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Abstract 

Improving diagnostic accuracy of obsessive-compulsive disorder (OCD) using models of 
brain imaging data is a key goal of the field, but this objective is challenging due to the 
limited size and phenotypic depth of clinical datasets. Leveraging the phenotypic 
diversity in large non-clinical datasets such as the UK Biobank (UKBB), offers a 
potential solution to this problem. Nevertheless, it remains unclear whether classification 
models trained on non-clinical populations will generalise to individuals with clinical 
OCD. This question is also relevant for the conceptualisation of OCD; specifically, 
whether the symptomology of OCD exists on a continuum from normal to pathological. 
Here, we examined a recently published “meta-matching” model trained on functional 
connectivity data from five large normative datasets (N=45,507) to predict cognitive, 
health and demographic variables. Specifically, we tested whether this model could 
classify OCD status in three independent clinical datasets (N=345). We found that the 
model could identify out-of-sample OCD individuals. Notably, the most predictive 
functional connectivity features mapped onto known cortico-striatal abnormalities in 
OCD and correlated with genetic brain expression maps previously implicated in the 
disorder. Further, the meta-matching model relied upon estimates of cognitive functions, 
such as cognitive flexibility and inhibition, to successfully predict OCD. These findings 
suggest that variability in non-clinical brain and behavioural features can discriminate 
clinical OCD status. These results support a dimensional and transdiagnostic 
conceptualisation of the brain and behavioural basis of OCD, with implications for 
research approaches and treatment targets.  
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Main 

Obsessive-compulsive disorder (OCD) is a disabling mental condition characterised by 
the presence of intrusive thoughts (obsessions) and/or excessive ritualistic behaviours 
(compulsions) 1. Neurobiological models of OCD supported by genetic, preclinical and 
neuroimaging studies implicate dysfunction within cortico-striatal-thalamic circuitry 2–7. 
Accurate individual classification, rather than group-level observations, is an important 
next step in understanding OCD. However, this objective is challenged by the difficulty 
of acquiring sufficiently large datasets 8, which has likely led to over-inflated 
classification accuracies and poor model generalisability 9. Large population-based 
cohorts like the UK Biobank (UKBB) have been touted as a viable way forward to 
address the lack of sample size and richness within clinical datasets. 
 
A major challenge in applying “big data” brain models to mental health conditions is the 
lack of individuals with clinical disorders in such databases. Specifically, in the case of 
OCD, large publicly available datasets tend not to include individuals with severe or 
extreme levels of obsessions or compulsions. Nonetheless, contrary to the dominant 
categorical view of OCD whereby an individual either has or does not have the disorder, 
several studies support a dimensional conceptualisation, with relevant behavioural, 
neurophysiological, and genetic phenotypes representing a continuum 10. This 
framework suggests that individual brain and behavioural variability associated with 
subclinical OCD symptoms and dimensional traits (e.g., compulsivity) in the general 
population may be leveraged to guide research, improve diagnostic tools, and develop 
targeted personalised treatments for clinical OCD 11–13. However, it is uncertain if brain 
features linked to the expression of subclinical OCD symptoms and traits align with 
established diagnostic (e.g., DSM-V) and neurophysiological (e.g., cortical-striatal-
thalamic loops) models of the disorder. Accordingly, the success of models based on 
“big data” relies on whether obsessive-compulsive features do indeed form a continuum 
from healthy individuals to clinical OCD with overlapping brain characteristics. 
 
A recent approach, termed “meta-matching”, demonstrated successful resting-state 
functional connectivity (RSFC) brain-behaviour model generalisation from large to small 
datasets in healthy cohorts 14,15. Meta-matching leverages the observation that many 
cognitive, health and demographic variables are correlated. Thus, brain connectivity 
patterns useful for classifying a known variable (e.g., age) are also likely to be useful in 
classifying an unseen, correlated variable in a different dataset (e.g., memory 
performance). This approach demonstrated impressive classification performances, 
even in small to moderate sample sizes 15, suggesting it may be useful to inform clinical 
neuroimaging studies.  
 
In the current work, we started by assessing whether a meta-matching model, trained 
on five large healthy datasets, was useful in identifying persons with an OCD diagnosis. 
We then investigated the brain features generated by the model and, in line with the 
cortical-striatal-thalamic loop model of OCD, hypothesised a large contribution of RSFC 
features associated with cortico-striatal circuits 3,16. We also explored the behavioural 
and physiological phenotypes derived from the large healthy datasets contributing to 
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OCD prediction. Finally, to further evaluate the biological validity of the meta-matching 
model, we assessed the relationship between its connectivity features and genetic 
expression maps previously associated with compulsivity in the general population 17. 

