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Abstract 
Auditory processing is widely understood to occur differently in autism, though the patterns of brain 

activity underlying these differences are not well understood. The diversity of autism also means 

brain-wide networks may change in various ways to produce similar behavioral outputs. We used 

larval zebrafish to investigate auditory habituation in four genetic lines relevant to autism: fmr1, 

mecp2, scn1lab and cntnap2. In free-swimming behavioral tests, we found each line had a unique 

profile of auditory hypersensitivity and/or delayed habituation. Combining the optical transparency of 

larval zebrafish with genetically encoded calcium indicators and light-sheet microscopy, we then 

observed brain-wide activity at cellular resolution during auditory habituation. As with behavior, each 

line showed unique alterations in brain-wide spontaneous activity, auditory processing, and 

adaptation in response to repetitive acoustic stimuli. We also observed commonalities in activity 

across our genetic lines that indicate shared circuit changes underlying certain aspects of their 

behavioral phenotypes. These were predominantly in regions involved in sensory integration and 

sensorimotor gating rather than primary auditory areas. Overlapping phenotypes include differences 

in the activity and functional connectivity of the telencephalon, thalamus, dopaminergic regions, and 

the locus coeruleus, and excitatory/inhibitory imbalance in the cerebellum. Unique phenotypes 

include loss of activity in the habenula in scn1lab, increased activity in auditory regions in fmr1, and 

differences in network activity over time in mecp2 and cntnap2. Comparing these distinct but 

overlapping brain-wide auditory networks furthers our understanding of how diverse genetic factors 

can produce similar behavioral effects through a range of circuit- and network-scale mechanisms.  
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Introduction 

Sensory processing in autism 

Differences in sensory experience are common in autism, but the differences in neural circuitry 

underlying these traits is not well understood1–5. Human studies provide conflicting results about 

various measures of auditory processing in autism, and these discrepancies may arise from the 

etiological complexity of autism 6–8. More consistent results can be found in studies of syndromic 

forms of autism, such as fragile X syndrome (FXS) or Rett syndrome, but this approach risks poor 

representation of autism as a whole 7,9,10. There is evidence for reduced habituation to auditory stimuli 

in some autistic people and reduced adaptation of auditory cortex activity in FXS 8,11. There are several 

hypotheses explaining differences in brain activity in autism, including excitatory/inhibitory (E/I) 

imbalance, dopaminergic dysfunction, and altered cerebellar and brainstem function 12–15. It is not 

clear which of these link to changes in auditory habituation, or indeed whether different mechanisms 

are relevant to different etiologies. Animal models enable more incisive studies into brain function, but 

auditory habituation is under-studied in rodent models of autism compared to other measures of 

auditory function, despite its simplicity and potential to affect conclusions about differences in other 

auditory tests 8,16,17. While most animal models of autism only manipulate single genes, comparing 

across models can provide insights into the diversity of mechanisms underlying shared behavioral 

changes 16,18. 

Zebrafish genetic lines for investigating brain-wide function 

There is growing interest in using zebrafish to investigate differences in brain development in autism 

due to their genetic tractability and capacity for brain-wide calcium imaging 19–21. They enable 

investigations of responses to a range of different sensory stimuli including visual, acoustic, vestibular, 

olfactory, and water flow22–30. Indeed, differences in sensory processing in fmr1-/- fish have illustrated 

the advantages of capturing cellular resolution activity throughout the brain to describe phenotypes, 

with phenotypes characterized by differences in functional connectivity rather than in gross activity 

level 31,32. Furthermore, the relative efficiency of zebrafish research supports the shift in autism 

research towards comparing phenotypes across several different animal lines to better capture the 

complexity of autism etiology16,17,21,33,34. 

Auditory habituation is well established in larval zebrafish, and pharmacological and optogenetic 

manipulations have found roles for dopamine, serotonin, glycine, and NMDA receptors in this process 
35–40. Increased dopamine signaling increases the degree of habituation, while decreased dopamine 

signaling reduces the rate and degree of habituation 38,39. Serotonin has the opposite role to dopamine: 

increased serotonin reduces the degree of habituation while reducing serotonergic activity, 

particularly from the superior raphe, increases habituation38. In one study, glycine receptor blocker 
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strychnine entirely eliminated habituation39. Blocking NMDA receptors also reduces the rate and/or 

degree of habituation35,36,39,40. Of note, reduced NMDAR activity has been linked to auditory phenotypes 

in rodent models of autism41,42.  

Distinct but overlapping mechanisms for altered habituation 

The reduction in response during habituation is generally viewed as a learned association to the 

innocuous nature of a stimulus. However, a superficially similar phenomenon of ‘induced passivity’ 

represents a different process: learning that behavioral responses are futile for escaping the stimulus. 

The networks underlying these two processes may or may not overlap, but both can be disrupted with 

NMDAR antagonist ketamine 36,43. Interpreting this induced passivity as behavioral adaptation fits with 

the newer narrative that habituation involves shifting response strategy, and is more complex than 

simply ‘learning to ignore’ stimuli 44. A putative passivity circuit in larval zebrafish has been described 

in the context of electric shock stimuli, where passivity was linked to increased activity in the ventral 

habenula and decreased activity in the dorsal thalamus and superior raphe43. These neurotransmitters 

and brain regions present diverse potential mechanisms for auditory habituation phenotypes in 

neurological conditions such as autism.  

Here, we set out to study auditory habituation in four genetic lines associated with autism: fmr1, 

scn1lab, mecp2, and cntnap2, using both behavioral screening and imaging of whole-brain activity at 

single-neuron resolution. Each of these genes is associated with autism as well as its own syndrome: 

fmr1 with FXS, mecp2 with Rett syndrome, scn1lab with Dravet syndrome, and cntnap2 with Pitt-

Hopkins like syndrome45. We find that each line has a unique behavioral phenotype in response to 

repetitive acoustic stimuli, and that they show distinct but overlapping changes in their brain-wide 

auditory networks during habituation. The results give a glimpse of the behavioral and functional 

complexity of autism-associated genes and identify network-scale alterations that could contribute to 

sensory changes in specific syndromic forms of autism. 

Methods 

Animals 

All experiments were conducted on 6 days post fertilization zebrafish larvae on a Tüpfel-Longfin 

background. For imaging of fluorescent calcium transients, mitfa-/- fish transgenic for HuC:H2B-

GCaMP6s were used46. Larvae were raised in embryo media (distilled water with 10% Hanks solution, 

consisting of 137mM NaCl, 5.4mM KCl, 0.25mM Na2HPO4, 0.44mM KH2PO4, 1.3mM CaCl2, 1.0mM 

654 MgSO4 and 4.2mM NaHCO3 at pH 7.2) in an incubator at 28oC with a 14/10 hour light/dark cycle. 

The experimental room was maintained at approximately 26oC. Experimental animals were bred from 

parents heterozygous for the relevant autism-associated gene mutation to provide sibling wild-type 
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controls for each dataset.  Separate datasets were collected for each of the four lines: fmr1hu2787, 

mecp2fh232, scn1labΔ44 21,47, and cntnap2aya2188cntnap2bya2043 48. As cntnap2 is duplicated in zebrafish, 

parents of the experimental animals for the cntnap2 dataset were heterozygotes for both cntnap2a 

and cntnap2b. Following experiments, larvae were euthanized with ice and digested in 100 µL TE 

buffer with 1 µL ProK (New England Biolabs). They were then genotyped by PCR and Sanger 

sequencing. Primer sequences for each PCR can be found in Supplementary table 1. Larvae were 

genotyped after the experiment to maintain experimental blindness. 

