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Abstract: In this paper, we propose a new data-aided (DA) joint angle and delay (JADE) maximum
likelihood (ML) estimator. The latter consists of a substantially modified and, hence, significantly
improved gray wolf optimization (GWO) technique by fully integrating and embedding within it the
powerful importance sampling (IS) concept. This new approach, referred to hereafter as GWOEIS (for
“GWO embedding IS”), guarantees global optimality, and offers higher resolution capabilities over
orthogonal frequency division multiplex (OFDM) (i.e., multi-carrier and multi-path) single-input
multiple-output (SIMO) channels. The traditional GWO randomly initializes the wolfs’ positions
(angles and delays) and, hence, requires larger packs and longer hunting (iterations) to catch the
prey, i.e., find the correct angles of arrival (AoAs) and time delays (TDs), thereby affecting its search
efficiency, whereas GWOEIS ensures faster convergence by providing reliable initial estimates based
on a simplified importance function. More importantly, and beyond simple initialization of GWO
with IS (coined as IS-GWO hereafter), we modify and dynamically update the conventional simple
expression for the convergence factor of the GWO algorithm that entirely drives its hunting and
tracking mechanisms by accounting for new cumulative distribution functions (CDFs) derived from
the IS technique. Simulations unequivocally confirm these significant benefits in terms of increased
accuracy and speed Moreover, GWOEIS reaches the Cramér–Rao lower bound (CRLB), even at low
SNR levels.

Keywords: importance sampling (IS); gray wolf optimization (GWO); data-aided (DA); joint angle
and delay estimation (JADE); maximum likelihood (ML); multi-carrier; orthogonal frequency division
multiplex (OFDM); multi-path; single-input multiple-output (SIMO)

1. Introduction

JADE (For the reader’s convenience, please find and refer to the full list of all ab-
breviations adopted in this paper, at the very end, right before the bibliography section)
is a crucial operation in many digital receivers. Highly accurate and computationally
inexpensive JADE is required in many fields ranging from military applications such as
RADAR or SONAR systems to wireless indoor positioning [1,2] and wireless communica-
tion systems [3]. Moreover, the estimation of AoAs and TDs enable the design of highly
accurate localization techniques [4]. Many existing works have focused on solving the
JADE problem. Most fall under the subspace-based category such as Multiple Signal Clas-
sification (MUSIC) [5], ESPRIT [6], and the 2D unitary matrix pencil (UMP) [7]. One of the
iterative ML estimators based on the space-alternating generalized expectation maximiza-
tion (SAGE) algorithm was proposed in [8]. The approach in [9] mainly targets only the
DOA estimation. It introduces a DOA estimation algorithm in a full-dimension MIMO sys-
tem by solving the maximum likelihood estimation using expectation-maximization (EM)
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algorithm. Recently, a tensor-based approach for channel and target parameter estimation
was proposed in [10]. Also, a non-iterative ML estimator that tackles the JADE problem in
a multi-carrier transmission context was developed in [11] using the IS technique. More
recently, we proposed a new ML JADE solution in a non-DA (NDA) single-carrier sce-
nario [12]. Shortly after, we have tackled the same scenario by making IS initialize the
differential evolution (DE) technique in [13]. Referred to hereafter as IS-DE, it was a first
attempt to tackle JADE by exploiting a bio-inspired optimization approach.

Under this category, GWO has notably been used to optimize and solve many engi-
neering problems. The best-known applications are numerical simulations and stability
fields [14,15], feature acquisition selection, dataset classification, neural networks train-
ing [16], etc. A multi-objective GWO was developed for cloud computing in [17], and for
wireless sensor networks in [18]. It was adapted to a multi-robot application in [19], and to
unmanned aerial vehicles (UAVs) in [20]. A GWO-based optimal channel estimation tech-
nique was proposed for large-scale MIMO in LTE networks in [21]. A dragonfly-evaluated
gray wolf optimization (DA-GWO) model was introduced in [22], which hybridizes the
concepts of dragonfly algorithm and GWO for channel estimation in millimeter wave
massive MIMO system. In [23], we find also that the GWO algorithm was used only for
direction of arrival (DoA) estimation.