Results 

First, we established whether a brain-based classifier trained on healthy individuals 
could accurately identify persons with an OCD diagnosis. To achieve this, we used a 
meta-matching model 14 that had been trained to predict 458 variables reflecting 
different aspects of physical and mental health, cognition, and behaviour. This model 
used whole-brain RSFC calculated across five source datasets, encompassing a total of 
45,507 participants (Methods). Our local, to-be-classified dataset was a clinical OCD 
sample and matched healthy controls from three independent sites (N=345, nOCD = 199, 
nHC = 146). We refer to the data used in the meta-matching model as “normative” to 
distinguish it from the local healthy control data. Model accuracy was assessed in held-
out test samples in a standard five-fold cross-validation scheme (Methods). 

Normative meta-matching RSFC brain-behaviour models can be used to classify OCD  

We found the meta-matching model could accurately classify unseen RSFC data as 
OCD or healthy controls (median balanced accuracy = 61.1%, p = 0.003, Figure 1A). 
Brain features utilised in the meta-matching model are shown in Figure 1B (Methods). 
Positive brain feature weights indicate that higher RSFC was observed in the OCD 
group for a given brain region compared to the local dataset of healthy controls or vice 
versa. For example, visual cortex regions demonstrated high feature weights and, 
therefore, higher RSFC in OCD.  
 
Next, we averaged the regional weights into eight canonical functional brain networks 18. 
All networks but the subcortical and limbic networks showed significant contributions to 
the successful predictions (Figure 1C, Supplementary Table 1). Visual and dorsal 
attention networks were associated with increased OCD functional connectivity, 
whereas all other significant networks were associated with decreased connectivity in 
OCD (Figure 1C). 
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Figure 1. Meta-matching model performance and brain features. A. Balanced accuracy (y-axis) 
classification performance in out-of-sample data for the meta-matching model (blue) and shuffled 
permutations (grey). Individual data points represent the variability across the cross-validation folds (200 
iterations of 5 folds). B. Visualisation of the averaged brain features used in the model. C. Brain features 
averaged into canonical functional networks. Brain networks: FPN; control/frontoparietal, DMN; default-
mode, DAt; dorsal attention, Lim; limbic, VAt; salience/ventral attention, SM; somatomotor, SC; 
subcortical, Vis=visual).  Boxplots: centre line; median; box limits; upper and lower quartiles; whiskers; 
1.5x interquartile range. 
 

Evaluating the predictive contribution of cortico-striatal circuits 

OCD has been consistently associated with abnormal cortico-striatal circuit function 
2,6,16,19. Thus, we tested whether such circuits were more predictive of OCD status than 
other equally sized sets of subcortical-cortical functional brain connections. An 
independent dataset (N=250) was used to map the cortico-striatal circuits of interest 20 
(Methods). As expected, connectivity patterns involving the striatal seed regions (NAcc; 
Nucleus Accumbens, dCaud; dorsal Caudate, dPut; dorsal Putamen, vPut; ventral 
Putamen; Supplementary Figure 1) highlighted a largely striatal-frontal pattern of 
connectivity (Figure 2A). Using this data, “circuits of interest” were defined as the most 
highly connected cortical regions with positive RSFC (10 regions per hemisphere, per 
seed, cortical areas within black contours in Figure 2A). 
 