Free-swimming auditory habituation 

Experimental set-up 

Initial behavioral phenotyping was conducted as part of a larger sensory phenotype screening 

procedure which also involved visual stimuli (data not shown). Free-swimming behavioral experiments 

were conducted on a custom-built behavioral rig (Figure 1A). Due to lack of swim bladder inflation in 

scn1lab-/- fish, for this mutant line all fish were partially embedded upright in 2% low melting point 

agarose, and behavioral responses assessed based on tail deflections. Fish were placed in seven 

individual circular wells of diameter 20 mm, arranged around a central speaker glued to the underside 

of the well plate. The speaker was driven by an amplifier (Dayton Audio DA30 2 × 15W Class D 

Bridgeable Mini Amplifier), which received input directly from the MATLAB code driving the experiment. 

The wells were illuminated from below by an array of infrared LEDs (840 nm). A projector delivered 

visual stimuli to an angled cold mirror to provide constant medium grey background light (500 lx) to the 

fish, and to deliver visual stimuli. Videos were recorded with a high-speed camera (Ximea xiB-64 

model CB019MG-LX-X8G3), with an infrared filter, and with an exposure time of 1 ms and a framerate 

of 100 fps.  

Stimuli 

The auditory habituation stimulus train was preceded by stimuli for screening of other audiovisual 

phenotypes, including sounds at different volumes and looming stimuli. Sound stimuli for the auditory 

habituation test were 500 ms white noise bursts at 108 dBSPL, with 2 ms on and off ramps. The 

interstimulus interval was 5 seconds, and stimuli were divided into two blocks. The first block 

consisted of 30 stimuli, followed by a 90 second break, then the recovery block consisted of 15 

stimuli. 

Analysis 

Videos were segmented using python (version 3.7.6), and the activity of fish was tracked using 

DeepLabCut49, with a model trained on in-house data for larval zebrafish (Figure 1B-C). Responses 

were analyzed with custom MATLAB (2022) scripts. In the scn1lab dataset where the fish were partially 
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immobilized, only the tail activity was analyzed. Responses were summed within a 1-second window 

after the stimulus onset. 

Response intensities were compared between genotypes with a non-linear regression to a one-phase 

decay in GraphPad Prism (v9.4.1). This enabled comparison of whether each dataset can be explained 

by curves with the same coefficients in the equation 𝑦𝑦 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏 + 𝑐𝑐. These values represent the y-

intercept (a, initial response intensity), slope (b, rate of habituation), and plateau (c, extent of 

habituation).  

Calcium imaging of brain activity during auditory habituation 

Data acquisition 

Imaging of calcium fluorescence was conducted with a custom-built light-sheet microscope 31,50,51. 

Fish were held in a 3D-printed plastic chamber with glass coverslip walls, filled with embryo media 

(Supplementary Figure 1A). Fish were fully immobilized in 2% low melting point agarose, except for the 

mecp2 dataset, where the tail was cut free to allow a range of motion of 90 degrees to each side. This 

enabled imaging of tail activity using a camera below the experimental chamber, for confirmation that 

movements otherwise interpreted from motion correction of brain imaging indeed correlated to real 

tail movements (data not shown). 

The brain was imaged by scanning two perpendicular sheets of light through 50 z-planes at a step size 

of 5 µm, to cover a total volume of 250 µm with a frame rate 100 fps and binning of 4, resulting in 

volumetric acquisition of 2 Hz (Supplementary Figure 1B). The imaging column was as previously 

described50, consisting of a 20x water immersion objective, a filter to exclude the 488 nm wavelength 

light from the excitation laser, an electrically tunable lens, and a high-speed camera (PCO edge 5.5). 

Acquisition and delivery of acoustic stimuli were controlled with Micro Manager software (version 1.4) 
52, and a custom written GUI in MATLAB (2022). 

Stimuli 

Acoustic stimuli were delivered via a speaker (Dayton Audio DAEX-9-4SM Skinny Mini Exciter Audio, 

Haptic Item Number 295-256) affixed to the back wall of the experimental chamber, so that sounds 

were delivered directly into the embryo media filling the chamber27. The stimulus train was again part 

of a wider screening protocol: firstly, a separate recording of 10 minutes of spontaneous activity (data 

not shown), then a second recording of sounds at different volumes (data not shown), followed by the 

auditory habituation paradigm. The auditory habituation stimulus train was composed of 100 ms white 

noise bursts with 2 ms on and off ramps, set to a volume equivalent to 96 dBSPL in air. Due to the 

requirement for smaller speakers to fit on the experimental chamber, it was not possible to deliver 

sounds precisely matching those in the free-swimming set-up. The interstimulus interval was 3 

seconds, and again the stimuli were broken into two blocks, except for the scn1lab dataset, which did 
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not have a recovery block. The first block consisted of 20 stimuli, followed by 10 stimuli in the second 

block after a 1-minute break.  

Analysis of neuronal traces 

Regions of interest (ROIs) representing individual neurons, and their fluorescent traces over time were 

extracted using Suite2p (Supplementary Figure 1B)53. The mean stack of images was then warped, first 

to a template brain averaged from 10 wild-type larvae, then to the Zbrain reference brain space, using 

the ANTs warping algorithm54,55. A mask of all the brain regions in this reference atlas was then used to 

exclude any extraneous ROIs identified outside the brain or in the eyes. The extraction and warping 

steps were performed using the high-performance computing cluster at the University of Melbourne. 

The remaining analysis was conducted in MATLAB (version 2022). The ΔF/F of the fluorescent traces 

was calculated using a sliding window of 201 timepoints, and a smoothing kernel of 7 timepoints.  

Correlation to auditory stimuli and motion were calculated by linear regression to theoretical calcium 

transients at stimulus timings and timings of motion correction as outputted by Suite2p 

(Supplementary Figure 1C-D). Comparisons of metrics without data for each neuron were performed 

with Wilcoxon ranked-sum tests. For voxel-wise spatial comparison of various measures, neurons 

were averaged in 3-dimensional cubes of edge length 10µm. Mean activity traces of neurons within 

these cubes were fitted to a curve described by the function 𝑦𝑦 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏 + 𝑐𝑐 to obtain three curve fit 

parameters. 

