will converge to the optimal solution.

When using these equations for VMD, the search agent updates its position in the
two-dimensional search space for K and PF according to α, β, and δ (Figure 3). Furthermore,
the final position is a random location within a circle defined by the positions of α, β, and δ

in the search space. In other words, α, β, and δ estimate the position of the prey, and other
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wolves randomly update their positions around the prey. Through the fitness function,
the positions of the wolves ranked again are used to update α, β, and δ, and by repeating
this loop, the solution offering an optimized fitness function (a combination of optimal
solutions) is progressively refined.

 

2 

 

Figure 3. The relationship between the hyperparameters K and PF of VMD and the envelope
entropy of each IMF. VMD is applied to a synthetic cosine wave composed of three known frequency
components (2, 12, and 36 Hz). y = cos(2× 2πt) + 1

2 cos(12× 2πt) + 1
4 cos(36× 2πt) (1024 data

points). (A) The synthetic cosine wave, its envelope function, and the envelope entropy. (B) The three
cosine waves, their envelope functions, and envelope entropies. (C) Decomposition of the synthetic
cosine wave into three IMFs using the GWO algorithm with optimized values of K = 3 and PF = 4984,
and calculation of each IMF’s envelope function and envelope entropy. (D) Application of VMD with
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K = 3 and PF = 10, and determination of IMFs, their envelope functions, and envelope entropies.
(E) Application of VMD with K = 3 and PF = 70, and analysis of IMFs and their envelope functions,
and envelope entropies. (F) Application of VMD with K = 2 and PF = 4984, and evaluation of the
IMFs and their envelope functions, and envelope entropy. (G) Application of VMD with K = 4
and PF = 4984, and analysis of the IMFs and their envelope functions, and envelope entropies. K:
decomposition number; PF: penalty factor; fitness: fitness value of VMD = the maximum envelope
entropy of the IMF.

2.4. The Fitness Function: Envelope Entropy

In a situation where only one of several events occurs, and each can occur with equal
probability P, the information I gained upon learning which event actually occurred can be
expressed as

I = log2
1
P
= −log2P (21)

Therefore, when this process is repeated i times and the probability of an event
occurring is Pi, the information obtained when it occurs is −log2Pi. From this, the average
amount of information obtained is

I = −∑
i

Pi × log2Pi (22)

The information entropy S before the outcome is known can also be determined using
the same formula.

S = −∑
i

Pi × log2Pi (23)

Here, if B(i) is the envelope signal of x(i), then B(i) can be normalized to obtain the
probability Pi as follows:

Pi =
B(i)

∑N
i=1 B(i)

(24)

Then, by applying the formula for information entropy to the envelope, we obtain the
envelope entropy as follows:

Ep = −
N

∑
i=1

Pi × log2Pi (25)

In the GWO algorithm, the envelope entropy of the IMF decomposed via VMD is
determined, and K and PF are optimized such that the envelope entropy values of the
separated IMFs are reduced (indicating less information). Here, by calculating the envelope
entropy of each of the multiple IMFs obtained, the IMF with the highest envelope entropy
(the most information, using the maximum value method) is identified. Then, by ensuring
that these values become lower (more realistic information) through new combinations of
K and PF, it is possible to optimize the separated IMFs overall.

An example using synthetic cosine waves: The following is a synthetic function
represented by a combination of three cosine waves with different known frequencies (2 Hz,
12 Hz, and 36 Hz).

y = cos(2× 2πt) +
1
2

cos(12× 2πt) +
1
4

cos(36× 2πt) (26)

where t = [1/1024, 2/1024, . . ., 1024/1024] (Figure 3A, left). Here, we used this synthetic
function to demonstrate an example of the GWO algorithm being used to optimize K and
PF. The envelope entropy of this synthetic function was −9.9767506 (Figure 3A, right). If
this synthetic function is decomposed with maximum efficiency, it should result in decom-
position into cosine waves y = cos(2× 2πt), y = 1

2 cos(12× 2πt), and y = 1
4 cos(36× 2πt)

(Figure 3B, left). Each envelope of the efficiently decomposed components will become
a flat line, and the envelope entropy will be −10.0 (Figure 3B, right). This trigonometric