We observed consistent outlier brain features in the dorsal caudate, dorsal putamen, 
and ventral putamen circuits compared to shuffled permutations (dCaud; p= 0.01, dPut; 
p = 0.01, vPut; p = 0.01; Figure 2B). The dorsal caudate and dorsal putamen circuits 
also had larger negative feature weights than would be expected from any random set 
of subcortical-cortical brain connections (dCaud; p = 0.02, dPut; p = 0.04, Figure 2B 
and Supplementary Table 2). Note that, as before, the sign indicates the direction of 
the effect. For example, connectivity is lower in OCD in the dorsal putamen pathway 
compared to the local dataset healthy controls (Figure 2B). 
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Figure 2. Predictive weights within cortico-striatal circuits. A. Group- and hemisphere-averaged 
functional connectivity maps from 250 unrelated HCP participants when seeding each subcortical region 
of interest. Black borders indicate the cortico-striatal circuits of interest based on cortical regions with the 
highest positive connectivity values. NAcc; Nucelus Accumbens, dCaud; dorsal Caudate, dPut; dorsal 
Putamen, vPut; ventral Putamen (Supplementary Figure 1). B. Comparison between a null model of 
random subcortical-cortical brain feature weights (grey, far left) and the circuits of interest for the meta-
matching model (blue). Circuit-specific shuffled permutations are also shown in grey. Individual data 
points represent the variability across the cross-validation folds (200 iterations of 5 folds). C. Top ten 
meta-matching phenotypes with the largest feature weights. Positive values indicate the OCD cohort had 
higher weights than the local cohort healthy controls and vice versa (e.g., lower functional connectivity in 
the dCaud pathway in panel B, or increased harm avoidance in panel C). TCI; Temperament and 
Character Inventory, SDQ; Strengths and Difficulties Questionnaire, CWI; Colour Word Interference, D-
KEFS; Delis-Kaplan Executive Function System, WIAT; Wechsler Individual Achievement Test, BIS-BAS; 
Behavioural Inhibition and Behavioural Activation Systems, NIH refers to the NIH toolbox. Boxplots: 
centre line; median; box limits; upper and lower quartiles; whiskers; 1.5x interquartile range. 
 

Trained phenotypes contributing to OCD predictions 

We next sought to establish which phenotypes from the normative population data used 
in the meta-matching model were useful for classifying OCD. Specifically, the meta-
matching approach transforms brain connectivity data into 458 variables representing 
different health, cognitive and behavioural phenotypes derived from several datasets. 
We investigated which of these variables were useful in predicting OCD status. Of those 
458 variables, only two were significantly related to OCD predictions: (i) the 
Dimensional Change Card Sort Test, a measure of cognitive flexibility; and (ii) the 
Flanker Inhibitory Control and Attention test (pFDR < 0.05, Supplementary Table 3). 
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Other variables that were highly weighted (e.g., pFDR < 0.06) included cognitive 
measures such as performance on the Colour Word Interference test (a test of cognitive 
flexibility), mental health (e.g., excessive worrying indexed by harm avoidance), and 
behavioural variables (e.g., increased sleep per day) (Figure 2C).  

Relationship between meta-matching model brain features and genes implicated in 
OCD 

Next, we sought to understand the link between the brain connectivity features used in 
the meta-matching model and the known role of genetics in the development of OCD 
21,22. A recent GWAS meta-analysis identified that variability within the KIT, GRID2, 
ADCK1, and WDR7 genes are associated with an increased likelihood of compulsive 
symptoms 17. Broadly speaking, the KIT gene is involved in cell proliferation and 
survival, while the GRID2 gene supports glutamate signalling in cerebellar Purkinje cells 
23,24. The ADCK1 gene maintains mitochondrial function, and the WDR7 gene aids 
proteins involved in neurotransmission 25,26. To investigate these gene expression in the 
brain for these specific genes, we utilised preprocessed regional microarray expression 
data provided by the Allen Human Brain Atlas via the Abagen toolbox 27,28. Brain-wide 
regional gene expression was correlated with connectivity features generated by the 
meta-matching model (cortical features shown in Figure 1B). 
 
Three of the regional gene expression maps could be reliably linked to the brain 
connectivity features in the meta-matching model (GRID2, r = -0.31, p <0.001; WDR7, r 
= -0.30, p <0.001; ADCK1, r = -0.14, p = 0.03) (Figure 3). When considering the 
subcortex, only WDR7 demonstrated a significant correlation (WDR7, r = -0.64, p = 
0.01, see Supplementary Table 4). For each significant relationship, higher regional 
gene expression was associated with negative connectivity features (i.e., regions with 
lower RSFC in OCD compared to the local dataset healthy control cohort). Note that 
statistical significance was declared using the spin test 29, followed by FDR correction 
for multiple comparisons. 
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Figure 3. Regional gene expression associated with meta-matching predictive feature weights. 
The top panel shows the normalised regional gene expression (nRGE) for each of the four genes of 
interest. The bottom panel displays the linear relationship between each nRGE cortical map and the 
meta-matching model connectivity feature weights. 

Control analyses 

We contrasted the current results obtained using multilayer meta-matching 14 with the 
original meta-matching model 15. The key difference between these models is the 
increased number of training datasets and phenotypes in the multilayer meta-matching 
(the original model only used data from the UKBB for training). The multilayer meta-
matching performance was not statistically different from the original model (p = 0.44, 
Supplementary Figure 2). 
 
