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Abstract 79 

BACKGROUND: The gut microbiome is a potentially modifiable factor in Alzheimer’s disease 80 
(AD); however, understanding of its composition and function regarding AD pathology is limited. 81 
 82 
METHODS: Shallow-shotgun metagenomic data was used to analyze fecal microbiome from 83 
participants enrolled in the Wisconsin Microbiome in Alzheimer’s Risk Study, leveraging clinical 84 
data and cerebrospinal fluid (CSF) biomarkers. Differential abundance and ordinary least 85 
squares regression analyses were performed to find differentially abundant gut microbiome 86 
features and their associations with CSF biomarkers of AD and related pathologies. 87 
 88 
RESULTS: Gut microbiome composition and function differed between people with AD and 89 
cognitively unimpaired individuals. The compositional difference was replicated in an 90 
independent cohort. Differentially abundant gut microbiome features were associated with CSF 91 
biomarkers of AD and related pathologies. 92 
 93 
DISCUSSION: These findings enhance our understanding of alterations in gut microbial 94 
composition and function in AD, and suggest that gut microbes and their pathways are linked to 95 
AD pathology. 96 
 97 
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1 BACKGROUND 121 

The human gut microbiome is recognized as an important modifiable factor in health and 122 
disease. It is related to overall gut health by maintaining gut barrier integrity and gut immune 123 
homeostasis via balanced composition and production of microbial metabolites such as short-124 
chain fatty acids (SCFAs).1–3 However, in certain disease states, including Alzheimer’s disease 125 
(AD), gut microbiome composition and its metabolic changes may alter and exacerbate the 126 
disease.  127 

Compositional differences in gut microbiota, including relative abundance and diversity, 128 
have been observed between control and AD groups.4 Other studies have reported that gut 129 
microbiome composition is altered among people with AD dementia, individuals with mild 130 
cognitive impairment (MCI), or preclinical AD compared with healthy controls.5–8 To better 131 
determine the relationship between gut microbiome and AD pathology, studies have leveraged 132 
measures of AD biomarkers obtained via cerebrospinal fluid (CSF) analysis,9 positron emission 133 
tomography (PET),10 and plasma.11 Additionally, inflammatory markers have been utilized to find 134 
associations with gut inflammation-driven AD pathology.12,13 135 

The shift towards functional analysis provides deeper insights into the functional 136 
potential of the microbiome, which is important given that multiple lines of evidence indicate that 137 
gut microbial pathways and associated metabolites influence disease development, as well as 138 
providing the opportunity to identify therapeutic targets.14–17 A small number of studies have 139 
examined gut microbiome composition and function together with markers of AD pathology in 140 
humans,8,18–20 but many other studies to date are limited to the composition of gut microbes in a 141 
single cohort. The Alzheimer Gut Microbiome Project (AGMP) initiative continues to leverage gut 142 
microbiome and metabolome to better understand metabolic processes that influence AD 143 
pathology. 144 

To identify differences in composition and function as well as relationships between gut 145 
microbiome and AD pathology, this study collected stool samples from participants enrolled in 146 
the Microbiome in Alzheimer’s Risk Study (MARS). Differences in microbiome diversity as well 147 
as abundance were compared between AD-related groups (diagnosis, amyloid status, and 148 
APOE ε4 status), and the co-occurrence of the common gut microbiota features was analyzed 149 
among comparison groups. In addition, validation of gut microbiota composition that was 150 
differentially abundant between AD compared to healthy controls was performed in a larger 151 
cohort of participants who are part of the AGMP. Furthermore, determination of microbiome 152 
functional differences was compared between people with AD dementia and cognitively 153 
unimpaired (CU) individuals. Lastly, associations between any differentially abundant gut 154 
microbiome features were examined in relation to CSF biomarkers of AD and related 155 
pathologies to identify the potential microbes and microbial pathways that relate to AD 156 
pathology. We hypothesized that gut microbiome alterations in composition and function would 157 
be present among people with AD dementia compared to CU, as well as associate with AD 158 
pathology. 159 
 160 
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2 METHODS 161 

