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The metastatic spread of a cancer can be reconstructed from DNA sequencing of primary and metastatic7

tumours, but doing so requires solving a challenging combinatorial optimization problem. This problem8

often has multiple solutions that cannot be distinguished based on current maximum parsimony principles9

alone. Current algorithms use ad hoc criteria to select among these solutions, and decide, a priori, what10

patterns of metastatic spread are more likely, which is itself a key question posed by studies of metastasis11

seeking to use these tools. Here we introduce Metient, a freely available open-source tool which proposes12

multiple possible hypotheses of metastatic spread in a cohort of patients and rescores these hypotheses13

using independent data on genetic distance of metastasizing clones and organotropism. Metient is more14

accurate and is up to 50x faster than current state-of-the-art. Given a cohort of patients, Metient can15

calibrate its parsimony criteria, thereby identifying shared patterns of metastatic dissemination in the16

cohort. Reanalyzing metastasis in 169 patients based on 490 tumors, Metient automatically identifies cancer17

type-specific trends of metastatic dissemination in melanoma, high-risk neuroblastoma and non-small cell18

lung cancer. Metient’s reconstructions usually agree with semi-manual expert analysis, however, in many19

patients, Metient identifies more plausible migration histories than experts, and further finds that polyclonal20

seeding of metastases is more common than previously reported. By removing the need for hard constraints21

on what patterns of metastatic spread are most likely, Metient introduces a way to further our understanding22

of cancer type-specific metastatic spread.23
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Introduction26

Metastasis is associated with 90% of cancer deaths, yet its causes and physiology remain poorly understood1. It27

remains unclear how often multiple clones seed metastases, how often metastases are capable of seeding other28

metastases, and if there is a relationship between seeding clones and organ-specific metastases2–10. It is also not29

known whether metastatic potential is rare, and thus gained once in the same cancer, or common, and thus gained30

multiple times11–14. The answers to all these questions would improve the understanding and clinical management31

of metastasis, but doing so requires reconstructing migration histories of metastatic clones from clinical sequencing32

data which, until recently, was very challenging2–4.33

Recent algorithms have tackled this challenge using maximum parsimony principles. These algorithms identify34

parsimonious migration histories that explain the clonal compositions of primary tumors and one or more matched35

metastatic tumors5,15–17. However, different definitions of parsimony can disagree on the best solution, and current36

algorithms resolves these conflicts using ad hoc rules15–17. For example, a common rule is to only allow metastases37

to be seeded from the primary14, whereas determining whether metastases can seed other metastases is, itself,38

an important question. Indeed, one prevailing model in oncology, the “sequential progression model” – which posits39

that lymph node metastases give rise to distant metastases – is the rationale for surgical removal of lymph nodes18.40

However, a recent phylogenetic analysis found that the sequential model only applied to a third of patients in a41

colorectal cohort19. By pre-biasing their reconstructions with ad hoc rules, current algorithms undermine a key goal42

in making these reconstructions: determining which patterns of metastatic spread are prevalent in different cancer43

types.44

To address this dilemma and overcome the limitations of previous tools (Supplementary Table 1), we introduce45

Metient (metastasis + gradient). Metient is a principled statistical algorithm that proposes multiple potential46

hypotheses of metastatic spread in a patient and resolves parsimony conflicts using other, readily-available data.47

Metient achieves this through two key innovations. First, it adapts recent stochastic optimization algorithms for48

discrete variables to the problem of combinatorial optimization, thereby enabling efficient sampling of multiple49

parsimonious solutions. Second, it introduces new biological criteria, termed metastasis priors, to calibrate its50

parsimony criteria and select among equally parsimonious solutions. These calibrated criteria can also be used51

to uncover cancer type-specific trends in metastatic spread.52

On realistic simulated data, Metient outperforms parsimony-only models in accurately recovering the true migration53

history. When applied to patient cohorts with metastatic breast20, skin3, ovarian4, neuroblastoma9, and lung54

cancer14, Metient automatically identifies all plausible expert-assigned migration histories. In notable cases, it also55

uncovers more plausible reconstructions, often when prior expert analyses pre-selected a favored seeding pattern.56

Through its unbiased automated approach, Metient reveals that metastases are often seeded polyclonally and that57

most metastatic seeding follows a single, shared evolutionary trajectory. The cancer type-specific models learned58

by Metient reflect known differences in metastasis biology, suggesting that Metient can offer insights into metastatic59
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dissemination for new cancer cohorts.60

Metient is free, open-source software that includes easy-to-use visualization tools to compare multiple hypotheses61

on metastatic dissemination. Metient is accessible at https://github.com/morrislab/metient/.62
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Results63

The Metient algorithm64

Migration history inference algorithms take DNA sequencing data from primary and metastatic tumor samples as65

input, along with an unlabeled clone tree that encodes the genetic ancestry of cancer clones (Figure 1a). These66

inputs are used to estimate the proportions of clonal populations in anatomical sites (referred to as "witness nodes"67

in Figure 1b). The internal nodes of the clone tree are then labeled with anatomical sites, defining the historical68

migrations: a clone that migrates to a new site receives a different label than its parent clone (Figure 1b) and the69

tree edge that connects them is deemed a “migration edge”. The final output is referred to as a “migration history”17
70

(Figure 1b).71

MACHINA17 is the most widely used and most advanced migration history reconstruction algorithm. It scores72

migration histories using three parsimony metrics: migrations—the number of times a clone migrates to a different73

site4,15–17; comigrations—the number of migration events in which one or more clones travel from one site to74

another17; and seeding sites—the number of anatomical sites that seed another site17. MACHINA searches for the75

most parsimonious history by minimizing these three metrics.76

This search involves solving a mixed-variable combinatorial optimization problem, consisting of continuous variables77

(the clone porportions matrix U in Figure 1b), and discrete variables (the labeled clone tree matrix V in Figure78

1b). MACHINA, and other prior approaches, formulate this problem as a mixed integer linear programming (MILP)79

problem that they solve using commercial solvers21. However, using an MILP imposes strong limitations on the80

types of scoring functions that can be applied to migration histories, as MILPs require hard constraints and a linear81

objective. Moreover, MILP solvers identify only a single optimal solution, whereas there are often multiple solutions82

which are either equally parsimonious, or that trade-off one parsimony metric for the another (e.g., reducing the83

number of seeding sites by increasing the number of migration events). Returning a single solution obscures these84

possibilities, and the ad hoc rules used to distinguish among multiple solutions often introduce implicit bias into the85

reconstructions.86

To address these issues, Metient takes a more systematic approach by first defining a “Pareto front”22 for each87

patient (Figure 1c). To do so, Metient searches for migration histories under a wide range of parsimony models88

(Supplementary Table 2). A parsimony model is represented by a set of parsimony weights – wm, wc, and ws89

– assigned, respectively, to the number of migrations (indicated by m), comigrations (c), and seeding sites (s).90

A migration history’s parsimony score, p, is the model-weighted average of these three parsimony metrics, i.e.,91

p = wmm + wcc + wss. Different parsimony models favor different histories on the Pareto front. Efficiently92

recovering this Pareto front required replacing the current state-of-the-art MILP with newly developed stochastic93

gradient descent methods that employ a low-variance gradient estimator for the discrete categorical distribution94

over migration histories parameterized by the parsimony model23,24 (V in Figure 1b; Methods, Supplementary95

Information). Metient’s gradient descent approach converges to a solution many times faster than the MILP, and96
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Figure 1. Overview of the Metient method. (a) Input: (top) bulk DNA sequencing sampled from multiple tumors in a single
patient, and (bottom) a clone tree which represents the evolutionary relationship of mutations. AB refers to a clone with
mutations or mutation clusters A and B. (b) Inference: Using the inputs as observed variables, we infer the latent variables
(1) V (representing the labeled clone tree) and (2) U (representing the proportion of each clone in each anatomical site). F̂ is
the estimated VAF matrix produced by UB, where Bij = 1 if clone i contains mutation j. Each migration history solution can
be represented by a migration history, which is a clone tree with (1) an anatomical site labeling of its internal nodes, and (2)
leaf nodes representing the observed clone proportions in anatomical sites. (c) Identify Pareto front of histories: We infer a
Pareto front of migration histories as defined by the three parsimony metrics (migration, comigration and seeding site number).
A migration graph G summarizes the migration edges of the migration history. (d) Genetic distance: An example of how using
genetic distance can promote migration histories with migrations on longer edges with more mutations. The anatomical site label
of the yellow shaded node is changed. (e) Organotropism: An example of how using organotropism can promote migration
histories that do not contain unlikely metastatic patterns, such as subsequent metastasis from the brain. The anatomical site
label of the yellow shaded node is changed. (f) Metient-calibrate: Weights on the parsimony metrics (θ) are fit by minimizing the
cross entropy loss between each patient’s migration histories’ probability distribution as scored by the metastasis priors (target
distribution) and the probability distribution as scored by the parsimony metrics (source distribution). These weights are fit across
a cohort of patients, and then used to rescore the Pareto front of migration histories produced for each patient in that cohort.

it also helps to define the Pareto front by identifying multiple local maxima of the migration history score for each97

parsimony model (Methods, Supplementary Information). In addition, this approach reduces a large combinatorial98

search space of possible migration histories to only the most plausible explanations of metastatic spread for a given99

patient.100

Metient-calibrate fits cancer type-specific parsimony models101

To illustrate the importance of defining a Pareto front of multiple possible patterns of metastatic spread, we defined102

four different cancer type-specific patient cohorts consisting of genomic sequencing of matched primary and multiple103

metastases: melanoma3, high-grade serous ovarian cancer (HGSOC)4, high-risk neuroblastoma (HR-NB)9, and104
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non-small cell lung cancer (NSCLC)14. After applying quality control (Supplementary Information), we arrived at105

a dataset of 479 tumors (143 with multi-region sampling) in total from 167 patients (melanoma: n=7, HGSOC:106

n=7, HR-NB: n=27, NSCLC: n=126). Applying Metient to these patients, we discovered that 45% (75/167)107

had multiple Pareto-optimal migration histories, and that the complexity of the Pareto front increased with the108

number of metastases: 79% (27/34) of patient cases with three or more metastases had multiple Pareto-optimal109

histories. Often the choice among these different Pareto-optimal histories substantially impacted the interpretation110

of metastatic spread. For example, Figure 1c shows a patient with metastatic breast cancer with two Pareto-optimal111

reconstructions: one in which a lymph node metastasis gives rise to all other metastatic tumors, and another where112

most metastases are seeded directly from the primary tumor. Here, forcing an arbitrary choice between the two113

reconstructions determines whether one concludes that the lymph node acted as a staging site for metastatic spread.114

MACHINA, and all previous methods4,15,17, resolve parsimony conflicts by minimizing migrations first, and then115

comigrations, thus implementing a parsimony model where wm >> wc >> ws. However, no single parsimony116

model is appropriate for all cancer types. For example, in ovarian cancer, clusters of metastatic cells are thought to117