Nevertheless, GWO suffers from slow convergence, limited solution accuracy, and
susceptibility to getting trapped in local optima. Many improvements to GWO were
proposed in different applications [24–27], but none were to tackle JADE, to the best of
our knowledge.

In this paper, we exploit GWO [28] to solve JADE over OFDM SIMO transmissions in
multi-path environments. The main idea consists of improving the GWO by initializing the
wolf positions using the IS technique instead of random positions. More importantly, and
beyond simple initialization of GWO with IS (coined as IS-GWO hereafter), we modify and
dynamically update the conventional simple expression for the convergence factor of the
GWO algorithm that entirely drives its hunting and tracking mechanisms by accounting
for new CDFs derived from the IS technique. Numerical assessments will confirm the
advantages of the proposed GWOEIS over IS, GWO, IS-GWO, DE, IS-DE, and other state-
of-the-art JADE solutions in terms of estimation accuracy, population or sample size (e.g.,
number of wolves), global convergence, and convergence speed. The remainder of this
paper is organized as follows. Section 2 introduces the multi-carrier SIMO system model
in multi-path environments. Section 3 addresses JADE, first by deriving the concentrated
likelihood function (CLF), then the IS technique, and ultimately the main common algorith-
mic steps and the key variations we introduced to some that ultimately encompass GWO,
IS-GWO, and the proposed GWOEIS. Section 4 discusses our computer simulations and
results, whereas Section 5 concludes our work.

The adopted notations are as follows. Vectors and matrices are represented in lower-
and upper-case bold fonts, respectively. Moreover, {.}T and {.}H denote the conjugate
and Hermitian (i.e., transpose conjugate) operators. The Euclidean norm of any vector
is denoted as ||.||, and IN denotes the (N × N) identity matrix. For any matrix X, [X]l ,
and [X]p,l , denote its lth column and (p, l)th entry, respectively. The kronecker product
of any two matrices X and Y is denoted as X ⊗ Y. For any vector x, [x]p denotes its pth
entry or element, and diag{x} refers to the diagonal matrix whose elements are those of x.
Moreover, |.| returns the modulus of any complex number. Finally, j is the pure imaginary
number (i.e., j2 = −1), and the notation ≜ is used for definitions.

2. System Model

We consider a SIMO OFDM system characterized by a single transmitting and P receiv-
ing antenna elements and K sub-carriers. At each time period, this system transmits over
these sub-carriers K symbols s = [s1, s2, . . . , sK]

T , all belonging to an M-ary constellation
alphabet CM, and are assumed to be known at pilot transmission periods (i.e., replaced a
priori by 1) in the DA-type estimation scheme we are adopting here. The transmit data
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then goes through a multi-path channel consisting of different paths, whose number Q is
assumed to be known.

The resulting multi-path SIMO channel is characterized by Q different AoAs θ =

[θ1, θ2, · · · , θQ] ∈ U
(
[−π

2 , π
2 ]
)Q; Q different TDs τ = [τ1, τ2, · · · , τQ] ∈ U ([0, τmax])

Q, where
τmax can be chosen to be as large as desired; U ([vmin, vmax]) denotes a uniform distribution
over the interval [vmin, vmax]; and Q complex gains γ = [γ1, γ2, · · · , γQ]

T . All these three
parameter vectors are assumed to be unknown.

At the receiver side, the observation signal, xp(k), over the pth antenna and the kth
sub-carrier, is given by:

xp(k)=hp(k)sk+np(k), (1)

where np(k) is an additive white Gaussian noise (AWGN) with zero mean and variance σ2,
and hp(k) is the channel frequency response (CFR), defined as follows:

hp(k) =
Q

∑
q=1

γqe−j2πk∆ f τq e−j2πp sin(θq), (2)

where ∆ f is the sub-carrier spacing. By stacking, the scalar signal observation in (1) received
at each kth sub-carrier into a single observation vector x(k) = [x1(k), x2(k), · · · , xP(k)]T is
modeled as follows:

x(k)=h(k)sk + n(k), (3)

where n(k) = [n1(k), n2(k), . . . , nP(k)]T is an i.i.d. and spatially uncorrelated zero-mean
Gaussian noise vector and h(k) is the P × 1 CFR vector over all antennas, defined as:

h(k) =
Q

∑
q=1

a(θq)γqe−j2πk∆ f τq (4)