2.1 Participants 162 

Participants included in this study were recruited from the Wisconsin Alzheimer’s 163 
Disease Research Center (ADRC) Clinical Core and the Wisconsin Registry for Alzheimer’s 164 
Prevention (WRAP).21 The WRAP study enrolled participants between the ages of 40–65 years 165 
at study entry, and the cohort is enriched for parental history of AD dementia. The Wisconsin 166 
ADRC clinical core enrolls participants who span the clinical and biological spectrum of AD, 167 
from those who are CU to individuals with mild cognitive impairment (MCI) and AD dementia. 168 
Participants underwent APOE genotyping using competitive allele-specific PCR-based KASP™ 169 
genotyping assays (LGC Genomics, Beverly, MA)22 as well as longitudinal assessments of 170 
cognition and laboratory tests. Biomarkers of AD determined with CSF collection and PET 171 
neuroimaging were collected in a subset of the cohort. Participants underwent fecal sample 172 
collection as part of their participation in MARS, which was used to analyze the gut microbiome. 173 
Participants completed questionnaires including medical history and diet, at the time of fecal 174 
sample collection. 175 

Participant diagnosis of AD was determined by a multidisciplinary consensus diagnostic 176 
panel and based on the National Institute on Aging–Alzheimer's Association (NIA-AA) 177 
criteria.23,24 Participants underwent dynamic [C-11]Pittsburgh compound B (PiB) PET scans and 178 
lumbar puncture for CSF collection to determine their amyloid status. Amyloid positivity on PET 179 
imaging was achieved by the visual rating (1.19 or greater)25 from a global PiB distribution 180 
volume ratio (DVR) and determined for CSF via the Aβ42/Aβ40 ratio (less than 0.046).26 The 181 
study procedures were approved by the University of Wisconsin Institutional Review Board, and 182 
all participants provided signed or oral informed consent. 183 

An independent cohort of participants who are part of the AGMP and who were recruited 184 
from multiple NIA-funded ADRC across the U.S. (n = 448, Table S1) was included for validation 185 
of differential abundance analysis. AGMP participants from Wisconsin were excluded to ensure 186 
a unique validation sample.  187 
 188 

2.2 Fecal sample collection and metagenomic data sequencing 189 

Fecal samples were collected as previously described.4 Briefly, participants collected 190 
their stool samples at home with provided fecal collection kits. Participants returned their 191 
samples in insulated containers which were chilled with frozen gel packs. Returned samples 192 
were immediately weighed and scored on the Bristol stool scale. Fecal samples were then 193 
subsampled using sterile straws and stored at −80°C until processing. 194 

Fecal samples were processed for DNA extraction as previously described.27 Briefly, 195 
samples were extracted using the MoBio PowerMag Soil DNA isolation kit with a magnetic bead 196 
plate. Extracted genomic DNA (gDNA) was quantified with Quant-iT PicoGreen double-stranded 197 
DNA (dsDNA) assay kit (Thermo Fisher Scientific Inc.), and underwent a miniaturized KAPA 198 
HyperPlus library preparation using an iTru indexing strategy.28,29 Library was normalized 199 
pooled based on concentration, PCR cleaned, and then size selected (300-700 bp) on the Sage 200 
Science PippinHT. Libraries were sequenced on an Illumina NovaSeq 6000 as a paired-end 201 
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150-cycle run at the University of California San Diego (UCSD) IGM Genomics Center as part of 202 
AGMP initiative.30 203 

 204 

2.3 Metagenomic data processing 205 

The metagenomic data processing was performed as previously described.31 The 206 
sequence data were filtered for all adapters known to fastp (version 0.23.4) in paired-end mode 207 
by explicitly specifying a known adapters file.32 Fastp also removed sequences shorter than 45 208 
nucleotides with -l, a flag to filter the minimum length of each sequence. Each sample was then 209 
filtered against each genome in the human pangenome,33 as well as both T2T-CHM13v2.034 210 
and GRCh38,35 using minimap236 (version 2.26-r1175) with "-ax sr" for short read mode. The 211 
data were first run in paired-end mode, and then run in single-end mode, per genome. Each 212 
successive run was converted from SAM to FASTQ using samtools37 (version 1.17) with 213 
arguments -f 12 -F 256 -N for paired-end data and -f 4 -F 256 for single-end. The single-end 214 
data are repaired using fastq_pair38 (version 1.0) specifying a table size of 50M with -t. Compute 215 
support was provided with GNU Parallel39 (version 20180222). Single-end FASTQ output from 216 
samtools was split into R1 and R2 with a custom Rust program, with rust-bio for parsing40 217 
(version 1.4.0). Data were multiplexed with sed and demultiplexed using a custom Python script. 218 
Shotgun sequencing data were then uploaded to and processed through Qiita41 (Study ID 219 
13663). Sequence adapter and host filtering were executed using qp-fastp-minimap2 version 220 
2022.04. Subsequently, Woltka42 version 0.1.4 (qp-woltka 2022.09) with the Web of Life 2 221 
database was employed for taxonomic and functional predictions. Genomic coverages were 222 
computed, and features with less than 25% coverage were excluded.43 To enhance data quality, 223 
a prevalence filter using QIIME 2 v2023.544 was applied, eliminating features present in less 224 
than 10% of samples and samples with a sampling depth of less than 500,000 reads to mitigate 225 
the inclusion of erroneous and low-quality reads. The resulting feature table was utilized for 226 
downstream analysis. 227 
 228 