We performed graph theory analysis with the brain connectivity toolbox for MATLAB56. For each fish, a 

correlation matrix across all neurons was produced based on correlations in ΔF/F activity within the 

period of interest, and autocorrelations were removed. The matrix was binarized using one of two 

methods: the top 10% highest correlations, or correlation coefficients above a threshold of 0.3. The 

degree of each neuron was then calculated as the proportion of the maximum possible number of 

edges. 

We compared a range of metrics between genotypes within anatomical regions, using linear mixed 

effects models. The equation used was 'Y ~ genotype + (1|genotype:fishID)', where Y is a vector of 

some response metric for each cell within a region. The fixed effect is the genotype, and the random 

effect is the individual fish 57. The region list came from the Zbrain reference atlas, with custom added 

masks for the octavolateralis nucleus and the granule cells of the cerebellum. We set inclusion criteria 

for brain regions that at least 60% of wild-type fish from each of the 4 datasets must have at least 5 

neurons identified in that region. We further excluded regions in which we would not expect to find cell 

nuclei, and small regions defined by expression of certain markers. A full list of p-values from all 

comparisons can be found in the Supplementary Information.  
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We calculated the ratio between the degree in the gad1b and vglut2 parts of the cerebellum for the 

fmr1 and scn1lab datasets, excluding any ROIs which overlapped between the two, using the average 

degree per fish for each time period and a repeated measures ANOVA, with a Dunn-Sidak test for 

multiple comparisons. 

Total motor activity, genotype, and correlation threshold for the top 10% of edges in the cntnap2 

dataset were compared with a linear mixed-effects model with the equation 'Y ~ motor + (1|genotype)', 

where Y is the correlation threshold, the fixed effect is motor activity, and the random effect is the 

genotype. Each data point is one fish in this analysis. 

Results 

Free-swimming auditory habituation phenotypes 

As expected, the behavioral responses to auditory stimuli were well modelled by an exponential decay 

curve. Within each dataset, we compared fit metrics of the y-intercept (the calculated y value of the 

curve at the initial stimulus), decay rate (slope), and final plateau value. For the fmr1 dataset, the y-

intercept was higher for the fmr1-/- (14.50, n = 38) and fmr1+/- (13.79, n = 77) fish than the fmr1+/+ 

controls (12.27, n = 41, p = 0.0179, Figure 1D). However, the slope was not different between 

genotypes (fmr1+/+ 0.319, fmr1+/- 0.320, fmr1-/- 0.263, p = 0.4639), and neither was the plateau (fmr1+/+ 

5.57, fmr1+/- 5.43, fmr1-/- 5.55, p = 0.7065). The fmr1 mutation therefore produces an initial sensitivity 

phenotype, but the rate of habituation is the same as wild types, and habituation eventually reaches 

the same plateau as in wild-type siblings. Therefore, if the degree of habituation is measured as 

relative to the initial response, the habituation strength could be considered increased in the fmr1-/- 

fish.  

As scn1lab-/- larvae do not consistently swim upright, we embedded their heads in agarose and 

measured their responses based on tail movements rather than distance travelled (Figure 1E). Very 

striking differences in the mutants were apparent in the y-intercept (scn1lab+/+ 9002, n = 17, scn1lab+/- 

8674, n =47, scn1lab-/- 14639, n = 31, p < 0.0001) and the plateau (scn1lab+/+ 6769, scn1lab+/- 6639, 

scn1lab-/- 9092, p < 0.0001), but not in the decay rate of the curve (scn1lab+/+ 0.158, scn1lab+/- 0.317, 

scn1lab-/- 0.177, p = 0.4063). The scn1lab homozygous mutants therefore have a very strong 

hypersensitivity phenotype, with a reduced extent of habituation in absolute measures.  

In the mecp2 line (Figure 1F), the y-intercept was not different between genotypes (mecp2+/+ 12.28, n = 

40, mecp2+/- 12.76, n = 107, mecp2-/- 12.47, n = 50, p = 0.7217), nor was the decay rate (mecp2+/+ 

0.907, mecp2+/- 0.618, mecp2-/- 0.5714, p = 0.4639). However, the plateau was significantly higher in 

the mecp2-/- fish (5.334) and mecp2+/- fish (5.442) than the mecp2+/+ fish (4.900, p = 0.0001). The 

mecp2 phenotype is therefore reduced extent of habituation. 
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For the cntnap2 line, both the decay rate (cntnap2a+/+b+/+ 0.337, n = 31, cntnap2a+/+b-/- 0.320, n = 25, 

cntnap2a-/-b+/+ 0.519, n = 21, cntnap2a-/-b-/- 0.293, n = 30, p = 0.0087) and the plateau level 

(cntnap2a+/+b+/+ 6.355, cntnap2a+/+b-/- 6.443, cntnap2a-/-b+/+ 6.256, cntnap2a-/-b-/- 7.480, p = 0.0002) 

Figure 1: Behavioral auditory habituation phenotypes in four genetic lines. A) Experimental set-up for 
recording behavior of seven larvae simultaneously. B) Tracking with DeepLabCut43. Automated 
identification of points in the swim bladder, eyes, and along the tail enables kinematic analysis of 
behavioral responses. C) Example outputs of tail velocity (green) and whole-body velocity (blue) in 
response to an auditory stimulus, indicated by the dotted line. D-G) Behavioral responses during 
habituation for fmr1, scn1lab, mecp2, and cntnap2, respectively. Responses are calculated for a 1-
second window after the stimulus. For each group, the p-value is indicated for y-intercept (Y0), slope, 
and plateau, comparing fish carrying the mutation to wild-type siblings. 
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were significantly different between genotypes (Figure 1G). For the plateau, this difference is driven by 

the cntnap2a-/-b-/- fish having a higher plateau response rate than the other genotypes. The cntnap2a-/-

b-/- fish have a slower decay rate than the wild types and cntnap2a+/+b-/- fish, but cntnap2a-/-b+/+ fish 

diverge in the other direction, with a faster habituation rate. The y-intercept did not reach the 

significance threshold (cntnap2a+/+b+/+ 17.88, cntnap2a+/+b-/- 18.89, cntnap2a-/-b+/+ 21.00, cntnap2a-/-b-/- 

19.37, p = 0.0898), but the strongest difference is between the wild type initial response, and the 

highest initial response of the cntnap2a-/-b+/+ fish. Overall, the homozygous mutant of both paralogs 

habituates both more slowly and to a lesser extent than wild types.  