Sensors 2024, 24, 5749 10 of 18

function’s composite waveform was analyzed using the GWO algorithm with 20 wolves
and 20 iterations, setting K to range from 2 to 6 and PF from 10 to 5000 (randomization
in increments of 1 for K and 1 for PF). The envelope entropy of each IMF was calculated,
and K and PF were optimized using both the mean value method and the maximum value
method. As a result, the GWO algorithm determined the optimal values of K = 3 and
PF = 4984. The envelope entropies of the three IMFs were −9.9999944, −9.9999929 (max),
and −9.9999958 (Figure 3C). With settings of K = 3 and PF = 10 (Figure 3D) or K = 3 and
PF = 70 (Figure 3E), the IMFs were superimposed on the other cosine waves, indicating
that complete frequency separation was not achieved.

Then, with PF fixed at the optimized value of 4984 and K set to 2, the application
resulted in two frequency components being present in IMF-1, and the envelopes of the
IMFs were not flat (Figure 3F). Finally, with PF fixed at the optimized value of 4984 and
K set to 4, when VMD was applied, the envelopes of all the IMFs were flat (Figure 3G).
However, although the highest envelope entropy was obtained with IMF-4 (−9.9997846),
this value was larger than that of IMF-1 (−9.9999944) obtained with GWO, suggesting that
GWO with K = 3 produced a better model than VMD with K = 4.

3. Results
3.1. Convergence Status of K, PF, and Fitness Values in GWO

First, the GWO algorithm optimization process (20 wolves, 20 optimization loops) for
the VMD hyperparameters K and PF was performed using one epoch (8 s, 1024 data points)
during the maintenance phase of the GA (induced by continuous intravenous propofol
administration) in three patients (Table S1). This involved monitoring the position of each
wolf during two-dimensional hunting.

In Patient #1, with 20 optimization loops, convergence to K = 2 occurred at the ninth
loop, except for three ω wolves (Figure 4(1)). However, the PF values of the leader wolves,
α, β, and δ, converged to 3640, 3620, and 3470, respectively, while the convergence for
the ω wolves was unstable. Nonetheless, the fitness function converged to approximately
−9.87 to −9.88, indicating that the PF values did not significantly impact the fitness values.
In the case of Patient #2 (Figure 4(2)), except for the six ω wolves, convergence to K = 2
occurred in the sixth loop. Similar to Patient #1, the PF values for the α, β, and δ leader
wolves were 4900, 4800, and 4680, respectively. The fitness values for these leader wolves
had already converged to approximately −9.85 by the second loop, but the fitness function
for the ω wolves had not fully converged. In Patient #3 (Figure 4(3)), except for the five ω

wolves, there was convergence with K = 3. The PF values of the α, β, and δ leader wolves
were 1580, 1830, and 1850, respectively, whereas those of the ω wolves tended to converge
to values below 2500. By approximately the fourth loop, the fitness values converged to
approximately −9.72 to −9.73. Table 1 shows the convergence status for K, PF, and fitness,
with the final convergence value set as 100%. For K, convergence occurred between 6
and 13 loops; for PF and fitness, it was between 9 and 18 loops. Although 20 loops were
conducted in this case, sufficient convergence had been achieved by then.

The results show that convergence of the K values was achieved by the α, β, and δ

leader wolves at an early stage. However, since the impact on the fitness function was
much greater for the K values than for the PF values, it was observed that the convergence
of the PF values tended to be delayed. Additionally, when the fitness function converged,
the impact of the PF values was considered low.

3.2. Temporal Changes in the K, PF, and Fitness Values According to the GWO

Next, for the three cases of GA induced by continuous intravenous propofol admin-
istration, the optimal solutions for K and PF were determined through fitness function
optimization using the GWO algorithm (20 wolves, 20 optimization loops) for all 73 epochs
during the 10 min before and after awakening from GA. Each epoch of EEG data lasted 8 s
(128 Hz, 1024 data points).
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Figure 4. Optimization process for the hyperparameters K and PF of VMD using the GWO algorithm.
Twenty wolves and 20 optimization loops, observed over one epoch (8 s, 1024 data points) of
EEG during the maintenance phase of GA (obtained through continuous intravenous propofol
administration) in three patients. This process involved monitoring the position of each wolf during
two-dimensional wolf hunting. (A) EEG (8 s). (B) The optimization of K. (C) The optimization of
PF. (D) The optimization of fitness. α wolf: red line; β wolf: orange line; δ wolf: yellow line; ω
wolves: black lines. K: decomposition number; PF: penalty factor; fitness: fitness value of VMD = the
maximum envelope entropy of the IMF.