We also performed a control experiment using a logistic regression model to classify 
OCD patients (Methods). Classification performance for this model was not statistically 
different to the meta-matching models (p = 0.53, Supplementary Figure 2). Likewise, 
the brain features extracted from the models were significantly correlated (cortex: r = 
0.92, p < 0.001, subcortex: r = 0.82, p < 0.001). 
 
Finally, when developing brain-behaviour prediction models, it is common practice to 
attempt to remove (deconfound) covariates that may bias the results (e.g., age, sex, 
site, head motion). Accordingly, we have presented results adjusted for site, age and 
sex (see Methods). Classification performance was not statistically different between 
the deconfounded and non-deconfounded models (p = 0.93), suggesting that variables 
such as age, sex, and head motion had a limited impact on the results (Supplementary 
Figure 2). 
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Discussion 

In this study, we tested if a brain-behaviour model trained on large, relatively “healthy” 
(i.e., non-clincal) datasets could classify individuals with clinical OCD. Despite the lack 
of individuals with a clinical diagnosis of OCD and relevant measurements (e.g., 
symptom scales) in the training data, the model demonstrated above-chance 
performance. This finding supports the conceptualisation of OCD as a continuum 
comprising core behavioural, neurophysiological, and genetic aspects 30. Specifically, 
the predictive power of cognitive phenotypes developed in healthy training data - 
cognitive flexibility, attention, and inhibitory control - highlights the value of these non-
specific transdiagnostic measures for understanding OCD 31. Likewise, the results 
confirm the key role of dysregulated frontostriatal functional connectivity in OCD  3,7 and 
their relevance in the expression of subclinical phenotypes. Finally, we were able to 
establish a link between OCD-related brain connectivity features and gene expression 
associated with compulsiveness in the general population 10,17. 
 
The ubiquitous nature of the brain-behaviour mappings used by the meta-matching 
model is consistent with the idea that OCD pathology is supported by mental processes 
and behaviours that cut across traditional diagnostic categories and exist on a spectrum 
between healthy and diseased states 12,32,33. Accordingly, cognitive deficits like the one 
indexed by the Dimensional Card Sorting task or the Flanker Task are believed to be 
markers of general psychopathology detectable across various neurological and 
psychiatric conditions 34,35. In addition to the above cognitive processes, our findings 
highlight the strong predictive weight of harm avoidance or escape “coping”, which are 
more specific to OCD. Excessive harm avoidance and its underpinning processes are 
indeed thought to be a core mechanism of compulsive behaviour 36,37. These findings 
suggest that the subclinical “healthy population” variability in core cognitive processes is 
useful for classifying clinical OCD and may contribute to the emergence of OCD-specific 
behaviours.   
 
Our analysis of the meta-matching model’s brain connectivity feature weights supports 
the hypothesis that abnormal RSFC within cortico-striatal circuits represents a hallmark 
of OCD pathophysiology 16,19. Specifically, resting-state connectivity of the dorsal 
caudate and putamen circuits was one of the largest predictors across all possible 
subcortical-cortical brain connections. These circuits have been previously associated 
with cognitive deficits and sensorimotor symptoms observed in OCD, such as planning, 
decision-making, and repetitive behaviours 38–42. Therefore, our findings provide 
additional motivation to study the neural mechanisms underpinning abnormalities in 
frontostriatal activity in people with clinical OCD. Investigating the brain basis of 
changes in frontostriatal circuit activity is key to improving the efficacy of invasive 
neurosurgical treatments 43 and the development of mechanism-sensitive non-invasive 
therapies like transcranial magnetic stimulation 44. 
 
Similar to prior work attempting to use neuroimaging data to classify OCD individuals, 
we also observed that, compared to other macroscale networks, the default-mode and 
sensory networks contained the largest predictive features 45,46. The default mode 
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network, which has been linked to internal monitoring 47, may align with ruminations and 
excessive self-monitoring observed in OCD 48. Likewise, sensorimotor systems have 
been associated with inhibition problems at the core of several OCD symptoms 49. 
Supporting the importance of functional brain networks in OCD, the expression patterns 
of genes previously associated with clinical OCD and subclinical compulsivity 17 
correlated with brain-wide predictive feature patterns. Specifically, brain regions with 
lower RSFC in OCD, relative to controls, tended to exhibit higher gene expression. This 
suggests that differences in the regional brain expression of genes broadly associated 
with neural function and communication (e.g., GRID2 cerebellar glutamate signalling, 
ADCK1 mitochondrial function, WDR7 neurotransmission) can be tied to brain 
connectivity in OCD. Collectively, our findings underscore the importance of the 
neurobiological features leveraged by the meta-matching model to explain and predict 
clinical OCD.  
 