2.4 Biomarker measurements 229 

2.4.1 CSF biomarkers 230 
CSF samples were collected via lumbar puncture in the morning after fasting for 8-12 231 

hours as previously described.26 CSF biomarkers were measured using the NeuroToolKit 232 
(NTK), a panel of exploratory robust prototype assays (Roche Diagnostics International Ltd, 233 
Rotkreuz, Switzerland). The following biomarkers were quantified on the Cobas® e 601 module 234 
(Roche Diagnostics International Ltd, Rotkreuz, Switzerland): Aβ42, pTau181, tTau, S100 calcium 235 
binding protein B (S100B), and interleukin-6 (IL-6), and the remaining biomarkers were assayed 236 
on the Cobas® e 411 analyzer: Aβ40, neurofilament light protein (NfL), neurogranin, α-synuclein, 237 
glial fibrillary acidic protein (GFAP), chitinase-3-like protein 1 (YKL-40), and soluble triggering 238 
receptor expressed on myeloid cells 2 (sTREM2). Each biomarker was measured as markers of 239 
AD and related pathologies which were amyloid pathology (Aβ42/Aβ40), tau pathophysiology 240 
(pTau181 and tTau), neurodegeneration (NfL), synaptic dysfunction and injury (neurogranin and 241 
α-synuclein), inflammation (IL-6), and glial activation (S100B, GFAP, YKL-40, and sTREM2). 242 
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2.4.2 PiB PET biomarker 243 
Dynamic 11C-PiB scans were acquired using a Siemens ECAT EXACT HR+ tomograph 244 

as previously described.45 DVRs were estimated with Logan graphical analysis and a threshold 245 
of 1.19 for global DVR was used to determine PiB status which was used along with CSF 246 
Aβ42/Aβ40 ratio to confirm amyloid status of participants. 247 
 248 

2.5 Statistical analysis 249 

Statistical analysis on participant demographics was performed across clinical diagnoses 250 
using the Kruskal-Wallis rank sum test for continuous variables and Pearson's Chi-squared test 251 
for categorical variables. Analysis with multiple comparisons was corrected for multiple tests 252 
employing the Bonferroni correction method. Gut microbiome diversities were calculated using 253 
QIIME 2 tools.44 Alpha diversity indices were calculated including Shannon,46 Evenness,47 and 254 
Faith's phylogenetic diversity (PD).48 Beta diversity indices were calculated including Bray–255 
Curtis dissimilarity,49 and Weighted50 and Unweighted51 UniFrac. The Bayesian Inferential 256 
Regression for Differential Microbiome Analysis (BIRDMAn) pipeline was used for microbiome 257 
differential abundance (DA) analysis.52 Microbiome features (composition and function) were 258 
outcome variables and each AD-related group (clinical diagnosis, amyloid status, and APOE ε4 259 
status) was a predictor adjusting for covariates including age, sex, BMI, Bristol type, medication 260 
status, and age difference between fecal collection and measurements of each predictor 261 
variable. Log ratios of Top and Bottom features of each AD-related group (log[Top 262 
features/Bottom features]) were calculated and analyzed using the Mann–Whitney U test to 263 
identify similarities in microbiome features that differ between AD-related groups. Venn 264 
diagrams were created to illustrate any overlapping taxonomies across AD groups in each Top 265 
(more abundant in AD-related groups) and Bottom (less abundant in AD-related groups) group 266 
at each taxonomic level (phylum, family, genus, and species). Log ratios of Top and Bottom 267 
features of each AD group (log[Top features/Bottom features]) were also calculated and 268 
analyzed using the Mann–Whitney U test in MARS and validation cohorts to identify similarities 269 
in microbiome features that differ between AD and CU groups in both cohorts. Log ratios of Top 270 
and Bottom functional features (log[Top features/Bottom features]) were calculated and 271 
statistical significance was determined by the Mann–Whitney U test between AD and CU 272 
groups. Differentially abundant KEGG Orthology (KO)53 pathways and their associated species 273 
were determined using BIRDMAn.52 Robust Aitchison principal component analysis (RPCA) 274 
from Gemelli (version 0.0.10) was used to analyze sparse compositional KO53 microbiome 275 
pathway features that are separated by sample variations.54 RPCA results were visualized with 276 
scores plots and biplots. Statistical analysis on RPCA was performed with permutational 277 
multivariate analysis of variance (PERMANOVA)55 between groups. 278 