= Ā(θ)Dk(τ)γ, (5)

where Ā(θ) ≜ [a(θ1), a(θ2), . . . , a(θQ)] is a P × Q steering matrix, a(θ) is the P × 1 steering
vector at AoA θ defined for simplicity and without loss of generality here over a uniform
linear array (ULA) as:

a(θ)≜
[
1, e−jπ sin(θ), · · · , e−j(P−1)π sin(θ)]T,

and Dk(τ)≜ diag(e−j2πk̄∆ f τ1 , e−j2πk̄∆ f τ2 , · · · , e−j2πk̄∆ f τQ) is the Q × Q TDs matrix, in which
k̄ is some index translation of k = 1, · · · , K (e.g., k̄ = k − 1, k̄ = k − K/2 − 1 if K is even,
k̄ = k − (K − 1)/2 if K is odd, etc.), with no impact at all on what follows.

For an even more compact notation, we now stack the P × 1 CFR vector h(k) over all
sub-carriers to obtain the KP × 1 total CFR vector H as follows:

H = [. . . , h(k)T , . . .]T = A(θ)D(τ)γ, (6)

where A(θ) is the KP × KQ steering matrix defined as:

A(θ)=diag{Ā(θ), Ā(θ), . . . , Ā(θ)}, (K times) (7)

and D(τ) is the KQ × Q TDs matrix defined as:

D(τ) ≜
[
D1(τ)

TD2(τ)
T · · ·DK(τ)

T]T . (8)

Hence, at pilot period transmissions where sub-carriers are not modulated (i.e., sk = 1),
after we stack both x(k) and n(k) in the same way we did to transform h(k) into H,
we obtain:

X = H + N. (9)
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3. Joint Angle and Delay Estimation (JADE)
3.1. Derivation of the CLF

At any given pilot transmission period, we can derive the log-likelihood function
(LLF) that depends on all three unknown parameter vectors θ, τ, and γ as follows:

L
(
θ, τ, γ

)
=

∣∣∣∣X − H
∣∣∣∣2= ∣∣∣∣∣∣X − A(θ)D(τ)γ

∣∣∣∣∣∣2. (10)

Hence, we can estimate γ using the least squares (LS) solution as follows:

γ̂LS =
[
A(θ)D(τ)

]†
x = B†x, (11)

where B† =
(
BHB

)−1B is the Moore–Penrose pseudo-inverse of B. By injecting γ̂LS into
(10), we obtain the CLF:

Fc
(
θ, τ

)
= xHB(BHB)−1BHx. (12)

Hence, we can obtain the joint ML estimates of θ and τ as the optimal solution Ξopt to
the following optimization problem:

Ξopt ≜ [θopt, τopt] = argmax
Ξ≜[θ,τ]

(
Fc

(
θ, τ

))
. (13)

3.2. Overview/Summary of IS for ML DA JADE

We start by approximating BHB in (12) as follows:

BHB ≈ P K IQ, (14)

where IQ denotes the (Q × Q) identity matrix. Then, we plug (14) into (12) to obtain:

Fc
(
θ, τ

)
≈ 1

PK
xHBBHx ≈ 1

PK
||BHx||2,

≈ 1
PK

Q

∑
q=1

∣∣∣∣ K

∑
k=1

[Ā(θ)Dk(τ)]
Hx(k)

∣∣∣∣2. (15)

Now, injecting the expressions of Ā(θ) and Dk(τ) into (15), we obtain the approxi-
mate CLF:

Fc(θ, τ) ≈ 1
PK

Q

∑
q=1

ψ(θq, τq), (16)

where ψ(θ, τ) is the so-called periodogram of the observation signal [11] given by:

ψ(θ, τ)=

∣∣∣∣∣ P

∑
p=1

K

∑
k=1

e−jπ(p−1) sin (θ)e−j2πk̄∆ f τx∗p(k)

∣∣∣∣∣
2

. (17)

Relying on the observations made above, we summarize the IS process in [11] of
generating the R realizations of the AoA-TD couples according to the following steps:

Step (1): we start by evaluating the periodogram ψ(θi, τj) in (17) at all grid points (θi, τj) ∈
Γ(−π

2 , π
2 , δθ)× Γ(0, τmax, δτ) where Λ(vmin, vmax, δv) denotes the set of points obtained over

the interval [vmin, vmax] with a uniform sampling step δv.
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Step (2): we evaluate the so-called joint pseudo-pdfs [11] set of values over the above
AoA-TD grid as follows:

Φ̄(θi, τj)=
exp

{
ρ1ψ(θi, τj)

}
∑

i
∑

j
exp

{
ρ1ψ(θi, τj)

}
δθδτ

, (18)

where ρ1 is a design parameter to be chosen properly later on.

Step (3): we evaluate the marginal pseudo-pdf of τj as follows:

ϕ̄τ(τj) = ∑
i

ϕ̄θ,τ(θi, τj)δθ . (19)

Then, we can find the initial TD estimates that correspond to the Q maxima of (19) as:[
τ̂0

1 , τ̂0
2 , · · · , τ̂0

Q
]
= argmax

τ
|Q
(

ϕ̄τ(τ)
)

, (20)

where argmax |Q( f ) returns the Q maxima of the function f .

Step (4): for q = 1, 2, · · · , Q, we compute the pseudo-CDF of τj as follows:

Jτq(τj) = ∑
l≤j

ϕ̄τq(τl)δτ ∀ τl ∈ λτ̂0
q
, (21)

where
λτ̂0

q
= Γ

(
τ̂0

q − ∆τ , τ̂0
q + ∆τ , δτ

)
. (22)

Step (5): For q = 1, 2, · · · , Q, we generate R realizations
{

u(r)
q ∼ U ([0, 1])

}R

r=1
. Then, we

apply a linear interpolation to obtain the rth TD realization:

τ̂
(r)
q = J −1

τq (u(r)
q ). (23)

Step (6): We evaluate the conditional pseudo-pdf of θ given τ = τ̂0
q for q = 1, 2, · · · , Q as

follows:

ϕ̄θ|τ(θi|τ̂0
q ) =

ϕ̄θ,τ(θi, τ̂0
q )

ϕ̄τ(τ̂0
q )

. (24)

Then, we obtain the initial Q AoA estimates as:

θ̂0
q = argmax

θ

(
ϕ̄θ|τ(θ|τ̂0

q )
)

for q = 1, · · · , Q. (25)

Step (7): similarly to Step 4, we compute the conditional pseudo-CDF as:

Jθq |τq(θj|τ̂
(r)
q )=∑

l≤j
ϕ̄θ|τ(θi|τ̂

(r)
q )δτ ∀ θl ∈ λθ̂0

q
. (26)

where
λθ̂0

q
= Γ

(
θ̂0

q − ∆θ , θ̂0
q + ∆θ , δθ

)
. (27)

Step (8): Similarly to Step 5, we generate R realizations
{

u(r)
q ∼ U ([0, 1])

}R

r=1
for q =

1, 2, · · · , Q. Then, we apply a linear interpolation to obtain the rth AoA realization:

θ̂
(r)
q = J −1

θq |τq
(u(r)

q ). (28)
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Thus, we are able to generate R JADE realizations as:{
θ̂(r)

}R

r=1
and

{
τ̂(r)

}R

r=1
, (29)

where θ̂(r) =
[
θ̂
(r)
1 , θ̂

(r)
2 , · · · , θ̂

(r)
Q

]
is the AoAs vector estimate, and τ̂(r) =

[
τ̂
(r)
1 , τ̂

(r)
2 , · · · , τ̂

(r)
Q

]
is the TDs vector estimate. These realizations readily enable the direct implementation of
an IS ML solution to (13) as:

Ξ̂IS =

[
θ̂IS =

∑R
r=1 θ̂(r)

R
, τ̂IS =

∑R
r=1 τ̂(r)

R

]
. (30)

3.3. GWO vs. Combining|Embedding IS (IS-GWO|GWOEIS)

GWO is inspired by the leadership hierarchy and the hunting mechanism of gray
wolves in nature [28]. In a pack or population of, say, R′ individuals, we identify four
types of gray wolves that emulate their leadership hierarchy: the α-type are responsible
for making hunting decisions (representing the solutions with best results). The β-type
help the α-type in decision making and act as their best substitute-candidates when one
of them becomes old or dies (second-best solutions in the population). The δ-type have
only to submit to the α- and β-types (third-best solutions). And the ω-type are of the lowest
rank, and must yield to the dominant ones. Guided by this “social” hierarchy’s rules, gray
wolves proceed to hunt along three main and consecutive stages: (1) tracking, chasing, and
approaching the prey; (2) pursuing, encircling, and harassing it once it stops moving; and
(3) attacking it.