“passively” disseminate to the peritoneum or omentum through peritoneal fluid25–27. As such, metastatic events are118

more likely to be polyclonal, i.e., multiple clones seed metastases, so we might expect many more migrations than119

comigrations. In many solid cancers, metastatic cells make a “pit stop” at regional lymph nodes before disseminating120

to other distant sites28, and for the estimated 23.4% of patients with lymph node metastases across cancer types29,121

multiple seeding sites may be common. Different cancer type-specific patterns of metastatic spread are reflected122

in differences in trends in the relative numbers of migrations, comigrations, and seeding sites, and prespecifying a123

cancer type-independent parsimony model can prevent the recovery of these patterns. Furthermore, in our cohorts,124

we found that there were often multiple, equally parsimonious migration histories. MACHINA selects among these125

randomly, or via predefined constraints on the allowable patterns of metastatic spread.126

In contrast, Metient uses metastasis priors to both define a cancer type-specific parsimony model and to rank equally127

parsimonious histories. These priors incorporate additional biological constraints relevant to migration histories. We128

provide a tool, Metient-calibrate, that fits a patient cohort-specific parsimony model using the metastasis priors129

(Figure 1d-f; Methods). This calibrated model is used to rank Pareto-optimal histories that differ in their metrics.130

Metient also provides a pan-cancer parsimony model, calibrated to all four cohorts combined, for use when an131

appropriate patient cohort is not available.132

Metient provides two metastasis priors. One, genetic distance, can be applied to any cohort. The other,133

organotropism, can be used when appropriate tissue-type information are available for the sequenced tumor134

samples. The genetic distance prior considers the average genetic distance of migration edges in the labeled clone135

tree; where the genetic distance on an edge is the number of mutations gained in the child clone and not present in136

the parent clone. In general, we expect genetic distance to tend to be higher on migration edges than other clone137

tree edges for a number of reasons. First, the colonizing clones of a metastasis have undergone a clonal expansion138

in their metastatic site, which makes their private mutations more easily detectable by finite depth sequencing. In139
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contrast, the vast majority of private mutations in the source tumor will not be at high enough cellular frequency140

to be detectable, and subclones detected in the source tumor need not have undergone a clonal expansion30. In141

addition to increased mutation detectability, colonizing cells likely have more mutations than randomly selected cells142

in the source population due to the strong selection pressures they faced in metastasizing, as strong selection143

pressures select, perhaps indirectly, for higher mutation rates in asexually reproducing populations31–33. Finally,144

metastases exhibit greater genomic instability29,34,35, possibly as a consequence of these selection pressures, which145

is associated with heightened mutation rates36. Indeed, metastases across many cancer types have moderately or146

significantly higher tumor mutation burden (TMB) than matched primaries29,35,37. Metient’s genetic distance prior147

deems more probable those migration histories with higher averaged genetic distances on migration edges (Methods,148

Supplementary Information). Figure 1d illustrates an example of using the genetic distance prior to select between149

two equally parsimonious migration histories.150

The second metastassis prior, organotropism, is derived from data from 25,775 Memorial Sloan Kettering metastatic151

cancer patients29 on the preference that some cancer types have to colonize other organs38. We used these data152

to construct a matrix for 27 common cancer types, where each entry is the frequency of metastasis to a particular153

anatomical site that is observed in patients with that cancer type (Figure 1e). Note that there are no direct data154

for frequencies of migrations from one metastatic site to another metastatic site, so Metient only uses this matrix to155

score migrations coming from the primary site (Methods). For example, breast cancer metastasizes to lung more156

often than brain, so Metient’s organotropism prior favors a solution with migrations to the brain from a breast-seeded157

lung metastasis over one with migrations from a breast-seeded brain metastasis to the lung (Figure 1e). Indeed,158

brain to lung metastasis is rare39. As we illustrate in later sections, our metastasis priors lead to better performance159

on simulated benchmarks, and more plausible migration history reconstructions than using maximum-parsimony160

rules and cancer type-independent rules. Nonetheless, Metient reports all Pareto-optimal solutions; in this example,161

both solutions in Figure 1e are visualized in a simple summary report, so that these multiple hypotheses can be162

easily evaluated by the user.163

Importantly, Metient uses its metastasis priors to complement but not replace its parsimony model. In our164

benchmarking analyses on simulated data, we find that using genetic distance alone to score migration histories165

performs poorly and can result in the inference of highly non-parsimonious migration histories (Supplementary Tables166

4, 3, see also PathFinder40). Instead, the metastasis priors are only used once the Pareto front is defined, to calibrate167

parsimony models and to rank equally parsimonious solutions.168

Simulated data validates the genetic distance prior and shows that Metient is state-of-the-art169

To assess Metient’s new objective and gradient-based optimization on data with a provided ground-truth, we170

ran benchmarking analyses along with the state-of-the-art migration history inference method (MACHINA17) on171

simulated data, originally used to validate MACHINA, for 80 patients with 5-11 tumor sites and various patterns of172

metastatic spread.173
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Figure 2. Metient achieves state-of-the-art performance on simulated data. All results shown for Metient are in calibrate mode
using genetic distance as the metastasis prior. Metient-1024 refers to a model configuration where 1024 solutions are sampled.
For a given simulated input, for MACHINA (which outputs one solution) the top solution is used, and for Metient we evaluate all top
(lowest loss) solutions. (a) The averaged F1-score for predicting seeding clones (top) and migration graph (bottom), within three
buckets of input tree sizes. (b) The distribution of F1-scores for predicting seeding clones (top) and migration graph (bottom)
on different broad seeding patterns. Statistical significance assessed by a Wilcoxon signed rank test; ns: not significant, **:
p=0.0021. (c) After running Metient five times, the percentage of runs that a certain solution is found as a function of its averaged
rank across runs. (d) CPU wall-time needed to run Metient vs. MACHINA as a function of the search space size. CI: confidence
interval, SD: standard deviation.

First, to assess the added value of the genetic distance prior, we used Metient-calibrate to fit a calibrated parsimony174

model, and compared calibrated Metient with a version of Metient that used the parsimony model implied by175

MACHINA. We fit two calibrated models, one on a cohort with primary-only seeding and another on a cohort with176

metastasis-to-metastasis seeding. Metient-calibrate improved recovery of the ground truth migration graph (Figure177

1c) over fixed parsimony model (Calibrate vs. Evaluate (MP) in Supplementary Table 3), showcasing the ability of178

the metastasis priors to learn metastatic patterns specific to a cohort and improve overall accuracy. In addition,179

Metient-calibrate predicts ground truth seeding clones and migrations graphs at least as accurately as MACHINA,180

with overall improvements as tree sizes get larger (Figure 2a,b) and significant improvements in inferring the seeding181

clones for patients with more complex metastasis-to-metastasis seeding (Figure 2b top; p=0.0021).182

Notably, although the Metient framework is non-deterministic, it identifies the same top solution 97% of the time183

across multiple runs (Figure 2c). Furthermore, in addition to its improved accuracy, Metient runs up to 55x faster184

(3.95s with Metient-64 vs. 221.19s with MACHINA for a cancer tree with 18 clones and 9 tumors), showcasing our185

framework’s scalability even as tree sizes get very large (Figure 2d).186

Validation of organotropism prior187

To validate the organotropism prior, we ran Metient, using the pan-cancer parsimony model, on samples available188

from two patients with metastatic breast cancer20 where site labels could be mapped to those used in our189
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a
Metient: maximum parsimony*

+genetic distance +organotropism

Breast cancer patient A7
Metient: maximum parsimony* 

+ genetic distance 

labeling changed to better fit organotropism prior *pan-cancer parsimony model

Figure 3. Organotropism prior corrects unlikely patterns of seeding. (a) The inferred migration history for breast cancer
patient A7 20 without (left) and with (right) the inclusion of the organotropism prior. The addition of an organotropism prior changes
the vertex labeling of clone 4 from originating in the brain to originating in the lung. Solid edges are edges in the clone tree, and
dashed edges indicate the presence of the clone in the corresponding colored anatomical site (i.e., witness nodes).

organotropism matrix. When faced with multiple parsimonious migration histories, Metient chooses a more plausible190

tree, wherein lung to brain seeding is preferred over brain to lung seeding, which is clinically rare39 (Figure 3a).191

Multi-cancer analysis of clonality, phyleticity, and dissemination patterns192

Having established that Metient can accurately recover ground-truth and learn cohort-specific metastatic patterns on193

simulated data, we next sought to apply the method to real patient data from the melanoma, HGSOC, HR-NB and194

NSCLC cohorts to investigate shared and unique patterns of metastatic dissemination. Due to missing or inadequate195

anatomical site labels for many patients in these cohorts, we were unable to use Metient’s organotropism matrix on196

these cohorts, and we only calibrated to genetic distance.197

Using Metient, we examined three aspects of metastatic dissemination across the four cohorts. The first aspect is198

seeding pattern, which can be sub-categorized as single-source from the primary or from another site, multi-source,199

or reseeding (Figure 4a). The other two criteria are clonality, i.e., the number of distinct clones seeding metastases200

(Figure 4b), and phyleticity, i.e., whether metastatic potential is gained in one or multiple evolutionary trajectories of201

the clone tree (Figure 4c; Methods). We distinguish between genetic polyclonality, in which more than one clone202

seeds metastases in a patient, and site polyclonality, in which more than one clone seeds an individual site (Figure203

4b; Methods). We introduce this distinction to highlight cases where each metastasis is seeded by a single clone, but204

all sites are not seeded by the same clone (i.e., the cancer is genetically polyclonal but site monoclonal), because205

these may be cases where different site-specific mutations are needed for metastasis. We also update the previous206

definitions of metastasis-initiating clones (commonly called seeding clones). We define a seeding or colonizing clone207

as a node in a migration history whose parent has a different label than itself (Methods), because this clone is the208

only one guaranteed to have the mutations necessary to establish the metastasis. Previous work often refers to the209

parent of the colonizing clone as the seeding clone14,17, although this clone may not have all of mutations required210

for the observed metastasis.211

Consistent with expert annotations3,4,9,14,17, Metient finds that single-source seeding from the primary tumor is the212
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Figure 4. Clonal, phyletic and seeding patterns of four cancer types. (a) Schematic describing the four metastatic seeding
patterns. met: metastasis. (b) Schematic depicting how metastases can get seeded by either one or multiple clones and the
definitions of genetic clonality and site clonality. When a site is seeded by multiple clones, this can be a result of multiple clones
traveling in a cluster to the same anatomical site, or because of two clones traveling one after the other to the same site. Colors
represent genetically distinct cancer cell populations. (c) Schematic depicting the definitions of monophyletic and polyphletic
seeding. Monophyletic indicates that the colonizing clone closest to the root can reach every other colonizing clone on the clone
tree. Colors represent genetically distinct cancer cell populations. Distribution of (d) seeding patterns, (e) genetic clonality, (f)
site clonality and (g) phyleticity for each dataset, as inferred by Metient’s top migration history. (h) Radar plot showing the unique
Pareto-optimal metrics for migration histories inferred by Metient for HR-NB patient H103207. (i) Radar plot showing the unique
Pareto-optimal metrics for migration histories inferred by Metient for NSCLC patient CRUK290. (j) Comparing across datasets the
percent of migrations that are polyclonal for the top Metient solution. Statistical significance assessed by a Welch’s t-test. Error
bars are the standard error for each dataset. (k) Comparing across datasets the percent of metastatic sites that seed for the top
Metient solution. Statistical significance assessed by a Welch’s t-test. Error bars are the standard error for each dataset.