Table 1. Convergence rate in the optimization process for the hyperparameters K and PF of VMD
using the GWO algorithm.

K PF Fitness
Patient Patient Patient

#1 #2 #3 Mean ± SD #1 #2 #3 Mean ± SD #1 #2 #3 Mean ± SD

Converge
value 2.35 2.7 2.8 2.6 ± 0.2 3178 2918 2315 2804 ± 443 −9.8769 −9.8156 −9.7289 −9.8071 ± 0.07

Iteration % % %
1 143 117 133 131 ± 13 78 73 108 86 ± 19 99.9248 99.9940 99.7606 99.8361 ± 0.0829
2 149 113 120 127 ± 19 82 80 120 94 ± 23 99.8326 99.8327 99.7607 99.8562 ± 0.0662
3 143 111 104 119 ± 21 96 82 145 108 ± 33 99.8325 99.8346 99.8927 99.8946 ± 0.0610
4 149 111 100 120 ± 26 96 82 138 106 ± 29 99.8346 99.8346 99.9371 99.9141 ± 0.0610
5 143 111 96 117 ± 24 100 90 144 111 ± 29 99.9729 99.8346 99.9370 99.9200 ± 0.0708
6 121 100 96 106 ± 14 91 89 133 104 ± 24 99.9902 99.9881 99.9370 99.9802 ± 0.0678
7 121 100 93 105 ± 15 91 89 130 104 ± 23 99.9902 99.9881 99.9677 99.9820 ± 0.0155
8 106 100 95 100 ± 6 97 95 125 106 ± 17 99.9939 99.9909 99.9733 99.9860 ± 0.0125
9 100 100 93 98 ± 4 100 100 118 106 ± 10 100.000 100.000 99.9733 99.9945 ± 0.0111
10 100 100 93 98 ± 4 100 100 112 104 ± 7 100.000 100.000 99.9910 99.9970 ± 0.0096
11 100 100 98 99 ± 1 100 100 103 101 ± 2 100.000 100.000 99.9970 99.9990 ± 0.0052
12 100 100 98 99 ± 1 100 100 103 101 ± 2 100.000 100.000 99.9976 99.9992 ± 0.0017
13 100 100 100 100 ± 0 100 100 101 100 ± 1 100.000 100.000 99.9986 99.9995 ± 0.0014
14 100 100 100 100 ± 0 100 100 101 100 ± 1 100.000 100.000 99.9988 99.9996 ± 0.0008
15 100 100 100 100 ± 0 100 100 101 100 ± 1 100.000 100.000 99.9988 99.9996 ± 0.0007
16 100 100 100 100 ± 0 100 100 101 100 ± 0 100.000 100.000 99.9989 99.9996 ± 0.0007
17 100 100 100 100 ± 0 100 100 101 100 ± 0 100.000 100.000 99.9990 99.9997 ± 0.0006
18 100 100 100 100 ± 0 100 100 100 100 ± 0 100.000 100.000 100.000 100.0000 ± 0.000



Sensors 2024, 24, 5749 12 of 18

Table 1. Cont.

K PF Fitness
Patient Patient Patient

#1 #2 #3 Mean ± SD #1 #2 #3 Mean ± SD #1 #2 #3 Mean ± SD

19 100 100 100 100 ± 0 100 100 100 100 ± 0 100.000 100.000 100.000 100.0000 ± 0.000
20 100 100 100 100 ± 0 100 100 100 100 ± 0 100.000 100.000 100.000 100.0000 ± 0.000

Bold numbers indicate reaching the convergence value (=100%). K: decomposition number; PF: penalty factor;
fitness: fitness value of VMD = the maximum envelope entropy of the IMF; SD: standard deviation.