To explore the relationships between key microbial features and pathways identified via 279 
BIRDMAn and CSF biomarkers of AD and related pathologies, we applied an ordinary least 280 
squares (OLS) linear regression approach. Prior to fitting the linear regression model, CSF 281 
biomarkers were standardized using the StandardScaler (version 0.24.1) from the scikit-learn 282 
library.56 To address issues with sparse, compositional data, we used the 283 
multiplicative_replacement function from the scikit-bio (version 0.5.7) skbio.stats.composition 284 
module to preprocess the metagenomics data. This function replaces zeros with small positive 285 
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values, preserving the compositional nature of the data. Subsequently, a centered log ratio 286 
(CLR) transformation was applied to the metagenomics data to account for compositionality. 287 
Finally, ordinary least squares (OLS) linear regression was performed on the microbial features 288 
differentially abundant in AD versus CU, in relation to each CSF biomarker. The results were 289 
visualized using heatmaps. 290 

All other statistical analyses were performed using Python libraries SciPy (1.13.0),57 291 
scikit-learn (1.4.2),56 and NumPy (version 1.26.4).58 All figures were generated using Python 292 
libraries Matplotlib (version 3.6.0)59 and Seaborn (version 0.11.2).60 293 

 294 

3 RESULTS 295 

3.1 Participant demographics 296 

Participant characteristics are shown by clinical diagnosis in Table 1. Participants were 297 
aged between 47-93 years. The mean age differed significantly in dementia-AD vs CU. The 298 
percent ratio of APOE ε3/ε3 carriers was significantly lower and the percent ratio of APOE ε4/ε4 299 
carriers was higher in dementia-AD compared to CU. Amyloid positivity was higher in the AD 300 
dementia group. 301 
 302 

3.2 Diversity results in gut microbiota composition 303 

Alpha diversity indices (Shannon, Evenness, and Faith's PD) were presented on the y-304 
axis and all AD group categories were presented on the x-axis (Figure 1A-I). The only 305 
comparison with significant alpha diversity differences was the APOE ε4 comparison (Figure 306 
1G and H). All alpha diversity indices showed significant differences or a trend toward 307 
differences between APOE ε4+ and APOE ε4− groups. Individuals who were APOE ε4− had 308 
significantly higher alpha diversity than APOE ε4+. 309 

Beta diversity indices (Bray–Curtis dissimilarity, and Weighted and Unweighted UniFrac) 310 
were visualized with principal coordinates analysis (PCoA) plots for each AD group (Figure 1J-311 
R). Significant differences between groups based on clinical diagnosis (diagnosis) were 312 
observed with each metric (Figure 1J-L). Differences in beta diversity between amyloid-positive 313 
and amyloid-negative individuals were detected only with the Bray–Curtis dissimilarity index 314 
(Figure 1M-O). Individuals positive and negative for APOE ε4 demonstrated differences with 315 
both the Bray-Curtis and Weighted UniFrac metrics, but not with Unweighted UniFrac (Figure 316 
1P-R), suggesting that the relative abundance of major taxa rather than community membership 317 
is important in driving these differences.  318 
 319 