Koyyalagunta et al. | Metient | 10

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.07.09.602790doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602790
http://creativecommons.org/licenses/by/4.0/


most common pattern in every cohort (Figure 4d). However, Metient identifies a larger fraction of polyclonal migration213

patterns than previous reports8,14: 53.3% of patients have sites that are seeded by different clones, i.e., genetically214

polyclonal (Figure 4e), and 38.3% of patients have at least one site seeded by multiple clones, i.e. site polyclonal215

(Figure 4f). Overall, Metient estimates that 34.1% of sites (107/314) are seeded by multiple clones; nearly double216

prior estimates of site polyclonality (19.2%) based on an analysis of breast, colorectal and lung cancer patients8.217

Notably, parsimony model choice influences the polyclonality of migration histories, because reducing the number218

of seeding sites tends to increase the number of polyclonal migrations (Supplementary Figure S1a). However, the219

higher polyclonality in Metient’s reconstructions does not result from an assumption of primary-only seeding, as done220

in prior work, which would result in even more polyclonal migrations (Supplementary Figure S1a, Supplementary221

Information).222

Metient’s phyleticity estimates mirror previous reports: 77.2% of patients (129/167) have a monophyletic tree where223

metastatic potential is gained once and maintained (Figure 4g). For some patients, this is due to the root clone being224

observed in one or more metastatic sites (Supplementary Figure S1b), and for other patients, all colonizing clones225

belong to a single path of the clone tree. Either scenario suggests that metastatic potential is less likely to be gained226

via multiple, independent evolutionary trajectories across cancers.227

Cancer type-specific metastasis trends228

We next examined cancer type-specific differences in metastatic trends, first using a bootstrapping approach to229

ensure that the parsimony metric weights were reproducible and reflective of population level patterns for a particular230

cancer type. We fit parsimony metric weights to 100 bootstrapped samples of patients within the cohort (Methods),231

and found that 98.4% of patients ranked the same top solution across bootstrap samples, indicating that Metient232

can learn a reproducible cancer type-specific model for the melanoma and HGSOC cohorts which have only seven233

patients each.234

These cancer type-specific parsimony metric weights lead to cohort-specific choices on how Metient ranks a235

patient’s Pareto front of migration histories. For example, Metient chooses the solution on the Pareto front with236

lowest migration number (i.e. colonizing clones) for HR-NB patient H103207 (Figure 4h), but the solution with237

the median value of each metric for NSCLC patient CRUK0290 (Figure 4i). To systematically assess the impact238

of cohort-specific rankings we computed the percentage of polyclonality and number of seeding sites in the top239

ranked solution for patients with each cancer type. Overall, we found a significantly higher fraction of polyclonal240

migrations in melanoma than HGSOC, HR-NB and NSCLC patients (Figure 4j). One explanation for this heightened241

polyclonality in melanoma patients is that all patients in the cohort had locoregional skin metastases, a common242

“in-transit” metastatic site around the primary melanoma or between the primary melanoma and regional lymph243

nodes. These locoregional sites could have multiple cancer cells traveling together through hematogeneous244

or lymphatic routes to seed new localized tumors41. The HR-NB and NSCLC cohorts had significantly higher245

percentages of metastasis-to-metastasis seeding than melanoma (Figure 4k). As described below, in the HR-NB246
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Figure 5. Metient finds biologically relevant trees. (a) All ranked Pareto-optimal migration graphs inferred by Metient-calibrate
for HR-NB patient H103207. (b) All ranked Pareto-optimal migration graphs inferred by Metient-calibrate for HR-NB patient
H132384.

cohort, multiple patients exhibit metastasis-to-metastasis seeding within an organ or between commonly metastatic247

sites. In the NSCLC cohort, 76.2% of patients have lymph node metastases, from which it is known that further248

metastases are commonly seeded42. Indeed, Metient predicted that 75% (12/16) of NSCLC patients who had249

metastasis-to-metastasis seeding had seeding from a lymph node to other metastases.250

Metastasis priors identify biologically relevant migration histories and alternative explanations of spread251

A core advance of Metient is its ability to identify and rank the Pareto-optimal histories of a patient’s cancer. To252

assess how well our top ranked solution aligns with the most biologically plausible explanation, we compared our253

inferred migration histories to previously reported, expert-annotated seeding patterns.254

Of the 167 patients analyzed, 152 patients had an expert or model-derived annotation available. Because the HR-NB255

annotations only indicate the presence of a migration between two sites and not the directionality, for an overall256

comparison of these 152 patients we compared our site-to-site migrations to those that were previously reported (i.e.,257

a binarized representation of migration graph G (Figure 1c)). In 84% of patients (128/152), Metient-calibrate’s highest258

ranked solution aligns with the previously reported migration history. For the remaining 24 patients, Metient either259

identifies a more parsimonious history or recovers the expert annotation on the Pareto front but the metastasis priors260

prefer a different history than the expert. We provide a detailed case-by-case comparison in the Supplementary261

Information and Supplementary Figures S2, S3, S4, S5, and highlight some of the interesting cases below.262

Metient predicted metastasis-to-metastasis seeding for two HR-NB cases (H103207, H132384), which were263

previously reported to have initially seeded directly from the primary9. HR-NB patient H103207 shows evidence264
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of two possible metastasis-to-metastasis seeding scenarios. One, which is ranked the highest by the calibrated265

parsimony metrics posits a serial progression of metastatic seeding from the primary to the right lung, then to the266

liver, and finally to the left lung. The other, which has the second highest rank, posits seeding from the primary to the267

liver and then the left lung (Figure 5a). While the exact prevalence of metastasis-to-metastasis seeding between the268

liver and lung in HR-NB is unknown, both are common sites of metastases across cancer types due to cancer cells’269

ability to take advantage of rich blood supply, vascular organization and physiology38. Colonization of the lung by270

clones from a primary liver tumor is common38,43,44 and, similarly, the liver is a common site of metastasis for primary271

lung cancer patients38,45, suggesting that transitions from a liver-competent cancer clone to a lung-competent one272

and vice versa could also be common. For this patient, multiple colonizing clones emerge on distinct branches273

of the clone tree, providing another line of evidence that the suggested metastasis-to-metastasis seeding probably274

occurred (Supplementary Figure S2a). Specifically, the CNS-colonizing clones appear on a shared branch, and the275

lung- and liver-colonizing clones appear on a separate, shared branch after further primary tumor evolution occurred276

(Supplementary Figure S2a). This suggests that evolution within the primary tumor gave rise to multiple clones with277

organ-specific metastatic competence, and is concordant with the clonal analysis reported by Gundem et al.9 for278

this patient. Patient H132384 also shows evidence of metastasis-to-metastasis seeding, but from bone-to-bone, first279

to the left cervical and secondarily to the chest wall (Figure 5b). Metastasizing cells exhibit organ-specific genetic280

and phenotypic changes to survive in a new microenvironment38, suggesting that seeding an additional tumor within281

the same organ microenvironment is more likely than a secondary migration from the primary adrenal tumor in this282

case. In addition, prior experimental evidence shows that bone metastases prime and reprogram cells to form further283

secondary metastases46,47. These posited metastasis-to-metastasis seedings are thus upported by site proximity or284

organotropism, or both, and these Metient reconstructions were made without providing such information.285

Next we compared the inferred migration histories from the NSCLC samples we analyzed to an in-depth analysis286

of the same samples by the TRACERx consortium14. The TRACERx analysis enforces a primary single-source287

dissemination model, i.e., that metastases are only seeded from the lung, for its analysis of clonality and phyleticity.288

While Metient generally agrees with this dissemination model, Metient predicts metastasis-to-metastasis seeding289

for several (12.8%; 16/126) patients (Figure 6a). CRUK0484 is one such patient where Metient proposes that an290

initial metastasizing clone to the rib leads to secondary metastasis formation in the scapula (Figure 6b), which we291

propose is a more plausible solution based on the same line of reasoning described for the bone-to-bone metastasis292

predicted in HR-NB patient H132384 above.293

When comparing the TRACERx classifications of clonality and phyleticity for each patient to those implied by294

Metient’s highest-scoring solution, we find 84.1% agreement (106/126) in clonality (Figure 6c) and 78% agreement295

(96/123) in phyleticity (Figure 6d) (three patients classified as “mixed” phyleticity by TRACERx were excluded). The296

discrepancies between these classifications stem from the way in which metastatis initiating clones are defined.297

TRACERx identifies shared clones between a primary tumor and its metastases, defining the seeding clone as298

the most recent shared clone between the primary tumor and the metastasis. In contrast, Metient uses the entire299
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Figure 6. TRACERx NSCLC cohort. (a) The number of solutions that are classified as primary single-source (the assumed
seeding pattern of TRACERx) vs. other when looking only at the Pareto-optimal solutions vs. the top solution. (b) The top
two Pareto-optimal solutions for NSCLC patient CRUK0484 as ranked by Metient-calibrate. Comparison of Metient’s inference
to TRACERx’s (c) clonality and (d) phyleticity classification. Numbers in boxes indicate the number of patients in agreement
or disagreement. (e) All Pareto-optimal solutions for NSCLC patient CRUK0762 as ranked by Metient-calibrate. (f) Patient
CRUK0762 where seeding pattern and clonality are in agreement between Metient-calibrate but phyleticity differs due to which
clones are classified as seeding.
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migration history to define seeding clones (Methods) and accounts for metastasis-to-metastasis seeding, rather than300

assuming that seeding occurs only from the primary tumor. As a result, Metient has significantly higher sensitivity301

in detecting colonizing populations within metastases and, subsequently, increases the detection of polyclonal and302

polyphyletic events.303

In 20 NSCLC patients, Metient inferred that multiple colonizing clones are needed to explain the full migration304

history, whereas no history is consistent with the TRACERx identified colonizing clones. For example, for patient305

CRUK0256 (Figure 6e), only the root clone is shared between primary and metastases, making it the only seeding306

clone by TRACERx’s definition. However, according to the clone tree and the observed presence of clone 6 in307

LN_SU_FLN1 and clone 5 in both LN_SU_FLN1 and LN_SU_LN1, we conclude that there must have been either a308

metastasis-to-metastasis seeding event (Figure 6e solution 1), or two clones originally from the primary (no longer309

detectable in the metastatic samples due to either ongoing evolution or undersampling) that seeded the metastases310