Brain-wide imaging of auditory habituation phenotypes 

Brain-wide auditory phenotypes at different scales 

Whole-brain measures 

To understand the brain activity underlying the behavioral auditory habituation phenotypes for each of 

the four genetic lines, we performed calcium imaging using light-sheet microscopy and the genetically 

encoded calcium indicator GCaMP6s, expressed in the nuclei of all neurons. This enabled detection of 

activity at cellular resolution across the full volume of the brain. To quantify activity across the brain-

wide network, we used Suite2p53 to identify regions of interest (ROIs) generally corresponding to 

individual neurons31,58, and then extracted fluorescence across the experiment for each ROI. The 

number of ROIs segmented across the whole brain was not different between mutant and wild-type 

larvae for any of our genetic lines (Supplementary Figure 1E). We next measured correlation to motor 

activity using the motion correction output from Suite2p (Supplementary Figure 1D). Most movements 

detected were strong and likely stimulus-evoked rather than spontaneous, as expected in restrained 

fish without visual feedback 59. The amount of motor activity was not different to wild types in fmr1-/-, 

mecp2-/- or cntap2a-/-b-/- fish, but was significantly higher in scn1lab-/- fish, recapitulating the strong 

behavioral hypersensitivity (Supplementary Figure 1F). We also measured correlation to auditory 

stimuli, either only to the auditory habituation train or to all sounds (Supplementary Figure 1C, G-H), 

since the inclusion of quieter sounds aids in distinguishing auditory-specific from stimulus-evoked 

motor responses. There were no significant brain-wide differences in auditory correlation in any 

genetic line, indicating that phenotypes arise at the level of sub-regions within the brain. 

To explore whether such small subregions had altered activity in our mutants, we used a voxel-wise 

subsampling approach, creating 10µm cubes throughout the brain and looking for differences across 

genotypes for a range of metrics (Figures 2-5, B-C). For each of our genetic lines, this approach 

revealed a unique profile of regions where activity in mutants diverged from wild types (detailed 

below).  
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Cellular-resolution analyses within anatomical regions 

Similarly, we performed analyses within specific brain regions, as defined in the Zbrain atlas55. Within 

these sub-regions we compared several different metrics using cellular-level data, but with a linear 

mixed effects model that allow us to control for fish of origin57. The significance of the effect of 

genotype across brain regions and metrics are presented in Supplementary Figure 2. These metrics 

include the auditory and motion correlation as described above, and the three parameters from 

exponential curve fits to auditory responses. We also compared the number of neurons segmented, 

and the sum of ΔF/F values in different time periods during the experiment. Lastly, we incorporated the 

degree measure of functional connectivity, calculated using correlations between all neurons, 

allowing us to detect differences in network dynamics that would only be evident with cellular 

resolution. These analyses were intended to characterize changes in brain activity that may contribute 

to auditory habituation phenotypes.  

The summary grids in Supplementary Figure 2 illustrate the distribution of phenotypes throughout the 

brains of each genotype, with full p-values reported in the Supplementary Material. The scn1lab-/- fish 

clearly have many more differences across metrics and brain regions, which is unsurprising given their 

dramatic behavioral phenotype. None of the phenotypes were common across three or all four 

genotypes, but there were several instances in which two mutants showed similar effects 

(Supplementary Figure 2). 

Brain wide phenotypes in four genetic autism lines 

Auditory structures are hyperresponsive in fmr1 

The behavioral phenotype in fmr1-/-
 animals was specifically in the y-intercept, representing higher 

initial responses to acoustic stimuli (Figure 1). Consistent with the behavioral phenotype, there is 

broadly stronger activity in individual neurons across the brains of fmr1-/- animals (Figure 2A). When 

these data are represented using the voxel-based approach, the y-intercept of neuronal activity is also 

higher in several brain regions, including broad regions across the diencephalon and mesencephalon 

(Figure 2B ,Supplementary Figure 2A). There is also a portion of the hindbrain that has a lower plateau 

value compared to wild types (Figure 2C), consistent with the proportionally deeper behavioral 

habituation observed in mutants. 

When single-neuron data are partitioned into defined brain regions, elevated responses are seen 

throughout the core auditory pathway early in the stimulus train (Figure 2D-G). In the statoacoustic 

ganglion (SAG), homologous to the cochlear and vestibular ganglia in mammals 60–62, the initial 

response strength is elevated (p = 0.0232 ,Figure 2D), closely mirroring the behavioral hypersensitivity 

(Figure 1D), before dropping to wild type levels later in the stimulus train. In the octavolateralis nucleus 

(ON), homologous to the cochlear nucleus60 , this effect is not seen across all neurons (p = 0.3454, 
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Figure 2E), but upon closer inspection, strongly responding auditory neurons in the ON have elevated 

responses early in the stimulus train (Supplementary Figure 3). These results suggest that, while these 

responses are masked by the large and diverse population of neurons in the ON, there are elevated 

auditory signals in this structure. Similar elevations in initial response strength are present in the torus 

semicircularis (TS, p = 0.0352 , Figure 2F), homologous to the inferior colliculus63, and the dorsal 

thalamus (p = 0.0459, Figure 2G), the auditory region within the thalamus62. 
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Beyond the defined auditory processing pathway, cellular-resolution data reveal stronger responses in 

fmr1-/- animals for the lobus caudalis (the vestibular region64) of the cerebellum (Figure 2H) and a 

region corresponding to cerebellar granule cells (Figure 2I). The increase in the lobus caudalis does 

not attenuate like the auditory pathway (Figure 2D-G), showing some degree of elevation throughout 

the stimulus train. Other observations of cellular-resolution data include increased activity at baseline 

in the telencephalon of fmr1-/- fish (p = 0.0434), and an increased number of neurons detected in the 

pineal (p = 0.0070, Supplementary Figure 2A).  

In applying graph theory to data from individual neurons, we found higher functional connectivity (as 

measured by degree) in the locus coeruleus of fmr1-/- fish throughout the experiment (Figure 2J, p = 

0.0002). In the cerebellum, there are divergent degree differences in the vglut2- versus the gad1b-

enriched areas as habituation proceeds (Supplementary Figure 2). This divergence is of particular 

interest given their opposing effects on cerebellar output64,65. We therefore compared the mean degree 

of cells within these regions as a ratio over the course of the habituation period (Figure 2K). During the 

baseline the mean degree is not different between wil types and fmr1-/- fish, but in the habituation 

period the vglut2-enriched area has higher functional connectivity than the gad1b-enriched area in 

fmr1-/- fish. This observation suggests that activity in the excitatory eurydendroid cells is more tightly 

coupled to brain-wide activity than the inhibitory Purkinje cells in the fmr1-/- fish.  

Widespread hyper-excitation and loss of habenular activity in scn1lab  

Qualitatively, scn1lab-/- animals show broader and stronger activity across the brain in response to 

auditory stimuli, which is less specifically located in auditory regions such as the thalamus, TS, and 

cerebellum compared to wild types (Figure 3A). Our voxel-based approach showed that the scn1lab-/- 

fish also had clear differences in the number of neurons detected in specific brain regions.  