K was set in the range of 2 to 6 (in increments of 1), and the PF values ranged from 10
to 5000 (in increments of 10). K and PF fluctuated significantly, with K oscillating from a
base of 2 up to 3, 4, 5, and 6, while the PF values varied greatly between 10 and 5000 for each
epoch (Figure 5A). The Fourier spectrogram for the 10-minute interval was obtained using
the multitaper method and is displayed in Figure 5B. Figure 5C shows a Hilbert spectrogram
of the IMF of the EEG from approximately the last 10 min before awakening from GA, for
K = 2, PF = 2000, and K = 3, PF = 2000. The envelope entropy, excluding the variations after
awakening, ranged from approximately −9.8 (Figure 5A). The fitness values derived from
the envelope entropy were relatively stable and consistent within a single epoch before
awakening. When the fitness values showed a convergence trend, the impact of the PF
values on the fitness function appeared low, suggesting that prioritizing the convergence of
K would be advisable. After awakening, there were significant increases in fitness, likely
influenced by the incorporation of electromyography during the postemergence period,
such as orbicularis oculi muscle activity.

Figure 5. Grey wolf optimization in the VMD of EEGs obtained from three patients of GA induced by
continuous intravenous propofol. (A) The optimal solutions for K and PF were determined through
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fitness function optimization using the GWO algorithm. Twenty wolves and 20 optimization loops
for all 73 epochs. Each epoch lasted for 8 s (128 Hz, 1024 data points) of the 10-minute period before
and after awakening from GA. Additionally, K was set in the range of 2 to 6 (in increments of 1), and
the PF values ranged from 10 to 5000 (in increments of 10). (B) The spectrogram for the 10-minute
interval was obtained using the multitaper method and is displayed in Figure 4B. (C) Using VMD
with K = 2 or 3 and PF = 2000, the signal was decomposed into IMFs and a Hilbert spectrogram was
obtained. The gradient color bar shows the relative power value of the signal. K: decomposition
number; PF: penalty factor; fitness: fitness value of VMD = the maximum envelope entropy of
the IMF.

3.3. VMD Analysis under GWO Support during the Three Phases of General Anesthesia

Finally, we applied the analysis to 8 s EEG segments during the (1) maintenance,
(2) transition, and (3) emergence phases of GA induced by propofol (Figure 6A). The
power spectrum obtained through Fourier analysis is shown in Figure 6B. The analysis
was conducted with 20 wolves, 20 repetitions, and settings of K = 2 to 6 (in increments of
1) and PF = 10 to 5000 (in increments of 10). The results show a convergence to K = 2 for
the 8 s EEG in all three phases. Figure 6C presents the Hilbert spectrum, and Figure 6D
shows the IMFs of the EEG after applying VMD with the optimized K and PF values. The
Fourier spectrogram (multitaper method) for 64 s, including the aforementioned 8 s EEG
segment, is shown in Figure 6E. While IMF-1 was almost fixed in the delta wave region, the
peak values of the Hilbert spectrum for IMF-2 showed variation across the phases of GA.
IMF-2 showed enhanced α waves at approximately 10–12 Hz under propofol-induced GA,
as shown in Figure 6E, and shifted forward and backward with the transition to emergence
from anesthesia.

Figure 6. Cont.
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Figure 6. Analysis of 8 s EEG segments during the (1) maintenance, (2) transition, and (3) emergence
phases of general anesthesia induced by propofol. (A) Original EEG (8 s, 128 Hz, 1024 data points).
(B) The power spectrum obtained through Fourier analysis. (C) Hilbert spectrum. To optimize K
and PF, GWO analysis was conducted with 20 wolves, 20 repetitions, and settings of K = 2 to 6 (in
increments of 1) and PF = 10 to 5000 (in increments of 10). (D) Decomposed intrinsic mode functions
(IMFs). (E) The power spectrogram for a 64 s period was determined using the multitaper method.
The first 8 s were the subject of the VMD analysis. The gradient color bar shows the relative power
value of the signal. K: decomposition number; PF: penalty factor; fitness: fitness value of VMD = the
maximum envelope entropy of the IMF.