Our results also shed light on the broader feasibility of transfer learning from general 
population datasets to clinical populations 50,51. Unlike prior studies, we did not observe 
a boost in classification performance due to meta-matching when compared to a simple 
regression model 14,15,52. There are likely multiple reasons for this discrepancy, the most 
obvious being that some critical aspects of variability associated with clinical OCD are 
not observable in brain-behaviour mappings trained in a healthy population. Thus, a key 
future research direction is improving meta-matching performance to a clinically useful 
level, including diagnosing OCD from brain connectivity measures. 
 
In conclusion, we have demonstrated that large healthy normative imaging datasets can 
be used to classify and advance knowledge of the brain and behavioural bases of 
clinical OCD. Our investigation into cortico-striatal circuits, functional networks, and 
OCD-specific brain-wide gene expression patterns, provides strong evidence for the 
biological relevance of the adopted meta-matching model. These results support the 
study of OCD via a transdiagnostic framework defined by core neuro-behavioural 
constructs 32. The findings also motivate further investigations into using meta-matching 
and transfer learning to improve the biologically grounded classification of psychiatric 
conditions beyond OCD.   
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Methods 

Datasets 

Data used in the current study were pooled across three independent datasets collected 
in Brisbane 44, Melbourne (clinical trial registration ACTRN12619000008123), and Seoul 
53. The specifics of each dataset are described in the following section. The final sample 
size after the exclusion of people with excessive head motion (below) was N = 345 
(NOCD = 199, NHC = 146). Demographics and clinical characteristics for each of these 
datasets are described in Table 1. In addition, 250 unrelated participants from the 
Human Connectome Project  54 were used to map cortico-striatal circuits of interest. The 
relevant local ethics committees approved each study. Likewise, all studies complied 
with the ethical standards of the relevant national and institutional committees on 
human experimentation.
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Table 1. Sample demographics 
Measure Brisbane Seoul Melbourne Total 
 Control OCD Control OCD OCD Control OCD Total 
N 45 51 101 102 46 146 199 345 
Age (years)         
  Median (IQR) 31.0 (26.0 - 

40.0) 
30.0 (25.0 - 
35.0) 

24.0 (20.0 - 
27.0) 

25.0 (21.0 - 
29.75) 

36.67 (28.04 - 
47.97) 

25.0 (22.0 - 
32.0) 

28.0 (22.0 - 
34.0) 

27.0 (22.0 - 
33.0) 

Gender         
  Female 27 (60.0%) 29 (56.86%) 39 (38.61%) 34 (33.33%) 25 (54.35%) 66 (45.21%) 88 (44.22%) 154 (44.64%) 
  Male 18 (40.0%) 22 (43.14%) 62 (61.39%) 68 (66.67%) 21 (45.65%) 80 (54.79%) 111 (55.78%) 191 (55.36%) 
Handedness         
  Left 2 (4.44%) 7 (13.73%) 7 (6.93%) 8 (7.84%) 7 (15.22%) 9 (6.16%) 22 (11.06%) 31 (8.99%) 
  Right 43 (95.56%) 44 (86.27%) 94 (93.07%) 94 (92.16%) 39 (84.78%) 137 (93.84%) 177 (88.94%) 314 (91.01%) 
Years of 
education 

        

  Median (IQR)  15.0 (13.0 - 
16.0) 

14.0 (13.0 - 
16.0) 

14.0 (12.0 - 
16.0) 

 14.0 (13.0 - 
16.0) 

14.0 (12.0 - 
16.0) 

14.0 (13.0 - 
16.0) 

IQ         
  Median (IQR) 112.0 (106.0 

- 122.0) 
104.0 (97.5 - 
116.0) 

114.0 (107.0 
- 122.0) 

110.0 (104.0 
- 118.0) 

107.0 (95.5 - 
118.75) 

113.0 (106.0 
- 122.0) 

109.0 (101.0 
- 118.0) 

111.0 (103.0 
- 120.0) 

FD (mm)         
  Median (IQR) 0.14 (0.11 - 

0.18) 
0.16 (0.14 - 
0.25) 

0.08 (0.06 - 
0.1) 

0.07 (0.05 - 
0.1) 

0.19 (0.13 - 
0.23) 

0.09 (0.06 - 
0.14) 

0.11 (0.07 - 
0.18) 

0.1 (0.07 - 
0.16) 