(Figure 6e solution 2). In either migration history, multiple clones had to participate in seeding in order to explain the311

clone tree and observed clones inferred from the sequencing data.312

Inference of phyleticity is also impacted by the use of the clone tree to determine colonizing clones, as the path313

connecting colonizing clones is used to determine if metastatic competence arises once or multiple times during314

evolution. Because the number of colonizing clones is underestimated in the TRACERx analysis, monoclonal315

seeding is inferred more often, automatically classifying these histories as monophyletic. Furthermore, we find 27316

cases where TRACERx classifies a patient as monophyletic and Metient classifies the same patient as polyphyletic;317

in such cases the multiple clones needed to explain seeding occur on separate paths of the clone tree (e.g. patient318

CRUK0762, Figure 6f). Therefore, while we agree that monophyleticity is the majority pattern in NSCLC (63%), we319

suggest that polyphyleticity might be underestimated due to less sensitivity in previous methods’ ability to detect320

colonizing clones.321
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Discussion322

We have presented and validated Metient, a new framework for reconstructing the migration histories of323

metastases. In contrast to prior work, Metient defines a Pareto front of possible migration histories, and then324

uses metastasis priors to resolve parsimony conflicts in a data-dependent manner. Another key innovation325

is that it adapts Gumbel straight-through stochastic gradient estimation to optimize the combinatorial problem326

required for history reconstruction. Collectively, these advances improve performance on simulated data, improve327

biological interpretation on real data, and define a Pareto front in a fraction of the time that MACHINA, the current328

state-of-the-art, takes to output a single solution. Notably, Metient uses open source software packages, whereas329

other methods rely on commercial MILP solvers. Metient, due to its much improved speed, could easily be adapted330

to much larger migration history reconstruction problems, such as those posed by single-cell data.331

Here we show that by selecting among Pareto-optimal solutions using a pre-specified parsimony model and ad hoc332

rules, previous algorithms biased the conclusions of studies of metastatic spread. In one study14, primary-only333

seeding was assumed when analyzing migration histories, thus plausible histories with metastasis-to-metastasis334

seeding were ignored, even when they were identified by MACHINA. Metient thus provides an unbiased means335

of identifying cancer-type specific trends in metastasis biology, thus addressing a critical problem in metastasis336

research.337

Metient’s increased precision in identifying colonizing clones allowed it to detect almost twice as much polyclonality338

as previously reported, suggesting that it is common for multiple clones to contribute to metastatic progression.339

Despite this, Metient still inferred that metastatic potential rarely emerges independently in separate evolutionary340

paths.341

Currently, Metient uses genetic distance and organotropism as its metastasis priors, however, the Metient framework342

is designed to be easily extensible. Adding a new prior simply requires writing a scoring function because Metient343

incorporates auto-differentiation to compute its gradient updates. For instance, the framework could be easily344

extended to incorporate mutational signatures as a prior, since metastases exhibit shifts in mutational signature345

composition48,49.346

Metient has some limitations. It scales well in compute time for larger clone trees or more samples but, because347

the loss landscape complexity increases substantially, in some cases (less than 1%), Metient became stuck in348

local minima. This problem was resolved when we ran Metient multiple times and with larger sample sizes, and349

we recommend this practice with larger reconstruction problems. One criteria to ensure convergence is when the350

Pareto front remains unchanged. Other migration history algorithms are also highly sensitive to the complexity of351

the loss landscape, and convergence issues that they face are not necessarily resolved by rerunning the algorithm.352

Also, Metient is not designed to consider subclonal copy number alternations (CNAs) when correcting its estimated353

variant allele frequencies for CNAs. Using the descendant cell fraction (DCF)50 or phylogenetic cancer cell fraction354

(phyloCCF)51 as inputs to Metient could solve this. Alternatively, one could input which clones are in which samples355
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directly into Metient instead of the allele frequencies. Finally, we note that choice of clustering and tree inference356

algorithm used when inputting data into Metient can impact both the clonality and phyleticity classifications. In an357

attempt to most accurately compare our migration histories to previously reported results, where possible, we use358

the same clustering and trees inferred for the original datasets.359

In conclusion, we show that Metient offers a fast and adaptable, fully automated framework that leverages bulk DNA360

sequencing data to probe enduring questions in metastasis research.361
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Methods362

Estimating observed clone proportions363

The first step of Metient is to estimate the binary presence or absence of clone tree (T) nodes in each site. The364

clone tree T can either be provided as input, or inferred from the DNA sequencing data using, e.g., Orchard52,365

PairTree53, SPRUCE54, CITUP55, or EXACT56. Building on a previous approach as described by Wintersinger et366

al.53, Metient estimates the proportion of clones in each site using the input clone tree T and read count data from367

bulk DNA sequencing. For a genomic locus j in anatomical site k, the probability of observing read count data xkj368

is defined using the following:369

• Akj is the number of reads that map to genomic locus j in anatomical site k with the variant allele370

• Rkj is the number of reads that map to genomic locus j in anatomical site k with the reference allele371

• ωkj is a conversion factor from mutation cellular frequency to variant allele frequency (VAF) for genomic locus372

j in anatomical site k373

Using a binomial model, we then estimate the proportion of anatomical site k containing clone c using p(xkj | Fkj) =374

Binom(Akj |Akj + Rkj , ωkj Fkj). Where F = U B is the mutation cellular frequency matrix, B ∈ {0, 1}C×M is 1:1375

with a clone tree, where C is the number of clones and M is the number of mutations or mutation clusters, and376

Bcm = 1 if clone c contains mutation m (Figure 1b). U ∈ [0, 1]K×C , where K is the number of anatomical sites,377

and Ukc is the fraction of anatomical site k made up by clone c (Figure 1b). An L1 regularization is used to promote378

sparsity, since we expect most values in U to be zero. For details on how to set ωkj , see “Variant read probability379

calculation (ω)” in Supplementary Information. An alternative way to find a point estimate of U is using a previously380

described projection algorithm for this problem52,53,56,57. A point estimate U can be found by optimizing the following381

quadratic approximation to the binomial likelihood of U given B and F:382

LP (U| B,F,W) = minF̂,U||W ⊙ (F −F̂)||2 s.t.U 1 ≤ 1, U ≥ 0, F̂ = U B (1)

where || · || is the Frobenius norm, 1 is a vector of 1s, F are the observed mutation frequencies, W is a K×M matrix383

of inverse-variances for each mutation in each sample derived from F, and ⊙ is the Hadamard, i.e., element-wise384

product. The definition for W is as described in previous work53,56.385

We use U (estimated in either of the previously described ways) to determine if a clone c is present in an anatomical386

site k. If c is present, we attach a witness node with label k (leaf nodes connected by dashed lines in Figure 1b, c)387

to clone c in clone tree T. We deem c to be present in k if Ukc > 5% for a given anatomical site k and clone c. If a388

clone c does not make up 5% of any of the K anatomical sites, and c is a leaf node of the clone tree T, we remove389

this node since it is not well estimated by the data.390

Here the term “anatomical site” is used to describe a distinct tumor mass. If multiple samples are taken from the391
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same tumor mass, we combine them as described in “Bulk DNA sequencing pre-processing: Non-small Cell Lung392

Cancer Dataset”.393

Note that read count data are only used to determine which clones are present in which sites, if a matrix indicating394

the presence or absence of each clone in each anatomical site is available, it can be used as an input to replace the395

read count data. These clone-to-site assignment matrices can be derived, e.g., from single-cell data.396

Labeling the clone tree397

The next step in inferring a migration history is to jointly infer a labeling of the clone tree and resolve polytomies, i.e.,398

nodes with more than two children. Polytomy resolution is discussed in the section “Resolving polytomies”.399

Because we are interested in identifying multiple hypotheses of metastatic spread, Metient seeks to find multiple400

possible labelings of a clone tree T. Each possible labeling is represented by a matrix V ∈ {0, 1}K×C , where K is401

the number of anatomical sites and C is the number of clones, and Vkc = 1 if clone c is first detected in anatomical402

site k. Each column of V is a one-hot vector. We solve for an individual V by optimizing the evidence lower bound,403

or ELBO, as defined by:404

ELBO(q) = Eq(V)[log p(U,T,V)] + H(V) (2)

Where Eq(V)[log p(U,T,V)] evaluates a labeling based on parsimony, genetic distance, and organotropism, and the405

second term is the entropy term. U has been optimized as described in the previous section “Estimating observed406

clone proportions”, or taken as input from the user. See Supplementary Information for a full derivation of this407

objective. Because V is a matrix of discrete categorical variables, we do not optimize V directly, but rather the408

underlying probabilites of each category that we optimize using a Gumbel-softmax estimator (see “Gumbel-softmax409

optimization”).410

Gumbel-softmax optimization411

In the previous section, we described how to score the matrix representation of the labeled clone tree, V. Here,412

we describe how to optimize V via the straight-through estimator of the Gumbel-Softmax distribution23,24. Starting413

with a matrix ψ ∈ {0, 1}K×C , of randomly initialized values, where K is the number of anatomical sites and C is the414

number of clones, and each column represents the unnormalized log probabilities of clone c being labeled in site k:415

1. At every iteration, for each clone c, we sample g1c...gkc, k i.i.d. samples from Gumbel(0,1) and compute416

yic = ψic + gic.417

2. We then sample from the categorical distribution represented by the column vector ψ:c by setting i∗ =418

argmaxi yic and represent that sample with a one-hot encoding in V, i.e., Vic = 1 if i = i∗, 0 otherwise.419
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3. Then we evaluate the ELBO(ν) where420

νic = exp(yic/τ)∑k
j=1 exp(yjc/τ)

for i = 1, ..., k,

using a stochastic approximation based on V, and take the gradient of this ELBO in the backward pass, thus421

implementing the straight-through estimator.422

4. During training, start with a high τ to permit exploration, then gradually anneal τ to a small but non-zero value423

so that the Gumbel-Softmax distribution, ν resembles a one-hot vector.424

At the end of training, as τ approaches 0, then the gradient becomes unbiased and ν approaches V. In order425

to capture multiple modes of the posterior distribution, each representing different hypotheses about the migration426

history, we optimize multiple Vs in parallel. To do this, we set up steps 1-3 such that x ψs are solved for in parallel58
427

(with a different random initialization for each parallel process), where x is equal to the sample size and is calculated428

according to the size of the inputs (∝ KC ). See Supplementary Information for further explanation.429

Resolving polytomies430

An overview of the algorithm to resolve polytomies is given in Supplementary Figure S7a and b.431

1. If a node i in T has more than 2 children, we create a new “resolver” node for every site where either i or i’s432

children are observed in. Specifically, for every node i in T, we look at the set of nodes P , which contains433

node i and node i’s children. We then tally the anatomical sites of all witness nodes for nodes in P . If any434

anatomical site is counted at least twice, a resolver node with that anatomical site label is added as a new child435

of i. The genetic distance between the parent node i and its new resolver node is set to 0 since there are no436

observed mutations between the two nodes.437

2. We allow the children of i to stay as a child of i, or become a child of one of the resolver nodes of i.438

3. Any resolver nodes that are unused (i.e. have no children) or which do not improve the migration history (i.e.439

the parsimony metrics without the resolver node are the same or worse) are removed.440