 

Figure 2: Auditory habituation phenotypes in fmr1. A) All segmented neurons from all fish, colored by 
sum of activity between stimuli 4 and 6. B-C) Comparison within 10 µm cubes of curve fit values 
during habituation period. Two different z-depths for each measure are shown for fmr1+/+ (left, n = 12) 
and fmr1-/- (right, n = 13). B) Y-intercept values are higher in the fmr1-/- fish, notably in the thalamus 
(white arrow) and hindbrain (black arrow). C) Plateau values are lower in fmr1-/- fish than wild types in 
several parts of the hindbrain (black arrows). D-I) Mean activity of all neurons in the SAG (D), ON (E), TS 
(F) dorsal thalamus (G) lobus caudalis cerebelli (H), and the granule cell region of the cerebellum (I). 
D-I: Shading indicates SD. J) A subset of ROIs, colored by degree, identified using the top 10% of edges 
from correlation during the whole habituation period. Black outlines indicate the locus coeruleus. K) 
Ratio between the degree of all neurons in gad1b and vglut2 regions of the cerebellum at different 
periods during habituation. Degree is based on the top 10% of edges. Each dot represents one fish, 
and black lines indicate the means. Significant effect of genotype (p = 0.0289) and interaction 
between genotype and time (p = 0.0401), but no significant effect of time alone (p = 0.9167, repeated 
measures ANOVA). No difference between genotypes at baseline (p = 0.9063), but significantly lower 
gad1b:vglut2 ratio in fmr1-/- in the early (p = 0.0380) and late (p = 0.0050) habituation periods (Dunn-
Sidak test).  
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Figure 3: Auditory habituation phenotype in scn1lab. A) All segmented neurons from all fish, colored by 
sum of activity between stimuli 1 and 3. B) Comparison within 10 µm cubes of number of neurons 
segmented. Two different z-depths for each measure are shown for scn1lab+/+ (left, n = 11) and 
scn1lab-/- (right, n = 11). Fewer neurons were segmented in the habenula (white arrow), and more in 
the cerebellum (black arrow) in scn1lab-/- fish than wild types. C) Comparison within 10 µm cubes of 
motor correlation values. Motor correlation is higher in most of the brain in scn1lab-/- fish, except for 
the granule cells of the cerebellum (white arrow) and the telencephalon (black arrow). D-H) Mean 
activity of all neurons in the dorsal thalamus (D), pretectum (E), torus longitudinalis (F), habenula (G) 
and pineal (H). D-H: Shading indicates SD. I) Ratio between the degree of all neurons in the gad1b 
region of the cerebellum and the vglut2 region of the cerebellum at different periods during 
habituation. Degree is based on the top 10% of edges design. Each dot represents one fish, black lines 
indicate the means. Significant effect of genotype (p = 0.0078), non-significant effect of time (p = 
0.0567) and interaction between genotype and time (p = 0.4682, repeated measures ANOVA). The ratio 
is significantly lower in scn1lab-/- fish at baseline (p = 0.0437) and in the late habituation period (p = 
0.0102), but not different in the early habituation period (p = 0.1629, Dunn-Sidak test). 
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While the overall number of neurons detected brain-wide was not different (Supplementary Figure 1E), 

more neurons are detected throughout the mesencephalon (p = 0.0488) and rhombencephalon (p = 

0.0031, including the cerebellum p = 0.0255), but fewer in the telencephalon (p = 0.0417), and notably 

the habenula (p = 0.0006, Figure 3B). These observations are consistent with increased proliferative 

cells and reduced forebrain volume of scn1lab-/- fish21. We also found strikingly increased motor 

correlations throughout most brain regions in the mutants (Figure 3C) and increased auditory 

correlation during the habituation period in most of these regions (Supplementary Figure 2B). The 

granule cells of the cerebellum deviate from this general trend, having lower correlation to both motor 

activity (p < 0.0001, Figure 3C) and auditory stimuli (p = 0.0006).  

Analyses of cellular-resolution data in particular brain regions also reveal profound differences in the 

scn1lab-/- brain. Stimulus-evoked activity within the diencephalon diverges drastically from wild types, 

in opposing directions in different sub-regions. The scn1lab-/- fish show increased overall activity in the 

thalamus, particularly the dorsal thalamus, and also in the pretectum (Figure 3D and E,  

Supplementary Figure 2B). The y-intercept (p = 0.0219 ) and auditory correlation (p < 0.0001) are 

increased in the primarily glutamatergic66 torus longitudinalis, with clear auditory responses in 

scn1lab-/- but not wild types (Figure 3F). The habenula (Figure 3G) and pineal (Figure 3H), on the other 

hand, have drastically reduced activity in scn1lab-/- fish. In the case of the habenula this represents an 

almost total loss of activity. Activity is also generally decreased in the telencephalon, especially in late 

habituation (p = 0.0010), and decreased at baseline in the vagal ganglia (p = 0.0075) and vagal motor 

neuron cluster (p = 0.0205, Supplementary Figure 2B). 

Similarly to fmr1, in scn1lab-/- fish there is diverging functional connectivity of neurons in the gad1b 

and vglut2-enriched areas of the cerebellum (Figure 3I), indicating imbalance between the role of 

excitatory and inhibitory populations. 

Reduced dopamine activity and changes in functional connectivity in mecp2 

Unsurprisingly given its mild behavioral phenotype, mecp2 shows only subtle changes in auditory 

processing and motor correlations. Indeed, a qualitative mapping of activity strength across the brain 

early in the stimulus train (when the behavioral phenotype is strongest) shows similar patterns across 

mecp2-/- larvae and their wild-type siblings (Figure 4A). There are no widespread increases in the 

plateau or late habituation period ΔF/F in the brain activity of mecp2-/- fish that could explain the 

behavioral phenotype, but there are differences in other more specific measurements that could 

contribute to behavior, including increases in the plateau of activity in the statoacoustic ganglion and 

the lobus caudalis cerebelli (Supplementary Figure 2C).  

Looking at the motor correlations across voxels, we observe a decrease in the region of the cerebellar 

granule cells (p = 0.0112, Figure 4B), similar to what we observed for scn1lab. The correlation to  
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Figure 4: Auditory habituation phenotype in mecp2. A) All segmented neurons from all fish, colored by 
the sum of fluorescent activity between stimuli 2 and 4. B) Comparison within 10 µm cubes of motor 
correlation values. Two different z-depths for each measure are shown for mecp2+/+ (left, n = 10) and 
mecp2-/- (right, n = 13). Motor correlations are not different in most of the brain in mecp2-/- fish, except 
for the granule cells of the cerebellum (white arrow). C) Auditory correlation during the habituation 
period is decreased in mecp2-/- fish in the inferior olive and the posterior hindbrain (white arrows). 
Mean activity of all neurons in the subpallial dopaminergic cluster (D)and the preoptic area (E). F) 
Mean ratio between activity in dopaminergic regions and serotonergic regions. D-F: Shading indicates 
SD. G) All neurons from all fish in a region of interest in the z-dimension. Each neuron colored by its 
degree as defined by the top 10% of edges during the baseline, early habituation, and late habituation 
periods. Differences in degree between mecp2-/- and wild-type fish are indicated in the diencephalon 
at baseline (white arrow), the dorsal thalamus (black arrow) during early habituation, and in the 
rhombencephalon (black arrow) and the mesencephalon (white arrow) during late habituation. 
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auditory stimuli in the habituation period is lower in parts of the rhombencephalon, the inferior olive (p 

= 0.0282) and the preoptic area (p =0.0481, Figure 4C). The only difference in the sum of activity at 

baseline is an increase in the inferior olive in mecp2-/- fish compared to wild types (p = 0.0199, 

Supplementary Figure 2C). 