Y-BOCS         
  Median (IQR) 0.0 (0.0 - 2.0) 25.0 (22.0 - 

29.0) 
 27.5 (23.25 - 

32.0) 
25.0 (23.0 - 
28.75) 

0.0 (0.0 - 2.0) 26.0 (23.0 - 
30.0) 

24.0 (19.75 - 
29.0) 

FD; framewise displacement, IQR; interquartile range, IQ; intelligence quotient, FD; framewise displacement, Y-BOCS;  Yale-Brown Obsessive 
Compulsive Scale .
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Brisbane 
Fifty-eight adult participants with a clinical diagnosis of OCD and 45 controls were 
recruited across Australia as part of a registered randomised-controlled clinical trial 
(ACTRN12616001687482). In total, seven participants from the OCD cohort were 
excluded due to excessive head motion, anatomical abnormalities and missing and/or 
corrupted data (see brain imaging preprocessing section below). Details regarding 
participant recruitment and inclusion criteria have been reported elsewhere 44,55. 
 
Melbourne 
Forty-six adult participants with a clinical diagnosis of OCD were recruited across 
Australia as part of a registered randomised-controlled clinical trial 
(ACTRN12619000008123). The trial aimed to recruit a total of 75 participants, but it was 
prematurely terminated because of the COVID-19 pandemic. The study was approved 
by the Alfred Health Research Ethics Committee (Melbourne, Australia). Written 
informed consent was obtained from all participants. Details regarding participant 
recruitment and inclusion criteria are reported in the supplementary material.  
 
Seoul 
102 medication-free adult participants with a clinical diagnosis of OCD and 101 controls 
were recruited as part of a previous study 53. The Institutional Review Board of Seoul 
National University Hospital approved the study. Written informed consent was obtained 
from all participants (any minors who participated in the study required consent from the 
individual and their caretakers). Details regarding participant recruitment and inclusion 
criteria have been reported elsewhere 53.  

Brain imaging data acquisition  

Brisbane 
Brain imaging data were acquired on a 3T Siemens Prisma MR scanner equipped with 
a 64-channel head coil at the Herston Imaging Research Facility, Brisbane, Australia. 
Whole brain echo-planar images were acquired with the following parameters: voxel 
size = 2 mm3, TR = 810 ms, multiband acceleration factor = 8, TE = 30 ms, flip angle = 
53°, field of view = 212 mm, 72 slices. The resting state acquisition was about 12 
minutes in length (880 volumes). Structural brain images were acquired with the 
following parameters: voxel size = 1 mm3, TR = 1900 ms, TE = 2.98 ms, 256 slices, flip 
angle = 9°. Anterior-to-posterior and posterior-to-anterior spin echo fieldmaps were also 
acquired. 
 
Melbourne 
Brain imaging data were acquired on a 3T Siemens Prisma MR scanner equipped with 
a 64-channel head coil at The Royal Melbourne Hospital, Melbourne, Australia. The 
functional and structural brain imaging sequences were identical to the Brisbane site.   
 
Seoul 
Brain imaging data were acquired on a 3T Siemens Trio MR scanner equipped with a 
12-channel head coil at the Seoul National University Hospital. Whole brain echo-planar 
images were acquired with the following parameters: voxel size = 1.9 mm x 1.9 mm x 
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3.5 mm, TR = 3500 ms, TE = 30 ms, flip angle = 90°, field of view = 240 mm, 35 slices. 
The resting state acquisition was about 7 minutes in length (116 volumes). Structural 
brain images used in the preprocessing pipeline were acquired with the following 
parameters: voxel size = 1 mm x 0.98 mm x 0.98 mm, TR = 1670 ms, TE = 1.89 ms, 
208 slices, flip angle = 9°.  

Brain imaging data processing 

All brain imaging data were preprocessed using fMRIprep (version 23.2.0) 56. Briefly, the 
data were skull stripped, corrected for susceptibility distortions (multiband data only), 
coregistered to the anatomical image and slice time corrected. The data were then 
resampled to a standard template space (HCP CIFTI surface and volume) (see 
supplementary for full details). The data were then downsampled into region-specific 
timeseries using the Schaefer 400 brain parcellation 57, with an additional 19 subcortical 
and cerebellar regions 58. This specific atlas was required to use the previously 
published meta-matching model 15. 
The resulting timeseries were denoised via Nilearn using a standard, previously 
benchmarked pipeline 59. For the main results, we employed a denoising strategy that 
regressed 24 motion parameters (six motion parameters, their temporal derivatives and 
quadratics of all regressors), average white matter signal, cerebrospinal fluid signal, 
global signal, as well as cosine transformation basis regressors. Framewise 
displacement was used to identify participants with large amounts of head motion. 
Specifically, any participant with less than 5 minutes of data with a framewise 
displacement of less than 0.5 mm was excluded from further analysis (N = 2 from the 
OCD cohort at the Brisbane site).  
 