Fixing optimal subtrees441

To improve convergence, we perform two rounds of optimization when solving for a labeled clone tree and resolving442

polytomies:443

1. Solve for labeled trees and resolve polytomies jointly (as described in previous sections).444

2. For each pair of labeled tree and polytomy resovled tree, find optimal subtrees. I.e., find the largest subtrees,445

as defined by the most number of nodes, where all labels for all nodes are equal. This means that there is no446

other possible optimal labeling for this subtree (there are 0 migrations, 0 comigrations, 0 seeding sites), and we447

can keep it fixed. Fix these nodes’ labelings and adjacency matrix connections (if using polytomy resolution).448
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3. Repeat step 1 for any nodes that have not been fixed in step 2.449

Metient-calibrate450

In Metient-calibrate, we aim to fit a patient cohort-specific parsimony model using the metastasis priors. To score a451

migration history using genetic distance, we use the following equation:
∑

ij −log(Dij)Kij , where D contains the452

normalized number of mutations between clones, and K = 1 if clone i is the parent of clone j and clone i and clone453

j have different anatomical site labels.454

To score a migration history using organotropism, we use the following equation:
∑K

i=1 −log(oi)gi, where vector455

o contains the frequency at which the primary seeds other anatomical sites, and vector g contains the number of456

migrations from the primary site to all other anatomical sites for a particular migration history.457

To optimize the parsimony metric weights, Metient identifies a Pareto front of labeled trees for each patient and458

scores these trees based on (1) the weighted parsimony metrics and (2) the metastasis priors: genetic distance and,459

if appropriate anatomical labels are available, organotropism. These form the parsimony distribution and metastasis460

prior distribution, respectively. We initialize with equal weights and use gradient descent to minimize the cross461

entropy loss between the parsimony distribution and metastasis prior distribution for all patients in the cohort. Once462

the optimization converges, Metient rescores the trees on the Pareto front using the fitted weights, to identify the463

maximum calibrated parsimony solution, and genetic distance and organotropism are used to break ties between464

equally parsimonious migration histories. See Supplementary Information for a more detailed derivation.465

Metient-evaluate466

In Metient-evaluate, weights for each maximum parsimony metric (migrations, comigrations, seeding sites) and467

optionally, genetic distance and organotropism, are taken as input. These weights are used to rank the solutions on468

the Pareto front. If no weights are inputted, we provide a pan-cancer parsimony model calibrated to the four cohorts469

(melanoma, HGSOC, HR-NB, NSCLC) discussed in this work.470

Defining the organotropism matrix471

Data from the MSK-MET study29 for 25,775 patients with annotations of distant metastases locations was472

downloaded from the publicly available cbioportal59. Each patient had annotations of one of 27 primary cancer473

types and the presence or absence of a metastasis in one of 21 distant anatomical sites. The original authors474

extracted this data from electronic health records and mapped it to a reference set of anatomical sites. We sum475

over all patients to build a 27 x 21, cancer type by metastatic site occurrence matrix. We then normalize the rows476

to turn these into frequencies. We interpret the negative log frequencies as a “relative time to metastasis”, and only477

score migrations from the primary site to other sites, because there is no data to indicate frequencies of seeding478

from metastatic sites to other metastatic sites, or back to the primary. We make this data available for users, with the479

option for users to instead input their own organotropism vector for each patient.480

Koyyalagunta et al. | Metient | 21

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.07.09.602790doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602790
http://creativecommons.org/licenses/by/4.0/


Evaluations on simulated data481

We use the simulated data for 80 patients provided by MACHINA17 to benchmark our method’s performance.482

To prepare inputs to Metient, we use the same clustering algorithm and clone tree inference algorithm used in483

MACHINA (MACHINA17 and SPRUCE54, respectively) in order to accurately compare only our migration history484

inference algorithm (including polytomy resolution) against MACHINA’s. All performance scores are reported using485

MACHINA’s PMH-TI mode and Metient-calibrate with a sample size of 1024, both with default configurations. We486

do not use polytomy resolution for Metient-calibrate in these results, since it does not improve performance on487

simulated data. (Supplementary Tables 4, 3). However, this performance is not necessarily indicative of polytomy488

resolution working poorly, because it actually finds more parsimonious solutions than the ground truth solution in489

75% of simulated data (Supplementary Figure S6).490

Evaluation metrics. We use the same migration graph and seeding clones F1-scores as MACHINA. Given a491

reconstructed migration graph G, its recall and precision with respect to the ground truth migration graph G∗ are492

calculated as follows:493

recall = |E(G) ∩ E(G∗)|
|E(G∗)| precision = |E(G) ∩ E(G∗)|

|E(G)|

where E(G) are the edges of G, and multiple edges between the same two sites are included in E(G). When there494

are multiple edges from site i to site j, |E(G) ∩ E(G∗)| = min(a, b), where a and b are the number of edges from495

site i to site j in G and G∗, respectively.496

Recall and precision of the seeding clones in the inferred migration history (which includes inference of both the497

clone tree labeling and observed clone proportions) is calculated as follows:498

recall = |C(U, V) ∩ C(U∗,V∗)|
|C(U∗,V∗)| precision = |C(U, V) ∩ C(U∗,V∗)|

|C(U,V)|

where C(U, V) is the set of mutations, i.e., the subclone, associated with the clone nodes that have an outgoing499

migration edge. For example, C(U, V) = A,B,C in solution A of Figure 1c. The definition for seeding clones used in500

these evaluations is distinct from how we define seeding clones in the rest of the paper (“Defining colonizing clones,501

clonality, and phyleticity” in Methods). Specifically, if there is an edge between two nodes (u, v), where the labeling502

of u and v are not equal, we define the seeding clone as v. However in order to consistently compare to MACHINA in503

these evaluations, we use their definition and define the seeding clone as u. We note that identifying the mutations504

of v is generally a harder problem.505

Timing benchmarks. All timing benchmarks (Figure 2e) were run on 8 Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz506

CPU cores with 8 gigabytes of RAM per core. Runtime of each method is the time needed to run inference and507

save dot files of the inferred migration histories (and for Metient, an additional serialized file with the results of the508

top k migration histories). We compare MACHINA’s PMH-TI mode to Metient-calibrate with a sample size of 1024,509

both with default configurations. These are the same modes used to report comparisons in F1-scores. Each value510
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in Figure 2e is the time needed to run one patient’s tree. Because Metient-calibrate has an additional inference step511

where parsimony metric weights are fit to a cohort, we take the time needed for this additional step and divide it by512

the number of patient trees in the cohort, and add this time to each patient’s migration history runtime.513

Defining colonizing clones, clonality, and phyleticity514

A colonizing clone is defined as a node in a migration history whose parent is a different color than itself. There are515

two exceptions to this rule: when node a has a parent with a different color than itself, but the node is a witness node516

(Figure 1c) or a polytomy resolver node (e.g. A_POL in Supplementary Figure S7a). In these cases, these nodes517

do not represent any new mutations, but rather contain the same mutations as its parent. For these two cases, the518

colonizing clone is defined to be a’s parent node.519

In order to rectify different meanings of the terms “monoclonal” and “polyclonal” used in previous work, we define520

two terms:521

• genetic clonality: if all sites are seeded by the same colonizing clone, this patient is genetically monoclonal,522

otherwise, genetically polyclonal.523

• site clonality: if each site is seeded by one colonizing clone, but not necessarily the same colonizing clone,524

this patient is site monoclonal, otherwise, site polyclonal.525

Genetic clonality and site clonality are depicted schematically in Figure 4b.526

To define phyleticity, we first extract all colonizing clones from a migration history. We then identify the colonizing527

clone closest to the root, s, i.e., the colonizing clone with the shortest path to the root. If all other colonizing clones528

are descendants of the tree rooted at s, the migration history is monophyletic, otherwise, it is polyphyletic. Under this529

definition, if a tree is monophyletic, then there are no independent evolutionary trajectories that give rise to colonizing530

clones. This is depicted schematically in Figure 4c.531

In order to accurately compare our phyleticity measurements to TRACERx, we use their definition in Figure 6c and532

the TRACERx comparison analysis. To apply their definition to our migration histories, we extract colonizing clones533

as described above, and then determine if there is a Hamiltonian path in the clone tree that connects the colonizing534

clones. I.e., we determine if there is a path in the clone tree that visits each colonizing clone exactly once. If such a535

Hamiltonian path exists, we call this migration history monophyletic under the TRACERx definition, and polyphyletic536

otherwise.537

Bootstrap sampling for fitting parsimony metric weights538

Running Metient-calibrate on the 167 patients from the melanoma, HGSOC, HR-NB and NSCLC datasets infers a539

Pareto front of migration histories for each patient. For each dataset, we subset patients that have a Pareto front with540

size greater than one, and take 100 bootstrap samples of patients from this subset. Patients with a single solution541

on the Pareto front do not have an impact on the cross-entropy loss used to fit the parsimony metric weights. For542
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each bootstrap sample of patients, their Pareto front migration histories are used to fit the parsimony metric weights543

(“Calibrate alignment” in Supplementary Information). For each of the parsimony metric weights fit to a bootstrap544

sample, we evaluated how these weights would order the Pareto front, and evaluated how consistently the same top545

solution was chosen. We average the percent of times the same solution is ranked as the top solution across the546

four datasets.547
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Data availability548

The HR-NB dataset was accessed from the NCI’s Cancer Research Data Commons (https://datacommons.549

cancer.gov) under the study phs03111.v1.p1. The anatomical site labels for TRACERx patients used data550

generated by The TRAcking Non-small Cell Lung Cancer Evolution Through Therapy (Rx) (TRACERx) Consortium551

and provided by the UCL Cancer Institute and The Francis Crick Institute. The TRACERx study is sponsored by552

University College London, funded by Cancer Research UK and coordinated through the Cancer Research UK and553

UCL Cancer Trials Centre. The organotropism matrix derived from MSK-MET is available at https://github.com/554

morrislab/metient/blob/main/metient/data/msk_met/msk_met_freq_by_cancer_type.csv. The following555

publicly available datasets were used: melanoma3, breast20, HGSOC4, NSCLC14, MSK-MET29.556
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Code availability557

Metient is available as a software package installable with pip at https://github.com/morrislab/metient/.558

Tutorials for usage can be found at https://github.com/morrislab/metient/tree/main/tutorial. Code to559

reproduce figures from this manuscript can be found at https://github.com/morrislab/metient/tree/main/560

metient/jupyter_notebooks.561
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Supplementary Figures and Tables716
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Figure S1. (a) A comparison of the percent of site polyclonal migrations for each patient’s migration history when using the best
migration history chosen by Metient (x-axis) vs. a model that assumes primary-only seeding (y-axis). (b) Percent of patients
in each dataset with the root cancerous clone observed in a metastatic site. (c) The distribution of seeding patterns in each
dataset when taking the migration history on the approximate Pareto front with the lowest number of seeding sites, run with
Metient-calibrate. (d) The distribution of seeding patterns across all patients if we choose the migration history on the Pareto front
with the lowest number of seeding sites (primary-only seeding model), lowest number of migrations (migration penalizing model),
or the top Metient-calibrate solution. (e) A comparison of the number of metastatic sites that seed other sites between migration
histories chosen by a model which chooses the migration history with a model that assumes primary-only seeding vs. Metient.
Statistical significance assessed by a paired t-test, p=2.233e-06.
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Figure S2. Comparison of Gundem et al. 9 reported body maps (left of each square) and Metient-calibrate inferred histories. The
Metient-calibrate solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are
multiple Pareto optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown.
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Figure S3. Comparison of Gundem et al. 9 reported body maps (left of each square) and Metient-calibrate inferred histories. The
Metient-calibrate solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are
multiple Pareto optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown.
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 Metient-calibrate

Solution 1 Solution 2

 Metient-calibrate

Figure S4. Comparison of Sanborn et al. 3 reported histories and Metient-calibrate inferred histories. In the Sanborn et al. 3

reported histories, solid lines denote probable dissemination patterns and dashed lines denote multiple possible paths. The
Metient-calibrate solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are
multiple Pareto optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown.