Table 2 statistically examines the fluctuations in K, PF, and fitness for each patient
during the phase from the anesthetized to awake states, as shown in Figure 5-A, by
comparing the mean values before and after awakening. The results indicate significant
differences in the K values for Patient #2 and the combined data from three patients but not
for the other K or PF values. However, significant differences were detected in the fitness
values for all three patients between the means before and after awakening. This suggests
that while the K and PF values optimized by GWO are less likely to serve as indicators
of the difference between the anesthetized and awake states, the fitness values, which are
outputs of the envelope entropy function, may significantly increase during the transition
from anesthesia to emergence.
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Table 2. Grey wolf optimization in the VMD of EEGs obtained from three patients of general
anesthesia induced by continuous intravenous propofol.

K PF Fitness

Before
Emergence

After
Emergence

Before
Emergence

After
Emergence

Before
Emergence

After
Emergence

Patient Mean ±
SD

Mean ±
SD p-Value Mean ± SD Mean ± SD p-Value Mean ± SD Mean ± SD p-Value

#1 2.3 ± 0.7 2.5 ± 1.0 0.525 2722 ± 1792 3190 ± 1914 0.309 −5.7779 ±
0.0898

−9.4826 ±
0.4004 <0.001 *

#2 2.4 ± 0.8 3.0 ± 1.4 0.014 * 2881 ± 1678 3071 ± 1772 0.675 −9.7762 ±
0.0728

−9.6799±
0.2341 0.016 *

#3 2.6 ± 1.0 2.8 ± 1.4 0.624 2271 ± 1834 2271 ± 1922 0.107 −9.7607 ±
0.0714

−9.6886 ±
0.1563 0.008 *

Mean 2.4 ± 0.8 2.7 ± 1.3 0.016 * 2625 ± 1768 2844 ± 1869 0.989 −8.4383 ±
0.0780

−9.6170±
0.2636 <0.001 *

SD 0.2 ± 0.1 0.3 ± 0.2 316 ± 81 500 ± 84 2.3039 ±
0.0103

0.1165 ±
0.1247

The optimal solutions for the K, PF, and fitness values were determined through fitness function optimization
using the GWO algorithm (20 wolves and 20 optimization loops for all 73 epochs). The values between before-
emergence and after-emergence were statistically compared. K: decomposition number; PF: penalty factor; fitness:
fitness value of VMD = the maximum envelope entropy of the IMF; SD: standard deviation. * p < 0.05 between
before emergence and after emergence.

The reasoning here is that if there is no large variation in the envelope entropy as
a fitness function, it is acceptable to decompose using a lower K value. A K value of
approximately 2 to 3 should suffice for the VMD of EEG signals during GA. Therefore, in
the three case studies, K was fixed at 2, PF was fixed at 2000, and PF was optimized to
obtain the 10-minute Hilbert spectrum and spectrogram (Figure 6C). It was observed that
the α wave enhancement due to propofol-induced GA, as shown in the power spectrogram,
corresponded with the separation of the narrow band of α waves represented by IMF-2.
We understood that this characteristic α wave enhancement, a feature of propofol-induced
GA, could be distinctively extracted in the IMF-2 of VMD.

4. Discussion

GA involves three effects: hypnosis, analgesia, and immobility. As anesthesiologists,
we want to quantify the hypnotic state of patients; however, there are no other biomarker
signals that can quantitatively capture the state of hypnosis apart from EEG, including some
evoked potentials. Therefore, there is a focus on quantifying the hypnotic state induced
by anesthetic drugs through frequency and amplitude changes in EEGs. Apart from the
standard Fourier transform-based power spectral analysis for analyzing the frequency
components of EEGs, methods combining mode decomposition with the Hilbert transform,
such as the Hilbert–Huang transform method and its variants, have been reported. A
disadvantage of Fourier transform-based methods is the inversely proportional relationship
between the frequency resolution and temporal resolution, which is affected by the analysis
window but is not concerned with the Hilbert transform. As an alternative approach,
frequency analysis of EEGs using the continuous wavelet transform has been reported [23].
However, the wavelet transform has drawbacks, such as variations in time and frequency
resolution depending on the scale of the basis function and the need to appropriately select
the wavelet type and parameters (such as the number of scales and the range of analysis),
which requires extensive experience and trial and error.