Mathematically and generally speaking, GWO translates the leadership hierarchy
and the hunting mechanism summarily described above due to lack of space into an
optimization by search (i.e., hunting) in any multi-dimensional space whose best solution
(i.e., prey) that minimizes a given criterion (i.e., so-called “fitness function”) is found in an
iterative manner by mimicking the gray wolves (i.e., search agents) hunting behavior (i.e.,
search adaptation rules).

In the present case, Ξopt ≜ [θopt, τopt] and −Fc
(
θ, τ

)
in (13) stand, respectively, for

the prey to be hunted and the fitness function to be minimized in a 2Q-dimensional space.
Hence, GWO translates as follows:

Step (1): first, the wolves’ positions are initialized in the 2Q space according to one of the
following cases (a) or (b).

Step (1.a) [GWO]: The conventional GWO initially places the wolves pack of R′ = R indi-

viduals at random positions in the 2Q search space
{

Σ
(r)
0

}R

r=1
=

{{
Σ
(r)
θ , Σ

(r)
τ

}}R

=1
where

Σ
(r)
θ =

{
U
(
[−π

2 , π
2
)}Q

q=1 and Σ
(r)
τ ={U ([0, τmax])}Q

q=1. Hence, it requires larger packs and
longer hunting (iterations) to catch the prey, i.e., find the correct angles of arrival (AoAs)
and time delays (TDs) without guaranteeing global convergence.

Step (1.b) [IS-GWO or GWOEIS]: Instead of random initial placement, IS-GWO and GWOEIS

position the wolves at
{

Σ
(r)
0

}R

r=1
=

{
ζ(r) =

{
θ
(r)
1 , · · · , θ

(r)
Q , τ

(r)
1 , · · · , τ

(r)
Q

}}R

r=1
, stemming

from the R′ = R realizations generated in (29). Hence, even with relatively less realizations,
this still guarantees global convergence, and it would always provide good-enough rough
initialization values to GWOEIS to make the latter converge much faster and more accu-
rately with relatively less hunting iterations.

Step (2): at each iteration {t}TH
t=1 over the hunt duration TH , −Fc

(
Σ
)

is evaluated over

each individual Σ
(r)
t−1 in the pack, and the fittest three that better minimize it are identified

as Σα
t−1, Σ

β
t−1, and Σδ

t−1, respectively.
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Step (3): the so-called convergence factor at guiding the hunt is updated according to one
of the following cases (a) or (b).

Step (3.a) [GWO or IS-GWO]: at = 2 (1 − t
TH

) is simply set to decrease linearly from 2
to 0 over the hunt duration TH . Therefore, the positions of the wolves to converge to
local minima.

Step (3.b) [GWOEIS]: To improve and speed up convergence, instead of a common con-
vergence factor, each realization or individual in the pack is assigned one of its own that
accounts both for the AoA and TD pseudo-CDFs calculated in Steps (4) and (7) of the IS
technique (cf. Section 3.2) as follows:

a(r)j,t =
u(r)

j

t
, (31)

where u(r)
j ∼ U

(
[ϵ

(r)
j , ϱ

(r)
j ]

)
, j={1, 2, · · ·, 2Q} is the dimension index, and

ϵ
(r)
j =

max
{
Jθj |τj

(Σ
(r)
t )j,Jθj |τj

(θ̂0
j )
}

, j={1, · · ·, Q}

max
{
Jτj′ (Σ

(r)
t )j′ ,Jτj′ (τ̂

0
j′)
}

, j={Q+1, · · ·, 2Q}
(32)

ϱ
(r)
j =

min
{
Jθj |τj

(Σ
(r)
t )j,Jθj |τj

(θ̂0
j )
}

, j={1, · · ·, Q}

min
{
Jτj′ (Σ

(r)
t )j′ ,Jτj′ (τ̂

0
j′)
}

, j={Q+1, · · ·, 2Q}
(33)

where (S)i denotes the i-th element of the set S . τ̂0
q and θ̂0

q are the initial TD and AoA IS
estimates obtained in (20) and (25), respectively, and j′ = j − Q.