The mecp2-/- fish have decreased activity during late habituation for neurons in dopaminergic regions 

such as the subpallial dopaminergic cluster (p < 0.0001 Figure 4D) and the preoptic area (p = 0.0309, 

Figure 4E), and a decreased number of ROIs detected in the ventral thalamus (p = 0.0169, 

Supplementary Figure 2C). To address the opposing effects of dopamine and serotonin on habituation, 

we calculated the ratio of mean activity in dopaminergic regions (preoptic area, subpallial 

dopaminergic cluster, pretectal dopaminergic cluster and dopaminergic cluster of the ventral 

thalamus) with the mean activity in serotonergic regions (superior raphe, inferior raphe and pineal). 

While there is more dopaminergic than serotonergic activity in wild types, particularly at the beginning 

of the auditory habituation block, the mean ratio is close to 1 throughout the period for mecp2-/- fish, 

and this difference between genotypes is most pronounced during critical habituation period (Figure 

4F).  

With graph theory using the top 10% method, we observe differences in functional connectivity at the 

gross level of brain regions (Figure 4G). Degree is lower in mecp2-/- fish compared to wild types in the 

baseline period in the diencephalon (p =0.0380), and elevated in the dorsal thalamus in mecp2-/- fish 

in the early habituation period (p = 0.0221, Supplementary Figure 2C). In the late habituation period, 

high degree neurons are reduced in the rhombencephalon (p = 0.0156) and increased in the 

mesencephalon (p =0.0326) in the mecp2-/- fish compared to wild types.   

Increased activity and disrupted functional connectivity in cntnap2. 

The cntnap2a-/-b-/- double knockouts have an (insignificantly) elevated y-intercept, slower habituation, 

and a higher plateau compared to wild-type siblings (Figure 2G). When these combined effects are 

strongest, during early habituation, neurons across the brain are more responsive to auditory stimuli 

(Figure 5A). The cntnap2a-/-b-/- larvae have several brain regions with increased y-intercepts, including 

most of the hindbrain, but fewer that have differences in decay rate or plateau (Supplementary Figure 

2D, Figure 5B). There is also increased correlation to auditory stimuli during the habituation period in 

the preoptic area, subpallium, and eminentia thalami (thalamic eminence) (Figure 5C).  

We observed both decreased activity in dopaminergic regions (preoptic area, thalamic dopaminergic 

cluster, tegmentum and subpallial dopaminergic cluster) and increased activity in serotonergic 

regions (superior raphe and pineal, Supplementary Figure 2D). While the ratio between dopaminergic 

activity and serotonergic activity in the mutants (as calculated for mecp2) shows a similar increase at  
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Figure 5: Auditory habituation phenotype in cntnap2. A) All segmented neurons from all fish, colored 
by the sum of fluorescent activity between stimuli 4 and 6. B) Voxel-based representations of curve fits 
during habituation period. Two different z-depths for each measure are shown for cntnap2a+/+b+/+ (left, 
n = 5) and cntnap2a-/-b-/- (right, n = 7). Y-intercepts are higher in cntnap2a-/-b-/- fish than wild types in the 
pineal and most of the rhombencephalon (white arrow). C) Voxel-based auditory correlation values 
during the habituation period. Auditory correlation is not different in most of the brain in cntnap2a-/-b-/- 
fish, except for the subpallium (black arrow), preoptic area (white arrows), and pineal. D) Mean ratio of 
activity in dopaminergic regions versus serotonergic regions. Shading indicates SD. E) Sub-selection of 
neurons, colored by degree, as determined using the top 10% of edges from correlation during the 
whole habituation period. Black outlines indicate the locus coeruleus. F) All neurons from all fish in a 
section of interest between 50-75 µm depth in the z-dimension. Each neuron is colored by its degree 
as defined by a set correlation threshold during the baseline, early habituation, and late habituation 
periods. At baseline, neurons have lower degree throughout the brain in the cntnap2a-/-b-/- fish 
compared to wild types. In the early habituation period, only the telencephalon has lower degree 
cntnap2a-/-b-/- fish compared to wild types (white arrow). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.611137doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611137
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

the beginning of the stimulus train to that of the wild types, it remains below the mean value for wild 

types until the end of the auditory stimuli (Figure 5D). This suggests that the temporal dynamics of this 

ratio are preserved at the onset of the sound, but not in the later part of the train, when the behavioral 

phenotype is strongest.  

According to graph theory measurements with the top 10% thresholding method, functional 

connectivity in early habituation in cntnap2a-/-b-/- fish is decreased across several parts of the 

forebrain, and consequently increased in the rhombencephalon (p = 0.0197). The locus coeruleus also 

has higher functional connectivity during the whole period (p = 0.0001, Figure 5E). With the hard 

threshold method, functional connectivity is broadly reduced at baseline (Figure 5F). This effect is not 

due to differences in motor activity at baseline: both motor activity (p = 0.0029) and genotype (p = 3.08 

x10-6) have significant effects on the threshold required to attain the top 10% of correlations (linear 

mixed-effect model). The decreased functional connectivity persists in the telencephalon (p = 0.0008) 

and parts of diencephalon into early but not late habituation (Figure 5F). The few regions without lower 

degree during the baseline include monoaminergic regions such as the subpallium, preoptic area, 

locus coeruleus, and superior raphe (Supplementary Figure 2D). Fish mutant for only cntnap2a or 

cntnap2b generally resemble the double mutants, but the mutant phenotype diverges between the 

single mutants in the functional connectivity of the locus coeruleus and the set threshold functional 

connectivity over time (Supplementary Figure 4). 

Discussion 

Unique phenotypic fingerprints for each gene 

In this study, we have used auditory habituation as a paradigm to characterize the behavioral and 

brain-wide phenotypes for four genetic lines with relevance to autism. Each gene showed a different 

combination of traits describing its behavioral phenotype and each had its own profile of activity 

changes across the brain. The points of overlap, but also the distinctions between the lines’ 

phenotypes, raise interesting questions about the various ways in which changes in brain activity 

could lead to altered perception and behavior. This approach is a first step toward understanding the 

diverse and multigenic ways in which sensation and behavior are altered across the autism spectrum 

in humans. 