Patient 9
McPherson et al.

Patient 2
McPherson et al. Metient-calibrate
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McPherson et al. Metient-calibrate*

Patient 7
McPherson et al. Metient-calibrate*

Patient 10
McPherson et al. Metient-calibrate

Patient 3
Metient-calibrate*

Patient 1
McPherson et al. Metient-calibrate*

*Right ovary and left ovary were both run as possible primaries.
Right ovary gave lowest loss top solution. 

b

a

c
McPherson et al.

e

d

Metient-calibrate*
f g

Solution 1 Solution 3

*Left ovary and right ovary were both run as possible primaries.
Left ovary gave lowest loss top solution. 

*Right ovary and left ovary surface were both run as possible primaries.
Right ovary gave lowest loss top solution.

*Right ovary, left ovary, and right uterosacral were run as possible primaries.
Right uterosacral gave lowest loss top solution.

*Right ovary and left ovary were run as possible primaries.
Left ovary gave lowest loss top solution.

Solution 2

Figure S5. Comparison of McPherson et al. 4 reported histories and Metient-calibrate inferred histories. The Metient-calibrate
solutions with unique migration graphs on the Pareto front are shown. For example, in cases where there are multiple Pareto
optimal migration histories with the same migration graph, only the migration history with the lowest loss is shown. When multiple
possible primaries were available, Metient-calibrate was run once with each possible primary, and the primary with the lowest
loss solution is shown.
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Figure S6. The percent of simulated data where a more parsimonious solution than ground truth is found when running
Metient-1024 in calibrate mode with polytomy resolution. More parsimonious is defined as at least one of the parsimony metrics
(migration, comigration and seeding site number) being less than the ground truth and all other metrics being equal.

A

A AB

AB

AC

ACDAC

ACD

A

A AB

AB

AC

ACDAC

A_POL

AC_POL

ACD

A

A AB

AB

AC

ACDAC

A_POL

AC_POL

ACD

Tree after UMAP estimation
Add polytomy
resolver nodes

Children of polytomies choose 
to stay in original position or 

become child of resolver node

A

A AB

AB

AC

ACDAC

A_POL

AC_POL

ACD

?
?

Vertex labeling and resolved 
tree are learned jointly

P M2M1

P M2M1

P M2M1

Tree after UMAP estimation
Add polytomy
resolver nodes

A

A AB

AB

AC

AC

A

A

A AB

AB

AC

AC

AA_POL0 A_POL1

A

A AB

AB

A

A_POL0 A_POL1

AC

AC

Vertex labeling and resolved 
tree are learned jointly

a

cb

Figure S7. (a) Polytomy resolution algorithm with two nodes (A and AC) that have polytomies that can be resolved. (b) Polytomy
resolution algorithm for a single node with four children and thus two resolver nodes. (c) Weight initialization is done such that
nodes start with higher probabilities of being in the same site as the site that they or their children are detected in (after UMAP

estimation).
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a b c d

Figure S8. The (a) migration penalty/weight, (b) comigration penalty/weight, and (c) seeding site penalty/weight for each cohort,
when taking 100 bootstrap samples of each cohort and fitting the weights to the bootstrapped sample. (d) The polyclonality index,
which is 1 − (wc/(wm + wc)), where wm is the migration penalty/weight and wc is the comgiration penalty/weight. Statistical
significance tested through a Welch’s t-test; ns: 5e-02 < p <= 1, *: 1e-02 < p <= 5e-02, **: 1e-03 < p <= 1e-02, ***: 1e-04 < p <=
1e-03, ****: p <= 1e-04.

a b c d

Figure S9. The distribution of tumors (number of distinct anatomical sites) for each cohort: (a) melanoma, (b) high-grade serous
ovarian cancer (HGSOC), (a) high-risk neuroblastoma (HR-NB) and (a) non-small cell lung cancer (NSCLC).

Previous Methods for Migration History Inference
Method Labels

clone tree
Estimates
clone
proportions
in sites

Models
Complex
Seeding

Multiple
solutions

Organo-
tropism

Genetic
Distance

Polytomy
Resolution

ClonEvol15 Y Y N Y N N N
Treeomics16 N Y N N N N N
MACHINA17 Y Y Y N N N Y
PathFinder40 Y N N Y N Y Y
Metient Y Y Y Y Y Y Y

Table 1. Summary of previous methods which perform some aspect of migration history inference. Y = yes, N = no. Labels clone
tree refers to whether the method infers the labels of the internal vertices of a clone tree (e.g. labeling clone AB as originating in
lymph in Figure 1c, solution A). Estimates clone proportions in sites refers to whether the method infers the leaf nodes (witness
nodes) (e.g. identifying that clone ABC is present in both lymph and liver in Figure 1c, solution A). Multiple solutions indicates
whether a method outputs multiple possible migration histories.
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Parsimony model Migration number
weight (wm)

Comigration number
weight (wc)

Seeding site
number weight
(ws)

wm >> wc >> ws

(MACHINA model)
1000 100 1

wc >> wm >> ws 100 1000 1
ws >> wm >> wc 100 1 1000
ws >> wc >> wm 1 100 1000
wc >> ws >> wm 1 1000 100
wm >> ws >> wc 1000 1 100

Table 2. The multiple parsimony models that Metient uses to build a Pareto front of solutions for a patient’s data. Each parsimony
model has a different relative weighting on each parsimony metric.

Average migration graph F1-scores

Method Primary-only Met-to-met Macro-F1 Micro-F1
Evaluate (MP) 0.930 0.688 0.809 0.736

Evaluate (MP) + polyres 0.983 0.648 0.816 0.715
Evaluate (GD) 0.857 0.691 0.774 0.724

Evaluate (GD) + polyres 0.829 0.649 0.739 0.685
Calibrate 0.930 0.716 0.823 0.759

Calibrate + polyres 0.983 0.662 0.823 0.726

MACHINA 0.968 0.643 0.806 0.708

Table 3. Average F1-scores of migration graph for each broad seeding pattern (primary-only seeding or metastasis-to-metastasis
seeding) on simulated data. All Metient models were run with a sample size of 1024. When multiple solutions are found for a given
input, all lowest loss solutions were taken. Evaluate (MP): Metient in evaluate mode with maximum parsimony only. Evaluate
(GD): Metient in evaluate mode with genetic distance only. Calibrate: Metient in calibrate mode, using genetic distance as the
metastasis prior. polyres: polytomy resolution is used. mS: monoclonal single-source seeding. pS: polyclonal single-source
seeding. pM: polyclonal multi-source seeding. pR: polyclonal reseeding.

Average migrating clone F1-scores

Method Primary-only Met-to-met Macro-F1 Micro-F1
Evaluate (MP) 0.795 0.781 0.788 0.784

Evaluate (MP) + polyres 0.873 0.791 0.832 0.808
Evaluate (GD) 0.954 0.876 0.915 0.892

Evaluate (GD) + polyres 0.979 0.928 0.954 0.939
Calibrate 0.961 0.916 0.938 0.925

Calibrate + polyres 0.961 0.890 0.926 0.905

MACHINA 0.954 0.876 0.915 0.892

Table 4. Average F1-scores of migrating clones for each broad seeding pattern (primary-only seeding or metastasis-to-metastasis
seeding) on simulated data. All Metient models were run with a sample size of 1024. When multiple solutions are found for a given
input, all lowest loss solutions were taken. Evaluate (MP): Metient in evaluate mode with maximum parsimony only. Evaluate
(GD): Metient in evaluate mode with genetic distance only. Calibrate: Metient in calibrate mode, using genetic distance as the
metastasis prior. polyres: polytomy resolution is used.
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Supplementary Information717

A. Evaluating migration histories718

We present our technique for optimizing migration histories in the context of variational inference. Our goal is to719

approximate the conditional density of latent variable V given observed variables U and T: p(V | U,T). U has720

been optimized as described in the section “Estimating observed clone proportions” in Methods. p(V | U,T) can be721

written as:722

p(V | U,T) = p(U,T | V)p(V)
p(U,T) (S1)

We cannot calculate the denominator, or the evidence, as its derivation is intractable (there are many possible values723

of V):724

p(U,T) =
∑
V

p(U,T,V) (S2)

We approximate the posterior distribution p(V | U,T) with a simpler distribution q(V), and we aim to minimize the725

Kullback-Leibler (KL) divergence between q(V) and the true posterior p(V | U,T). The Evidence Lower Bound726

(ELBO) is given by:727

ELBO(q) = Eq(V)[log p(U,T,V)] + H(V) (S3)

Where the second term is the entropy term.728

To handle the categorical nature of V, we use the Gumbel-Softmax reparameterization trick to optimize V. Starting729

with a matrix ψ ∈ {0, 1}K×C , of randomly initialized values, where K is the number of anatomical sites and C is the730

number of clones, and each column represents the unnormalized log probabilities of clone c being labeled in site k:731

1. At every iteration, for each clone c, we sample g1c...gkc, k i.i.d. samples from Gumbel(0,1) and compute732

yic = ψic + gic. Where a sample g from the Gumbel is computed as:733

g = − log(− log(u)) where u ∼ Uniform(0, 1) (S4)

2. We then sample from the categorical distribution represented by the column vector ψ:c by setting i∗ =734

argmaxi yic and represent that sample with a one-hot encoding in V, i.e., Vic = 1 if i = i∗, 0 otherwise.735

3. Then we evaluate the ELBO(ν) where736

νic = exp(yic/τ)∑k
j=1 exp(yjc/τ)

for i = 1, ..., k,

using a stochastic approximation based on V, and take the gradient of this ELBO in the backward pass, thus737

implementing the straight-through estimator.738
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4. During training, start with a high τ to permit exploration, then gradually anneal τ to a small but non-zero value739

so that the Gumbel-Softmax distribution, ν resembles a one-hot vector.740

At the end of training, as τ approaches 0, then the gradient becomes unbiased and ν approaches V. In order741

to capture multiple modes of the posterior distribution, each representing different hypotheses about the migration742

history, we optimize multiple Vs in parallel. To do this, we set up steps 1-3 such that x ψs are solved for in parallel58
743