When using the linearly decreasing factor in Step (3.a), the positions of the wolves can
converge to local minima. To mitigate this issue, we generate for each individual a specific
convergence factor that decreases with the iteration index while accounting through the
pseud-CDF values for the distance between the gray wolves and the prey. As long as a wolf
is far away from the prey, the uniform variable will generate realizations closer to 1. Once
this wolf gets closer to the prey, the realization becomes quasi-static since, the convergence
factor is then mainly scaled by 1/t.
Step (4): For each lead gray wolf ∗ = α, β, or δ, we generate two random values, b∗j and d∗j ,

in U ([0, 1]) for the calculation of two update coefficients g∗j,t (or g∗,(r)
j,t with respect to each

realization or individual r in the pack), and c∗j according to one of the following cases (a)
or (b).
Step (4.a) [GWO or IS-GWO]:

g∗j,t = 2 at b∗j − at, and c∗j = 2 d∗j . (34)

In other words, the update coefficients g∗j,t and c∗j are assigned random values in
[−at, at] and [0, 2], respectively.
Step (4.b) [GWOEIS]:

g∗,(r)
j,t = 2 a(r)j,t b∗j − a(r)j,t , and c∗j = 2 d∗j . (35)

Here, g∗,(r)
j,t is assigned a random value in [−a(r)j,t , a(r)j,t ].

Step (5): Let dist(∗, (r), j) =
∣∣∣c∗j (Σ∗

t−1)j − (Σ
(r)
t−1)j

∣∣∣ denote the distance between the lead
wolf * and the rth individual in the pack (or search agent) across the j-th dimension. The
lead wolves’ positions are then updated with respect to each realization r in the pack
through intermediate variables χ

(r)
∗ according to one of the following cases (a) or (b).
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Step (5.a) [GWO or IS-GWO]:

(χ
(r)
∗ )j=(Σ

∗
t−1)j − g∗j,tdist(∗, (r), j). (36)

Step (5.b) [GWOEIS]:

(χ
(r)
∗ )j=(Σ

∗
t−1)j − g∗,(r)

j,t dist(∗, (r), j). (37)

Hence, before coming back to Step (2) if t < TH , each individual’s location is updated
in either case based on these intermediate variables χ

(r)
∗ as follows:

(Σ
(r)
t )j =

(χ
(r)
α )j + (χ

(r)
β )j + (χ

(r)
δ )j

3
. (38)

Figure 1 depicts the way to update a search agent’s position according to α-type,
β-type, and δ-type wolves based on (37) and (38) for the proposed GWOEIS algorithm.
Finally, the joint AoA-TD estimate Ξ̂Tech =

[
θ̂Tech, τ̂Tech

]
is selected as the last position of

the lead wolf α:

Ξ̂Tech=[(Σα
TH

)1, . . . , (Σα
TH

)Q, (Σα
TH

)Q+1, . . . , (Σα
TH

)2Q], (39)

where the choice of Tech ∈ {“GW0”, “IS-GWO”, “GWOEIS”} determines the cases consid-
ered in Steps (1), (3), (4), and (5). We summarize the GWOEIS algorithm in Figure 2.

Wolf (r)

Move

Prey

dist(!,(r))
Wolf !

Wolf "

Wolf #

dist(",(r))

dist(#
,(r)
)

aj,t
!,(r) c j

!

aj,t
",(r) c j

"

aj,t
#,(r) c j

#

Figure 1. Position updating in GWOEIS.
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Figure 2. Flow chart of GWOEIS algorithm.