Initial hyperresponsiveness in fmr1 

The behavioral phenotype of fmr1 was limited to an increase in the initial responsiveness (Figure 1D). 

Correspondingly, we found increased initial response amplitude in several auditory brain structures, 

including the SAG, torus semicircularis, and thalamus, and auditory neurons in the ON. We therefore 

postulate that the auditory hypersensitivity phenotype arises within the auditory pathway, which drives 

increased behavioral output.   
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Surprisingly, we also found some differences in the late habituation period, despite the lack of a 

behavioral phenotype in the plateau of responses. The plateau of several rhombomeres of the 

hindbrain is also decreased in fmr1-/- fish, suggesting lower activity in motor output regions. Indeed, 

there is also increased activity in the granule cells of the cerebellum in the early part of the habituation 

period (Figure 2), which may represent more inhibition of motor output67–70. The fmr1-/- larvae may 

therefore undergo stronger adaptation to reach the same behavioral plateau as the wild types, having 

started from a greater initial response. 

While the hypersensitivity fits with previous zebrafish fmr1 studies32, the lack of a phenotype in the 

habituation to sounds here is at odds with what would be expected from studies of auditory 

habituation in FXS8. It is also different to the decreased auditory adaptation in the brain activity of 

Fmr1-/- mice, although different age or stimulus presentation rates may explain this discrepancy71. 

Drastically increased responsiveness in scn1lab 

The behavioral phenotype in scn1lab was the strongest of the four genes, with highly elevated initial 

response and plateau responses (Figure 1E). Unsurprisingly, we also found the most dramatic 

differences in brain activity in scn1lab mutants (Supplementary Figure 2B). Because there are 

differences in the volume and number of proliferative cells in the brains of scn1lab-/- fish21, we infer 

that neuronal proliferation, migration, differentiation and/or survival is altered in the brain. These 

changes likely lead to some neurons playing different roles within the network, such as those in the 

torus longitudinalis responding completely differently in scn1lab-/- animals than wild types (Figure 3F).  

We observed both increases and reductions in activity in distinct parts of the brains of scn1lab-/- fish. 

Activity was increased in the thalamus, pretectum, tegmentum, and torus longitudinalis. Conversely, 

activity was reduced in the telencephalon, habenula, pineal, and vagal ganglia. A previous study using 

pERK/tERK staining to infer activity levels found decreased activity at baseline throughout the brains of 

scn1ab-/- fish, though most strikingly in the telencephalon and habenula21. Our results recapitulate this 

forebrain phenotype, but also uncover various changes in activity across the rest of the brain. 

The habenula has a role in suppressing anxiety or fear responses in zebrafish 43,72–75. The putative 

‘induced passivity’ network involves increased activity in the habenula and decreased activity in the 

dorsal thalamus 43. The loss of activity in the habenula and increased activity in the dorsal thalamus 

we observe in scn1lab-/- fish may therefore represent an ‘anti-passivity’ network, which leads to greatly 

increased behavioral output. However, our methods only measure activity of neurons, and glia have 

also been shown to be important for passivity59. 

The higher correlation to motion throughout the brains of scn1lab-/- animals (Figure 3C) may be due to 

greater physical movement in scn1lab-/- fish, which recruit brain-wide activity more than the 

comparatively smaller movements of the wild types. An alternate explanation is functional 
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hyperconnectivity across the mutant brain, which would tie to the role for scn1lab in epilepsy76. 

However, we do not observe gross differences in graph theory measures of network connectivity. 

Higher plateau of responses in mecp2 

The behavioral phenotype for mecp2 was specifically an increase in the plateau of the response rates, 

suggesting decreased habituation (Figure 1F). A recent study measured auditory habituation in mecp2-

/- zebrafish larvae, and found no differences in the habituation as measured by the likelihood of 

startle77. It is not clear whether this study may have found an increase in the plateau of response rates 

using the distance travelled, as we have here, instead of startle probability. In our study, there were no 

differences in pure activity level in auditory regions to explain this phenotype. The only regions with a 

higher plateau of responses were the SAG and lobus caudalis cerebelli, which is generally regarded to 

be part of the vestibular network61. The vestibular and auditory systems are functionally intertwined in 

larval zebrafish, however, and these higher plateaus may therefore correspond to altered auditory, 

rather than vestibular processing78.  

We also observe differences in the functional connectivity of the brain networks over time in the major 

divisions of the brain (Figure 4G). In the early part of habituation period, where there are no behavioral 

phenotypes, only the dorsal thalamus has higher functional connectivity in mecp2-/- fish. By the end of 

the habituation period, when the behavioral phenotype emerges, the balance of edges in the network 

is shifted toward the mesencephalon and away from the rhombencephalon in mecp2-/- fish. This 

matched timing with the behavioral phenotype suggests it may have functional consequences for the 

behavior of the animal. In contrast to fmr1 and scn1lab, where an initial hypersensitivity either is (fmr1) 

or is not (scn1lab) compensated for during habituation, mecp2 provides an example of a genetic line 

with a normal initial response that only exhibits a phenotype as habituation plays out. It will be 

interesting to explore whether the earlier divergence of functional connectivity in the dorsal thalamus 

may be linked to the ensuing shift in functional connectivity across the brain. 

Slower habituation and higher plateau in cntnap2 

In the behavior of cntnap2a-/-b-/- fish, we observed a slower decay rate and a higher plateau of 

responses to auditory stimuli (Figure 1G). Surprisingly, given that there was no significant behavioral 

difference in the initial response, we found far more differences in the y-intercept of brain activity than 

either the decay rate or plateau (Supplementary Figure 2D). These increases occurred throughout the 

rhombencephalon, as well as in the pineal and subpallial dopaminergic cluster. Our best explanation 

for this discrepancy is that, given the difficulty of getting a large experimental n for a duplicated gene 

such as cntnap2, we lacked statistical power to identify what is a real y-intercept phenotype, yielding 

only an insignificant trend (Figure 1G). 
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We also observed widespread decreased functional connectivity throughout the brain in cntnap2a-/-b-/- 

fish at baseline, independent of differences in motor activity (Figure 5F). In the early habituation 

period, these differences disappear except in the telencephalon and habenula, and by the late 

habituation period, the network connectivity is comparable to that in wild types. This initial lack of 

functional connectivity in the network, and late recruitment of higher-order integrative structures, may 

underlie the reduced ability of the network to adapt to auditory stimuli over time. Interestingly, each of 

the single mutants resembled one aspect of these functional connectivity phenotypes 

(Supplementary Figure 4H). Each mutation may therefore contribute differently to the cumulative 

phenotype of the double mutant. 

Similarly to scn1lab-/- regions outside of the forebrain, we did not observe widespread changes in 

activity at baseline as reported in a previous paper that used pERK/tERK staining to infer brain activity21 

Our baseline is measured over a fairly short period preceding stimuli, whereas the increased 

pERK/tERK activity may be related to freely swimming in the environment over a longer period. The 

observed decrease in habituation to auditory stimuli does, however, fit with previous studies in 

Cntnap2 knock-out rats79,80. 