(with a different random initialization for each parallel process), where x is equal to the sample size and is calculated744

according to the size of the inputs (∝ KC ).745

Using the Gumbel-Softmax reparameterization as described above, we approximate the expectation in the ELBO746

with a sample of V, which we denote Ṽ:747

Eq(V)[log p(U,T,V)] ≈ log p(Ṽ,U,T) (S5)
748

H(V) ≈ −
C∑

j=1

K∑
k=1

q(Ṽjk) log q(Ṽjk) (S6)

In the following sections, we describe how we calculate p(Ṽ,U,T), which is broken down into (1) pm(Ṽ,U,T), i.e.,749

the scoring of Ṽ using maximum parsimony, (2) pg(Ṽ,U,T), i.e., the scoring of Ṽ using genetic distance, and (3)750

po(Ṽ,U,T), i.e., the scoring of Ṽ using organotropism.751

A.1. Evaluating maximum parsimony. As previously described by MACHINA17, the maximum parsimony metrics are752

defined as:753

• migration number m: Given clone tree T and clone tree labeling V, the migration number is the number of754

edges in T where the outgoing node and incoming node have a different label. It is the number of edges in755

migration graph G.756

• comigration number c: Given clone tree T and clone tree labeling V, the comigration number is a subset of757

the migration edges between two anatomical sites, such that the migration edges occur on distinct branches758

of the clone tree. It is the number of multi-edges in migration graph G if G does not contain cycles.759

• seeding site number s: Given a clone tree T and clone tree labeling V, the seeding site number is the760

number of unique anatomical sites with an outgoing edge. It is the number of edges in migration graph G with761

an outgoing edge.762
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Maximum parsimony scoring calculates the number of migrations m , comigrations c, and seeding sites s.

pm(Ṽ,U,T) = wm ·m+ wc · c+ ws · s (S7)

m =
∑

ij

G − Trace(G)

s =
n∑

j=1

(( m∑
i=1

(
G ⊙ (JK − IK)

)
i

)∗
)

j

c =
∑

ij

G∗
ij − Tr(G∗) +

∑
ij

( m∑
l=1

(
P ⊙ (W ⊙ X)

)
l

)
ij

where G = ṼTṼT
,P =

(
T ∨ IN

)N−1
,X = ṼT Ṽ,Y =

∑m
i=1

(
(ṼTṼT ⊙ (JCK − VT )

)
,Z∗ = sign(Z). ∨763

represents boolean matrix multiplication, In is a n×n identity matrix, ⊙ is the Hadamard, i.e., element-wise product,764

and Jmn is a matrix of ones with dimensions m× n.765

A.2. Evaluating genetic distance. Genetic distance is a measure of the number of mutations between clones. Given766

a distance matrix D which has normalized genetic distances between every clone:767

pg(Ṽ,U,T) = wg

m

∑
ij

−log(D) ⊙ T ⊙ (JC − X) (S8)

where JC is a square matrix of ones, ⊙ is the Hadamard, i.e., element-wise product, and X = ṼT Ṽ. The product768

T ⊙ JC − X tells us if two nodes have an edge between them and they are in different sites. Taking the hadamard769

product of this with the negative log of D gives lower scores to edges with higher genetic distances. We normalize by770

the migration number m so we don’t implicitly penalize migration histories with more migrations through this scoring.771

A.3. Evaluating organotropism. Organotropism refers to the observation that certain cancers metastasize to specific

organs. We penalize migration edges between organs that are less likely to occur based on clinical data. Given a

vector o which contains the frequency that a primary tumor seeds other anatomical sites:

po(Ṽ,U,T) = wo

mp

K∑
i=1

−log(o) ⊙ (G ⊙ (JK − IK))p,i (S9)

where G = ṼTṼT
, ⊙ is the Hadamard, i.e., element-wise product, JK is a square matrix of ones, and IK is772

the identity matrix. The product (G ⊙ (JK − IK)) contains the number of migrations between different sites, and773

taking the Hadamard product of this with the negative log of o gives lower scores to migration edges with higher774

organotropism frequencies. The subscript p, i represents taking the row of (G ⊙ (JK − IK)) which represents the775

primary site index and summing over the columns at every other anatomical site i. We normalize by mp, the number776

of migrations originating from the primary site, so we don’t implicitly penalize migration histories with more migrations777

through this scoring.778
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B. Calibrate alignment779

A parsimony model is represented by a set of parsimony weights – wm, wc, and ws – assigned, respectively, to the780

number of migrations (indicated by m), comigrations (c), seeding sites (s). A migration history’s parsimony score, p,781

is the model-weighted average of these three parsimony metrics, i.e., p = wmm+wcc+wss (Equation S7). Different782

parsimony models favor different histories on the Pareto front. To fit a parsimony model to a cancer type-specific783

cohort, we look at how well the maximum parsimony distribution aligns with the genetic distance distribution of each784

patient’s migration history trees.785

Take a cohort of N patients, where each patient, n, is associated with a set,786

S(n) =
{
t
(n)
i

}T (n)

i=1
,

of T (n) migration histories. Each migration history t is associated with a genetic distance gt (or, alternatively, an787

organotropism score), and a vector of parsimony metrics xt = [mt ct st] (i.e., the counts of migrations, comigrations,788

and seeding sites, respectively). The goal is to set the parameters, θ = [wm wc ws] of the parsimony prior q(t) ∝789

exp
(
−xT

t θ
)

so that it matches, as best as possible, a target distribution, p(t), over the migration histories t implied790

by the gt, where p(t) ∝ exp(−τgt) and τ is a user-defined "temperature" hyper-parameter.791

To fit these parameters, we define patient-specific categorical distributions p(n)(t) and q(n)(t) as follows. Let g(n)
792

be the vector of length T (n) of genetic distances of the migration histories for patient n, where g(n)
i is the genetic793

distance for the i-th tree. And let the column vector x(n)
i be the parsimony metrics for the i-th migration history794

associated with patient n. We will append the T (n) vectors x(n)
i to make a 3 × T (n) design matrix X(n). Also we795

define the vector-valued softmax function in the typical way, i.e.,796

softmax(v)i = exp(vi)∑|v|
j=1 exp(vj)

where softmax(v)i is the i-th element of the vector output by softmax(v). Then the "parsimony" probability797

distribution over the trees for patient n is represented by the vector q(n)
798

q(n) = softmax(−θTX(n))

and the target distribution by the vector p(n)
799

p(n) = softmax(−τg(n)).
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Then we define the cohort calibration objective E(θ) as an average cross-entropy over the patient cohort, i.e.,800

E(θ) =
N∑

n=1
wn

T (n)∑
i=1

p
(n)
i log q(n)

i


and the MLE estimate of the parameters is θ∗ = argmaxθE(θ). wn is set to log(E/(r · b)), where E is the number of801

internal edges of a patient’s clone tree, r is the number of possible primaries for the patient, and b is the number of802

possible clone trees for a given patient (so as not to bias towards patients with multiple possible primaries or multiple803

possible clone trees). Since the number of edges is equal to the maximum number of migrations possible in a tree,804

it is also equal to the number of possible genetic distance observations that that tree can provide in the genetic805

distance scoring of that tree. Therefore, wn is representative of the information content that a patient can provide806

when fitting θ.807

B.1. Specifying the target distribution by setting the temperature parameter. The use of E(θ) to set θ requires that for808

a patient n that, generally speaking, the genetic distance g(n)
i for a potential migration history, represented by a tree809

i, is lower for more probable histories. However, because E(θ) is minimized when τg(n) = θX(n) + c1 for some810

constant c, this could be a very strong assumption, one that we might not always be comfortable making.811

Fortunately, we can set τ to increase the correctness of this assumption. Notice that in the limit of large τ that812

lim
τ→∞

E(θ) =
N∑

n=1
wn log q(n)

i∗
n

where i∗n = argmini g
(n)
i , assuming that the minimum is unique. If the minimum is not unique then the above is true813

if we replace log q(n)
i∗

n
with the average of log q(n)

t of all the trees t that have the minimum genetic distance for patient814

n.815

So, in other words, if we set τ to be very large, then E(θ) is just the (weighted) sum of the log probabilities of816

the minimum genetic distance trees in each patient, and optimizing E(θ) corresponds to maximizing the parsimony817

probabilities of the best scoring trees per patient under the genetic distance score.818

∏
i

exp(X(i)τ

θ)∑
j|rank(j)≥rank(i) exp(X(j)τ θ)

So, we set τ to be large, such that τ is multiple times the maximum genetic distance (assuming that the genetic819

distance is always positive). We do the same for the organotropism prior.820

C. Case-by-case differences to expert annotations821

C.1. Comparisons to Melanoma patients from Sanborn et al.. Migration histories generated for the metastatic822

melanoma cohort using Metient-calibrate agree with the expert analysis that most melanoma patients exhibit primary823

single-source seeding (7/7 patients; Supplementary Figure S4). For patient F (Supplementary Figure S4c), our824

Koyyalagunta et al. | Metient Supplementary Information | 43

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2024. ; https://doi.org/10.1101/2024.07.09.602790doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602790
http://creativecommons.org/licenses/by/4.0/


reconstruction of the clone tree and observed clones does not suggest that a lymph node to distant metastasis825

seeding event is likely, but that this patient also likely exhibits a primary-only seeding pattern. In the second best826

solution predicted for patient D, Metient predicts that a locoregional skin metastasis from the right ankle could have827

given rise to subsequent metastases, supporting one of the possible paths (in dotted lines) that the original authors828

propose (Supplementary Figure S4d). We also predict a primary single-source solution on the Pareto front which is829

another possible path proposed by the authors (Supplementary Figure S4d).830

C.2. Comparisons to HGSOC patients from McPherson et al.. In the seven HGSOC patients, predicted migration831

histories by McPherson et al.4 were made available using an algorithm that only minimizes migrations (Sankoff832

algorithm60). We find that four out of seven patients are in complete agreement (Supplemental Figure S5). For833

patient 1, by resolving polytomies, we offer an explanation with less migrations and comigrations, and predict that834

the left fallopian tube rather than the small bowel served as a possible intermediate site before further metastatic835

dissemination (Supplemental Figure S5a). For patient 3, we offer an explanation with less migrations, comigrations836

and seeding sites, suggesting that all metastases were seeded from the primary (Supplemental Figure S5c). Finally837

for patient 7, solving for polytomies allows us to reduce the migration number by 1 from the right uterosacral to left838

ovary, although the overall seeding pattern is in agreement (Supplemental Figure S5d).839