4. Simulation Results

In this section, we assess the performance of the proposed GWOEIS solution and other
key benchmarks for comparisons in terms of the root mean square error (RMSE) or the
normalized MSE (NMSE) over a total number of Monte-Carlo runs Mc = 1000. Following
the IEEE 802.11ac standard (see [7] and first reference therein), we consider a bandwidth
B = 80 MHz with a sub-carrier spacing ∆ f = 312.5 KHz giving a total of 256 sub-carriers,
among which 11 are exploited for network signaling purposes and the remainder are
payload carriers (i.e., K = 122). We also consider P = 6 antennas and Q = 2 equi-powered
paths with AoAs 20◦ and 45◦ and TDs 25 ns and 62.5 ns, respectively. Moreover, we set
ρ1 = 4, δτ = 1.25 ns, δθ = 0.1◦, ∆τ = 18.75 ns, and ∆θ = 10◦.

In Figures 3 and 4, we evaluate the RMSE/NMSE performance versus the SNR to
compare the new GWOEIS solution against the Cramér–Rao lower bound (CRLB) of [6],
the UMP algorithm in [7], the classic GWO in [28], the classic DE [13], the IS technique
in [11], IS-DE that simply combines DE with IS in [13], and another benchmark version
developed here by simply combining this time IS with GWO, referred to as IS-GWO.
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Figure 3. MSE vs. the SNR in dB for Q = 2 (θ = [20◦, 45◦]; τ = [25 ns, 62.5 ns]), R = 30, and
TH = 100 of: (a) the Q TDs, (b) the Q AoAs, and (c) the P × K channel coefficients (on average, per
element, for all three parameter types).
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Figure 4. MSE vs. the SNR in dB for Q = 2 (θ = [20◦, 45◦]; τ = [25 ns, 62.5 ns]), R = 100, and
TH = 30 of: (a) the Q TDs, (b) the Q AoAs, and (c) the P × K channel coefficients (on average, per
element, for all three parameter types).

As shown in Figures 3 and 4, our approach outperforms all other estimation techniques,
both in terms of TD and AoA estimations. Additionally, it reaches the CRLB, even at low
SNR levels and even with a very low value either parameter R = 30 and TH = 30. We also
observe a severe performance degradation of the original GWO and DE techniques due to
the high dimension (i.e., 2Q) of the optimization problem. When combined with IS, IS-DE
improves a little but is outperformed by IS-GWO, and more so by GWOEIS.

In Figures 3c and 4c, we compare the channel NMSE using the estimates of the TDs
and AoAs assuming a perfect knowledge of the channel gains. Our approach remarkably
outperforms all other estimation techniques and reaches the lower bound, even at very low
SNR levels and even with a very low value either parameter R = 30 and TH = 30.

In Figures 5 and 6, we assess the impact of the samples size R and the hunting duration
TH on channel estimation performance versus the SNR. Here, the sample size R refers
to the number of realizations with IS, to the wolves pack size with GWO, IS-GWO, and
GWOEIS, or the number of individuals with DE and IS-DE. The number of iterations (e.g.,
TH) is defined only for iterative approaches, i.e., GWO, IS-GWO, GOWEIS, DE, and IS-DE
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solutions. We notice that both parameters can have a detrimental effect on the exploration
abilities of these techniques. Thus, they need to be set as large as possible to cover the
widest area of the multidimensional space.

Figure 5. MSE vs. the SNR in dB and the samples size R for Q = 2 (θ = [20◦, 45◦]; τ = [25 ns, 62.5 ns])
and TH = 100.

Figure 6. MSE vs. the SNR in dB and the iterations number (e.g., TH) for Q = 2 (θ = [20◦, 45◦];
τ = [25 ns, 62.5 ns]) and R = 100.

In Figure 5(a,i,b,i,c,i), we assess the estimation performance of the TD, the AoA, and
the channel, respectively. GWOEIS, IS-GWO, and IS performs better than DE, GWO, and
IS-DE. Figure 5(a,ii,b,ii,c,ii) show the minimum RMSE over all techniques for TD, AoA,
and channel estimation, respectively. The RMSE decreases when R and SNR increase. In
Figure 5(a,iii,b,iii,c,iii), we can see that GWOEIS achieves the best performance in terms
of TD, AoA, and channel estimation over R ≥ 20 and all SNR values. IS, IS-GWO, GWO,
DE, and IS-DE can not match the performance of GWOEIS, even with R = 1000, but at the
expense of significant increase in computational cost.