Overlapping phenotypes across genetic lines 

There were not overlapping phenotypes between genes in the primary auditory regions, rather shared 

circuitry changes appear to be in the sensorimotor and modulatory regions. 

The y-intercept of neurons in rhombomeres 3-5 is higher in scn1lab-/- and cntnap2a-/-b-/- fish than wild 

types, which likely relates to activity in motor regions driving the increased initial behavioral response 

in each of those lines. Conversely, the plateau of activity in this part of the hindbrain is decreased in 

fmr1-/- fish, which supports the idea that the network is more strongly adapted from a higher initial 

point to reach the same plateau as wild types.  

The reduced correlation to motor activity in the granule cells of the cerebellum is a striking phenotype 

in scn1lab-/- and mecp2-/- fish (Figure 6), particularly because it is scaled to the intensity of the 

behavioral phenotype of each gene. Previous studies in larval zebrafish suggest suppression of granule 

cell activity is required for stimulus-evoked behavioral responses and preventing immobility 67–70. 

Reduced granule cell activity in scn1lab and mecp2 mutants at the time of stimulus-evoked 

movements may therefore contribute to sustained higher behavioral responses in both these lines. 

We found that the functional connectivity of the gad1b-enriched and vglut2-enriched parts of the 

cerebellum (as measured by the degree) diverged similarly in both fmr1 and scn1lab mutants 

(Supplementary Figure 2,Figure 6). While there is some heterogeneity of cell types within these 

regions, we take these populations to be representative of the Purkinje cells (gad1b) and eurydendroid 

cells (vglut2). The functional connectivity of the eurydendroid cells is higher than that of the Purkinje 
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cells in both the fmr1 and scn1lab mutants, particularly in the late habituation period. This divergence 

in connectivity of excitatory and inhibitory regions may relate to the theory of E/I imbalance in 

autism12. Considering the crucial role of the cerebellum in sensorimotor processing, this divergence in 

connectivity seems likely to affect behavioral output. It is particularly interesting for fmr1 that this 

connectivity phenotype is strongest in the late habituation period when there is not a behavioral 

phenotype in the plateau of responses, indicating that while the behavioral plateau reached 

resembles that of the wild types, the underlying brain activity is not the same. 

The cntnap2a-/-b-/- and mecp2-/- fish both have differences in monoaminergic activity (Figure 6), which 

fit with what we may expect based on pharmacological studies 38,39. Indeed, pharmacological 

manipulations of dopamine and serotonin receptors affected baseline activity in a different cntnap2a-/-

b-/- line48. The combination of dopaminergic and serotonergic phenotypes, and the earlier onset of 

these differences in cntnap2, may explain why the behavioral output of these fish diverges from wild 

types earlier in the stimulus train than in mecp2 fish, which have only dopaminergic differences. The 

difference in ratio of dopaminergic to serotonergic activity was recapitulated in both of the single gene 

cntnap2 mutants (Supplementary Figure 4E). There are also some reductions in activity in 

dopaminergic areas of forebrain in scn1lab-/- fish, but these are less likely to be dopamine-specific 

given the reduced number of dopaminergic forebrain neurons in scn1lab-/- fish21 and the overall 

reduction in telencephalic activity (Supplementary Figure 2). Interestingly, the dopaminergic effects 

are specific to the subpallium and preoptic area, and the serotonergic differences in cntnap2 are 

stronger in the pineal than the superior raphe, the serotonergic region typically associated with 

habituation38. 

Functional connectivity over the full habituation period is increased in the locus coeruleus in both 

fmr1 and cntnap2 fish (Figure 6). The locus coeruleus is a noradrenergic center, whose activity is 

associated with alertness81. This increased recruitment of the locus coeruleus within the brain 

network may indicate a generally more alert state in these fish, leading to hyperresponsiveness to 

auditory stimuli. We also observe an increased plateau of activity in the locus coeruleus in scn1lab-/- 

fish (Supplementary Figure 2), which may represent more persistent alertness late in the habituation 

period, consistent with the observed behavior. 

We observe differences in the activity or functional connectivity of parts of or the whole telencephalon 

in all three of the genes that have higher plateau of responses: mecp2, scn1lab and cntnap2 (Figure 6). 

The telencephalon is the seat of higher-order processing in the zebrafish brain82,83, so it is unsurprising 

that it would have involvement in adaptation to stimuli. It is notable that fmr1, the only gene not to 

have a behavioral phenotype in the plateau of responses, does not have significant changes to the 

activity of the telencephalon.   

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2024. ; https://doi.org/10.1101/2024.09.04.611137doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611137
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 
 

Figure 6: Summary of brain activity underlying auditory habituation phenotypes. A summary of the 
brain-wide phenotypes for activity and functional connectivity found in fmr1 (A), scn1lab (B), mecp2 
(C), and cntnap2 (D). 5-HT = serotonin, DA =dopamine, Cb E/I = cerebellum excitatory/inhibitory 
regions, Hab = habenula, LC = locus coeruleus, ON = octavolateralis nucleus, Rhomb. = rhombomere, 
Tel. = telencephalon, Thal = thalamus, TS = torus semicircularis. 
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Future directions 

We have identified a range of differences in brain activity in these four autism-relevant genetic lines. In 

each, we have addressed brain-wide function in a fundamental way, observing activity across the 

entire brain at cellular resolution. Doing so has permitted several separate and complementary 

approaches for assessing brain-wide activity and the ways in which networks may change differently in 

different autism-relevant mutant lines.  

This approach, in its current form, comes with important limitations, especially because we cannot 

assess the synaptic relationships between the neurons that we observe and cannot conclusively 

determine the neurons’ neurotransmitter subtypes. As such, while these results are comprehensive 

from one perspective, they represent merely a departure point for better understanding the 

mechanisms by which information flow changes in the brains of these fish. Future studies could shed 

greater light on these changes by performing calcium imaging while co-labelling neurons with 

transgenic markers for neurotransmitter subtypes, such as the GABAergic, glutamatergic, 

dopaminergic, and serotonergic populations that our study implicate. Further, optogenetic techniques 

could be employed to manipulate parts of the circuit in wild types that we have implicated in our 

mutants, directly testing the hypothesized impacts on activity elsewhere in the brain and on behavior. 

More in-depth behavioral analysis may also provide more insight into brain activity underlying 

changing response strategies.  

Additionally, it would be interesting to add more genes to this collection. Here we have presented four 

different autism-associated genes, but this only scratches the surface of autism’s genetic complexity 

and phenotypic diversity. Adding more lines with different combinations of behavioral and neural 

phenotypes would enable a greater understanding of which combinations of brain activity phenotypes 

link to which behaviors. Ultimately, this will lead to a fuller appreciation of the relationship among 

genetics, perception, and behavior.   
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