Finally, consistent with the original meta-matching model, Pearson correlation was 
conducted on the denoised timeseries to estimate RSFC. Thus, for each participant, 
there was a single 419 x 419 symmetric RSFC matrix. The unique, lower triangle values 
from these matrices were indexed, resulting in a final array of RSFC values by 
participants (87,543 x N), which were used as features in the classification models. 

Meta-matching model 

To perform meta-matching, we used the openly available multilayer meta-matching 
model published by Chen et al. (2022) (V2.0; 
https://github.com/ThomasYeoLab/Meta_matching_models). The model was trained on 
five source datasets: the UKBB N = 36,834; ,60, the Adolescent Brain Cognitive 
Development study ABCD, N = 5,985; ,61, the Healthy Brain Network project HBN, N = 930; ,62, the 
enhanced Nathan Kline Institute-Rockland sample eNKI-RS, N = 896; ,63, and the Genomics 
Superstruct Project GSP, N = 862; ,64. Crucially, the samples used in these studies reflect 
individuals who are healthier than the general population 65. The UKBB did include 
some individuals who self-reported a lifetime OCD diagnoses, regardless of whether 
they were exhibiting symptoms at the time of imaging. However, given their small 
number (approximately 0.06%)66, it is unlikely that this sub-sample could drive our 
results. Age varied across these datasets, ranging from children, adolescents, younger 
adults, and older adults (see Chen et al., 2023 for further details). 
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This meta-matching model uses a combination of a fully connected feedforward deep 
neural network and multiple kernel ridge regression models to predict 458 non-brain 
imaging phenotypes from RSFC (87,543 edges). The 458 phenotypes were derived 
from the source datasets, representing different aspects of physical and mental health, 
cognition, and behaviour. Comprehensive details regarding the model and its training 
data are available elsewhere 14,15. In brief, the 458 predictions are made by two parallel 
approaches. The first uses kernel ridge regression models to generate predictions from 
RSFC for each dataset, resulting in 229 phenotypic predictions (UKBB=67, ABCD=36, 
HBN=42, eNKI-RS=61, GSP=23). The second uses RSFC to predict UKBB phenotypes 
(67) via a fully connected deep neural network and then uses the outcomes of this first 
layer as input to the remaining kernel ridge regression models (ABCD=36, HBN=42, 
eNKI-RS=61, GSP=23).  
 
The 458 phenotypes predicted by the meta-matching model are not specific to our 
research problem: predicting OCD diagnosis. Thus, we employed a procedure called 
“stacking”, whereby a final regression model is used to predict the phenotype of interest. 
Specifically, the 458 predicted phenotypes were used in a logistic regression to predict 
OCD status. This was implemented using a regularised logistic regression in sklearn 
(LogisticRegressionCV) with the liblinear solver where the best C hyperparameter was 
selected via a nested five-fold cross-validation 67. 

Cross-validation and model performance 

A five-fold cross-validation scheme was employed to assess the accuracy of the 
predictions. The cross-validation was repeated 200 times to generate a distribution of 
classification performance measures. Within the training set, site harmonisation was 
performed using ComBat with OCD status as a covariate of interest 68,69, a validated 
method for correcting multi-site data. Likewise, linear regression was used to remove 
variability associated with age and gender. These deconfounding models were applied 
separately to the test data within each cross-validation fold. A statistical analysis of the 
success of this deconfounding procedure is described below (Control Analyses). 
Model accuracy for each cross-validation iteration was assessed using balanced 
accuracy. 
 
As in prior work 70, we evaluated the performance compared to chance via permutation 
testing. Specifically, each model was rerun after shuffling the RSFC data, effectively 
severing the link between RSFC and OCD status. This was repeated 1000 times, 
generating a null distribution of performance classifications for each model. The null 
distribution was compared to the real classification by calculating the percentile of the 
average classification value compared to the null distribution.  

Examination of brain connectivity features 

To assess the importance of each functional connectivity edge in predicting OCD status, 
the Haufe transform 71 was used to calculate feature weights. We used these weights to 
assess the importance of functional brain networks (Figure 1) and cortico-striatal 
circuits (Figure 2), as well as the relationship between model features and gene 
expression (Figure 3). 
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Cortico-striatal brain circuits 
We mapped four key cortico-striatal circuits by seeding the Nucleus Accumbens (NAcc), 
dorsal Caudate (dCaud), dorsal Putamen (dPut), and ventral Putamen (vPut) in an 
independent dataset (N=250 from the Human Connectome Project, HCP; see 
Supplementary Material).  
 