In Figure 6, we assess the impact of TH on RMSE performance of the iterative tech-
niques. Once again, GWOEIS outperforms all other iterative techniques in terms of
TD, AoA, and channel estimation. By increasing the number of iterations, we reach
the best performance for the all algorithms, as shown in Figure 6(a,ii,b,ii,c,ii). Moreover,
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in Figure 6(a,iii,b,iii,c,iii), we notice that a small order of 10 iterations is enough to put
GWOEIS on the top of the rest, with estimation accuracy gains constantly increasing
with TH , making its potential gains in computational complexity remarkably large when
compared to other techniques that require a very high number of iterations.

In Figure 7, we investigate the effect of the number of paths on the estimation perfor-
mance. We observe that the new approach, GWOEIS, outperforms most of the benchmarks
in the high and low SNR scenarios for TD, AoA, and channel estimation when Q ≤ 4.

Figure 7. MSE vs. the SNR in dB and the number of paths Q for TH = 100 and R = 100.

We consider also the same configuration to evaluate the performance of all of the
approaches in terms of temporal and angular separations. In Figure 8, we fix the first delay
at τ1 = 2 T, and we vary the second delay at τ2 = τ1 + ∆τ. It is clearly seen that our
approach is still capable of achieving the CRLB, even in a challenging scenario with a very
small temporal separations of ∆τ = 0.5 T. In Figure 9, we fix the first AoA at θ1 = −20◦,
and we vary the second AoA θ2 = θ1 + ∆θ. Here, again, we can highlight the robustness
and the super-resolution capacity of our approach, and to appreciate its superiority in
challenging scenarios where the paths are closely spaced in both temporal and spatial
domains. We have to mention that Figure 8(a,iii,b,iii,c,iii) show the superiority of UMP
reaching the best techniques achieving minimum RMSE only when ∆τ ≥ 10/B.

Figure 8. RMSE vs. the SNR in dB and the temporal separation ∆τ in ns with Q = 2, R = 100, and
TH = 100.
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Figure 9. RMSE vs. the SNR in dB and the angular separation ∆θ in degrees with Q = 2, R = 100,
and TH = 100.

5. Conclusions

In this work, we presented a new DA ML JADE estimator over OFDM SIMO multi-
path channels referred to as GWOEIS, whose key innovation lies in exploiting and embed-
ding the powerful IS concept to avoid the random initialization issues of the traditional
GWO, and to significantly improve the hunting mechanism. GWOEIS ensures faster con-
vergence by providing initial estimates based on a simplified importance function. More
importantly, and beyond simple initialization of GWO with IS, we modify and dynami-
cally update the conventional simple expression for the convergence factor of the GWO
algorithm that entirely drives its hunting and tracking mechanism by accounting for new
CDFs derived from the IS technique. The latter significantly boost the estimation perfor-
mance. Overall, the simulation results show more accurate estimation performance at faster
convergence rates with GWOEIS.
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AoA Angle of Arrival
AWGN Additive White Gaussian Noise
CDF Cumulative Distribution Function
CFR Channel Frequency Response
CLF Concentrated Likelihood Function
CRLB Cramér–Rao Lower Bound
DA Data-Aided
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DE Differential Evolution
DoA Direction of Arrival
GWO Gray Wolf Optimization
GWOEIS Gray Wolf Optimization Embedding Importance Sampling
IS Importance Sampling
IS-DE Importance Sampling–Differential Evolution
IS-GWO Importance Sampling–Gray Wolf Optimization
JADE Joint Angle and Delay Estimation
LLF Log-Likelihood Function
LS Least Squares
ML Maximum Likelihood
MSE Mean Square Error
MUSIC Multiple Signal Classification
NDA Non-Data-Aided
NMSE Normalized MSE
OFDM Orthogonal Frequency-Division Multiplexing
PDF Probability Density Function
RMSE Root Mean Square Error
SAGE Space-Alternating Generalized Expectation
SIMO Single Input Multiple Output
SNR Signal-to-Noise Ratio
TD Time Delay
UAV Unmanned Aerial Vehicles
UMP Unitary Matrix Pencil
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