In this respect, the Hilbert–Huang transform method has the advantage of extract-
ing narrowband signals through mode decomposition. Mode decomposition originates
from the Hilbert–Huang transform method combined with the EMD method reported by
Huang [11]. There have been several attempts to apply the EMD method to the frequency
analysis of EEGs during GA [12,24,25]. Subsequently, methods such as VMD [14] and the
empirical wavelet transform (EWT) have been reported [26], along with their combination
with the Hilbert transform in variations of the Hilbert–Huang transform. We reported
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using VMD to analyze EEG signals during GA in 2023 [13]. The EMD method, based on
spline interpolation for envelope calculation, is mathematically less robust and is known to
be incapable of separating signals into narrow bands. VMD, supported by a more robust
mathematical theory based on mathematical optimization, is more effective at separating
EEGs into narrower bands and extracting features of their frequency components. However,
the necessity for user-defined hyperparameters in VMD requires some form of guidance,
which was the theme of this study. It would be interesting to conduct comparative studies
to determine which mode decomposition method—EMD, VMD, or even EWT—is superior
for analyzing EEGs during GA. However, it is important to emphasize that VMD is depen-
dent on hyperparameters, including the number of decompositions, which is an integral
part of the algorithm. Therefore, before comparing different mode decomposition methods,
it was necessary for us to introduce the optimization of hyperparameter determination in
the current study.

In this analysis, the number of wolves was set to 20 because this number is generally
considered appropriate. Increasing the number of wolves might make finding an optimized
solution more straightforward, but it can also delay the wolves’ overall convergence
(hunting). When we used 20 loops, it was uncertain whether increasing the loop count
would lead to overall wolf convergence (hunting). In our situation, convergence of the
fitness function is important. Regarding the VMD hyperparameters, the optimization of
the K value is crucial, while the PF value, if it has little impact on fitness, may not converge
across all wolves and may show variability. However, if the PF value does not affect the
fitness value, it might not be necessary to focus on it to a great extent.

VMD itself involves computer analysis based on mathematical optimization theory.
Additionally, the K and PF values are selected randomly to calculate the envelope entropy
of each IMF obtained through VMD as a fitness value. A single optimization requires the
VMD algorithm to be run 800 to 2400 times for K values ranging from 2 to 6, with 20 wolves
and 20 loops. This presents a substantial challenge to the speed of the programming
language and the computational speed of personal computers, with the analysis speed of the
Processing application in Java being insufficient to implement the GWO algorithm in real
time. It is, therefore, necessary to consider application development using programming
languages with default GPU computation support, such as Julia or Mojo, to achieve more
efficient processing.

In this study, we applied the GWO algorithm to optimize the hyperparameters K and
PF in VMD, using the envelope entropies of the decomposed IMFs as fitness functions
to analyze EEG signals during GA. Our results show that although K and PF varied
significantly for each epoch, the envelope entropies remained stable. This implies that
in terms of the K value, when the main frequency components for clinical observation
are considered, two bands—δ to θ waves and the alpha frequency band, including sleep
spindles—are critical during the maintenance phase of GA, suggesting that a K value of
2 or 3 might be sufficient. Subsequently, we considered optimizing the PF value using
the GWO algorithm as needed. This study demonstrated the effectiveness of GWO for
optimizing hyperparameters in the VMD analysis of biological signals and highlights its
promise for future applications.

5. Conclusions

In this study, we used the GWO to determine hyperparameters for the VMD method
in order to analyze changes in the frequency components of EEG signals during GA. We
used the envelope entropy of the IMF decomposed via VMD for the fitness function for
optimizing the GWO algorithm. Regarding the decomposition number K for VMD, when a
limit of 2 to 6 was set for clinical significance, K varied from 2 to 6 for each epoch of the EEG
being analyzed, but, in general, K = 2 or 3, and we believe that the characteristics of the
EEG during GA were captured. Regarding the PF value, if the fitness function is optimized
to a low value by determining an appropriate K value, the low convergence of the PF
value means that different PF values within an allowable range of 10–5000 will not have a



Sensors 2024, 24, 5749 17 of 18

significant impact. The determination of appropriate values of VMD hyperparameters by
adapting the GWO algorithm provides important findings for the analysis of EEG signals
using VMD during GA.
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