The brain connectivity feature weights of these distinct brain circuits were examined and 
compared to two null models. The first compared the brain connectivity weights within 
the circuits to the identical weights from permuted models (described above). The 
second approach compared the circuit weights to similarly sized sets of connections 
drawn from a distribution of random subcortical-cortical empirical weights. The null 
distributions were compared to the real classification by calculating the percentile of the 
mean real classification value compared to the null distribution. 
 
Region-wise brain connectivity features, functional brain networks, and gene expression 
Brain connectivity feature weights were averaged across cross-validation folds for each 
brain region in the adopted brain parcellation. We then performed two analyses on 
these region-wise values. First, these values were further averaged into eight functional 
brain networks (control/ frontoparietal, default-mode network, dorsal attention, limbic, 
salience / ventral attention, somatomotor, subcortical and visual) 18 and compared to 
null permutations. Second, we tested whether brain-wide gene expression in four genes 
highlighted by a recent GWAS meta-analysis of subclinical compulsive symptoms (KIT, 
GRID2, ADCK1, WDR7) 17 were associated with brain connectivity features. 
Specifically, regional microarray expression data were collected from six post-mortem 
brains (one female, ages 24 to 57, average age 42.5 ± 13.38 years) provided by the 
Allen Human Brain Atlas. The data were processed using the Abagen toolbox in MNI 
space 27,28. When comparing cortical maps, we employed the spin test 29. For 
subcortical maps, we utilised a standard permutation shuffling approach (10,000 
permutations in both scenarios) 72. 
 
Meta-matching phenotype feature weights  
Similar to the Haufe transform between predictions and RSFC inputs described above; 
an analogous analysis was conducted to examine the predictive value of the 458 
training dataset phenotypes in the meta-matching model. In this context, a positive 
weight indicates that the meta-matching model predicted a higher score for a given 
phenotypic variable for the local dataset OCD patients than the healthy controls, and 
vice versa. To give a concrete example, the phenotype neuroticism was measured in 
the UKBB (one of the training normative datasets), however this was not measured in 
the local OCD and healthy control datasets. If this phenotype feature has a high weight, 
the meta-matching model has predicted that OCD patients would report higher scores 
on the neuroticism scale than the local dataset healthy controls. Thus, in this scenario, 
we would conclude that the RSFC from OCD patients in the local data is similar to 
RSFC in the UKBB that reported high scores on the neuroticism scale. As in the brain 
feature connectivity weights, the average empirical value was compared to shuffled null 
permutations and subsequently FDR corrected (Ncomponents = 458).  
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Control analyses 

Alternative model comparisons 
The meta-matching model was compared to a logistic regression model in which all 
RSFC values were used to predict OCD status. Aside from the shape of the input data, 
this model was identical to the “stacking” logistic regression described above. This 
baseline model represents a standard comparison model that might be used to predict 
OCD diagnosis.  
 
We also contrasted the meta-matching model with a prior version (V1.1), which only 
included a single training dataset (the UKBB, He et al., 2022). Models were compared 
to each other via the corrected resample t-test as a standard t-test would not be valid 
73,74. 
 
Deconfounding 
Predictive models can capture confounding effects correlated with the outcome rather 
than the brain features of interest (e.g., age, site, head motion) 75–77. To explore this, we 
compared model performance before and after deconfounding using the corrected 
resample t-test. 
 
Impact of global signal regression 
Denoising fMRI data from non-neuronal sources is a crucial preprocessing step in 
RSFC analyses 59. The training data used in the meta-matching model utilised a variety 
of denoising approaches with and without global signal regression. For completeness, 
we compared model performance with and without global signal regression in the local 
dataset using the corrected resample t-test (p = 0.41, see Supplementary Figure 2). 

Data and code availability 

Code used to generate the results are available on GitHub 
(https://github.com/ljhearne/CBN_MetaMatch_public). The version of the meta-matching 
model used in the current work is available online (V2.0; 
https://github.com/ThomasYeoLab/Meta_matching_models). De-identified participant 
data for research purposes are available on request for data collected at the Brisbane 44 
and Melbourne sites. De-identified participant data for research purposes are available 
on request for data collected at the Seoul site from the original authors53. 
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