C.3. Comparisons to HR-NB patients from Gundem et al.. Because the HR-NB annotations only indicate the presence840

of a migration between two sites and not the directionality, we compared our site-to-site migrations (i.e., a binarized841

representation of migration graph G (Figure 1c)) to those that were previously reported. We looked at the 14 HR-NB842

patients for which there were manual expert annotations from Gundem et al.9, and found that we predict the same843

overall site-to-site migrations for 10 out of 14 cases. For patient H103207, we predict their before therapy pattern844

on the Pareto front (Solution 3 in Figure S2a), but we prioritize two solutions with metastasis-to-metastasis seeding845

between the lung and the liver. A subset of this seeding between the liver and two lobes of the lung is suggested in846

their after therapy hypothesis of spread (Figure S2a). While Gundem et al. suggest seeding between the two lobes847

of the lung as well as from each lobe of the lung to the liver, we infer a simpler, serial progression, where the right848

lung lower lobe seeds the liver, which subsequently seed the left lung lower lobe (Solution 1 in Figure S2a). For849

patient H132396, Metient prioritizes migration histories with fewer migrations (Solutions 1 and 2 in Figure S2g), but850

presents the expert annotation on the Pareto front (Solution 3 in Figure S2g). For patient H132384, Metient proposes851

bone-to-bone secondary metastasis formation (Solution 1 in Figure S3d), but again presents the expert annotation852

on the Pareto front (Solution 2 in Figure S3d). For patient H134821, we infer the same pancreas to hilar lymph node853

seeding proposed by the authors as spread after therapy, but suggest that all other metastases were seeded directly854

by the primary (Solution 1 in Figure S3f). However, we report the same metastasis-to-metastasis seeding between855

the cervical and thoracic lymph nodes and cervical metastases as the authors in alternative solutions on the Pareto856

front (Solutions 3-5 in Figure S3f).857
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D. Model choice impacts downstream analyses858

As we were analyzing different aspects of metastatic dissemination, we asked how these answers might change if a859

seeding model is enforced when reconstructing a patient’s migration history. To highlight how the choice of seeding860

model can impact the analysis and interpretation of metastatic dissemination, we compared the migration histories861

produced by three models: (1) assumption of primary, single-source seeding, (2) the MACHINA assumptions, which862

first minimize migrations, and then break ties based on comigration number followed by seeding site number, and863

finally (3) the adaptive Metient model fit to each cohort. As expected, a primary, single-source seeding model864

chooses a primary, single-source dissemination pattern for 100% of patients (Supplementary Figure S1c). The865

migration penalizing model chooses a primary single-source seeding explanation in 82.6% of patients, and Metient866

falls in between the two, choosing a primary single-source seeding explanation in 86.2% of patients (Supplementary867

Figure S1d). Importantly, since Metient can recover and evaluate the relative trade-offs of the parsimony metrics,868

when choosing a primary single-source solution, our model has either not found a plausible metastasis-to-metastasis869

explanation for a patient’s data on the Pareto front, or has used the metastasis priors to deem such an explanation870

less likely. In contrast, previous models do not automatically recover multiple possible hypotheses, therefore reducing871

confidence in these algorithms’ choice of best history.872

In addition to having an impact on the inferred seeding patterns, a model that assumes primary single-source seeding873

also changes other interpretations of metastatic seeding. We asked two questions about the best migration histories874

produced by the two extremes of models, i.e. the assumption of primary, single-source seeding and Metient: (1)875

the frequency in which a new seeding site is added, and (2) the frequency of polyclonal migrations between two876

sites. As expected, a model which assumes primary, single-source seeding promotes migration histories with only877

one seeding site (Supplementary Figure S1e). In turn, such a model infers a higher fraction of polyclonal migrations878

(Supplementary Figure S1a) compared to the histories prioritized by Metient. The trade-off between polyclonality879

and seeding sites occurs because additional seeding sites reduce the number of migration edges that must be880

placed between the primary and all other metastases. Balancing this trade-off correctly is important as it impacts881

the interpretation of seeding clonality as well as which clones perform seeding. Specifically, 9% (15/167) of patients882

have differing colonizing clones between the two models, changing the inference of which clones, and therefore883

which mutations, have metastatic competence.884

E. Bulk DNA sequencing pre-processing885

E.1. Variant read probability calculation (ω). In order to account for non-diploid copy number and tumor purities, we886

require a variant read probability ω to be input for every genomic locus in each sample. For a given sample s and887

variant allele j, the variant read probability ωjs is the probability of observing a read with the variant allele at that888

locus in a cell with the mutation, and is calculated as:889
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ωjs = Mjs/Njs (S10)

where Mjs is the number of copies of the mutant allele j in sample s in the cells that contain the mutant allele, and890

Njs is the average number of copies at the genomic locus of the mutation j in all cells in s.891

To account for the fact that cancer cells frequently have different numbers of copies at genomic loci compared to

normal cells, Njs is calculated as:

Njs = ρsN
(c)
js + (1 − ρs)N (h)

js (S11)

where:892

• N (c)
js is the population average copy number of the locus which contains mutant allele j in the cancer cell893

population894

• N (h)
js is the copy number at the genomic locus of mutation j in the normal cell population. In diploid cells this895

is 2, and in haploid cells this is 1.896

• ρs is the tumor purity of sample s897

ρs and N
(c)
js (and sometimes Njs) are normal outputs from a copy number calling pipeline. We suggest setting898

Mjs = 1 unless there is strong evidence that the j allele has been amplified. In this case, allele-specific copy number899

callers provide the major allele copy number Ajs and minor allele copy number Bjs, where N (c)
js = Ajs + Bjs, and900

Mjs = Ajs. When a locus is impacted by many different CNAs, accurately estimating Mjs is challenging since901

there are likely subclonal changes in the multiplicity of the j allele, in which case we recommend excluding these902

mutations. For additional information on how to estimate Mjs and Njs please refer to Tarabichi et al.61.903

If clustering is used, we have to properly combine multiple SNV loci with different potential variant read probabilites.904

To do this, we rescale the reference and variant allele read counts for each locus and then set its variant read905

probability to 0.5 before combining variants within a cluster (where we add the reference and variant allele read906

counts for all variants within a cluster). This rescaling allows us to effectively treat the variant as coming from a907

diploid locus. To achieve this, we use the following rescaling formulas, which has been previously described in908

Wintersinger et al.53:909
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Tjs = Vjs +Rjs

T̂js = 2ωjsTjs

V̂js = min(Vjs, T̂js)

R̂js = T̂js − V̂js

ω̂js = 1
2

Where Tjs is the input count of total reads, Vjs is the input count of variant reads, Rjs is the input count of reference910

reads, and ωjs is the variant read probability at a genomic locus j in anatomical site s. The rescaled total, reference,911

and variant allele read counts and variant read probability are T̂js, V̂js, R̂js and ω̂js, respectively.912

E.2. Breast Cancer Dataset. The single nucleotide variant calls from two breast cancer patients with whole genome913

sequencing data were taken from Hoadley et al.20. The variant calls were in copy number neutral variant positions914

and tumor purity was not reported, so reference and variant counts along with defaults for tumor purity, major915

copy number and minor copy number (defaults are 1.0, 1, 1, respectively) were inputted into PyClone-0.13.1 clonal916

analysis62. PyClone’s MCMC chain was run for 100,000 iterations, discarding the first 50,000 as burnin. Orchard917

was run using the PyClone clusters as input with -p flag to force trees to be monoprimary (come from a singular918

root cancer clone) and all variant read probabilities set to the default of 0.5, since SNVs from regions with CNAs919

were excluded, and tumor purity was not reported and thus assumed to be 1. We ran Metient-evaluate on this data920

using all default configurations (dynamically calculated sample size based on size of input clone tree and number of921

anatomical sites).922

E.3. High-grade Serous Ovarian Cancer Dataset. To better compare to McPherson et al.’s own migration history923

analysis, we used the mutation clusters, clone trees and cellular prevalences of each clone that they estimate and924

report4. Metient was run with the U matrix inputted, and we solve for V for each patient. We ran Metient-calibrate925

on this data using all default configurations (dynamically calculated sample size based on size of input clone tree926

and number of anatomical sites) and with polytomy resolution.927

E.4. Melanoma Dataset. The single nucleotide variant and copy number calls from eight melanoma patients with928

whole exome sequencing data were taken from Sanborn et al.3, along with estimated tumor purity. Only SNVs in929

copy number neutral regions were considered. Patient H was excluded due to a lack of copy number neutral SNVs.930

Reference and variant read counts along with major and minor copy number and tumor purity were inputted into931

PyClone-VI 0.1.3 for clonal analysis63. PyClone-VI’s fit command was run with all default parameters. Orchard932

was run using the PyClone clusters as input with -p flag to force trees to be monoprimary (come from a singular933

root cancer clone). Variant read probabilities for Orchard were calculated using major copy number, minor copy934

number and tumor purity according to Equation S10. We ran Metient-calibrate with the clonal proportions estimated935
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by running Orchard (i.e., η in Orchard’s output) using all default configurations and with polytomy resolution.936

E.5. Neuroblastoma Dataset. Access to multi-WGS data for 45 neuroblastoma patients was provided through dbGaP937

accession phs031119. Of these 45 patients, 27 patients had at least one primary and one metastatic tumor sample938

with a tumor purity of >10%, and all analysis was conducted on this patient subset. Single nucleotide variant, copy939

number calls and tumor purities were collected from this dataset, and clusters produced from the original paper using940

DPClust64 were used. Multiple samples for the same anatomical site and sample time (i.e., diagnosis, therapy-naive941

re-resection, therapy resection during induction chemotherapy, relapse or further relapse) were combined by pooling942

reference and variant allele counts. Orchard was run using the DPClust clusters as input with -p flag to force trees943

to be monoprimary (come from a singular root cancer clone). Variant read probabilities for Orchard and Metient944

were calculated using major copy number, minor copy number and tumor purity according to Equation S10. We945

ran Metient-calibrate with the clonal proportions estimated by running Orchard (i.e., η in Orchard’s output) using all946

default configurations and with polytomy resolution.947

For three patients (H103207, H132388, H134822), multiple primary tumor samples were collected at different time948

points (diagnosis and resection during therapy). For these patients, we treated the therapy resection and diagnosis949

tumor as multiple samples from the same anatomical site if the anatomical site was labeled the same, and as two950

different primaries if the anatomical sites were different. The therapy resections were usually taken a few months951

after diagnosis tumor samples.952

E.6. Non-small Cell Lung Cancer Dataset. We used the clustered SNVs, clone trees and observed clone proportions953

made available by the TRACERx consortium for 126 non-small cell lung cancer (NSCLC) patients (downloaded from954

https://zenodo.org/record/7649257). When samples for multiple regions of a tumor were available, the reference955

and variant allele counts were summed together to generate reference and variant allele counts for the entire tumor.956

Since we model variant allele counts as binomially distributed with n total reads (variant + reference) and p probability957

of generating a variant read, this summing assumes that each sampled region of a tumor has the same probability958

p. Metient was run with the U matrix inputted, and we solve for V for each patient. We ran Metient-calibrate on959

this data using all default configurations (dynamically calculated sample size based on size of input clone tree and960

number of anatomical sites) and with polytomy resolution.961
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