3.3 Gut microbiota composition in clinical diagnosis, amyloid status, and APOE ε4 320 

status groups 321 

A DA analysis on gut microbiota composition was performed based on clinical diagnosis, 322 
amyloid status, and APOE ε4 status groups using BIRDMAn and visualized as forest plots 323 
(Figure 2). Gut microbiota taxonomic features that showed the most differences by the effect 324 
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size (log ratio) in each comparison group were displayed up to 20 features in each Top (more 325 
abundant) and Bottom (less abundant) group for taxonomic levels including phylum, family, 326 
genus, and species. DA analysis between AD and CU in clinical diagnosis showed distinct gut 327 
microbiota composition at each taxonomic level (Figure 2A, D, G, and J). At the phylum level, 328 
the abundance of phylum Firmicutes_A was lower in AD compared to CU (Bottom), and the 329 
abundance of phyla Bacteroidota, Patescibacteria, and Fusobacteriota was higher in AD 330 
compared to CU (Top) (Figure 2A). At the family level, families such as Clostridiaceae, 331 
Turicibacteraceae, Pasteurellaceae, Dialisteraceae, Enterococcaceae, and Ruminococcaceae 332 
were in the Bottom group and Fusobacteriaceae, Nanogingivalaceae, Gemellaceae, and 333 
Bacteroidaceae were in the Top group (Figure 2D). At the genus level, genera including 334 
Clostridium_P, Ruminococcus, and Cryptobacteroides were in the Bottom group and 335 
Fusobacterium_A, Fusobacterium, Nanogingivalis, and Gemella were in the Top group (Figure 336 
2G). At the species level, species included in the Bottom group were Cryptobacteroides spp., 337 
Clostridium_P perfringens, Turicibacter sanguinis, Prevotella hominis, and Prevotella copri, and 338 
in the Top group were Fusobacterium_A mortiferum, Fusobacterium nucleatum, Fusobacterium 339 
animalis, Nanogingivalis gingivitcus, Collinsella stercoris, and Collinsella tanakaei (Figure 2J). 340 

DA analysis between A+ and A− in amyloid status showed distinct gut microbiota 341 
composition at each taxonomic level (Figure 2B, E, H, and K). At the phylum level, the 342 
abundance of phylum Firmicutes_C was lower in A+ compared to A− (Bottom), and the 343 
abundance of phyla Thermoplasmatota and Campylobacterota was higher in A+ compared to 344 
A− (Top) (Figure 2B). At the family level, families such as Neisseriaceae, Anaeroplasmataceae, 345 
Turicibacteraceae, and Ruminococcaceae were in the Bottom group and Nanogingivalaceae, 346 
Campylobacteraceae, and Coriobacteriaceae were in the Top group (Figure 2E). At the genus 347 
level, genera including Prevotella, Eubacterium_R, and Lactococcus were in the Bottom group 348 
and Fusobacterium, Nanogingivalis, and Acidaminococcus were in the Top group (Figure 2H). 349 
At the species level, species included in the Bottom group were Dialister hominis, Prevotella 350 
copri, and Prevotella hominis, and in the Top group were Nanogingivalis gingivitcus, Collinsella 351 
tanakaei, and Fusobacterium animalis (Figure 2K). 352 

DA analysis between APOE ε4+ and APOE ε4− in APOE ε4 status analyses showed 353 
distinct gut microbiota composition at each taxonomic level (Figure 2C, F, I, and L). At the 354 
phylum level, the abundance of phyla Firmicutes_A, Firmicutes_C, Spirochaetota, and 355 
Synergistota was lower in APOE ε4+ compared to APOE ε4− (Bottom), and the abundance of 356 
phylum Bacteroidota was higher in APOE ε4+ compared to APOE ε4− (Top) (Figure 2C). At the 357 
family level, families such as Selenomonadaceae, Neisseriaceae, Pasteurellaceae, 358 
Turicibacteraceae, and Clostridiaceae were in the Bottom group and Lactobacillaceae, 359 
Eubacteriaceae, and Bacteroidaceae were in the Top group (Figure 2F). At the genus level, 360 
genera including Ruminococcus and Clostridium_P were in the Bottom group and Enterobacter, 361 
Hafnia, and Lactobacillus were in the Top group (Figure 2I). At the species level, species 362 
included in the Bottom group were Prevotella hominis, Dialister spp., and Ruminococcus spp., 363 
and in the Top group were Enterobacter hormaechei_A, Hafnia proteus, Collinsella stercoris, 364 
Enterobacter cloacae, and Collinsella tanakaei (Figure 2L). 365 

Log ratios of microbiome counts were calculated between the sum of the Top and 366 
Bottom groups from DA analysis to test the overall significant differences of microbiome 367 
features between AD conditions (log[sum of Top features/sum of Bottom features]) (Figure 3). 368 
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Overall, there were significant differences in each AD-related group (diagnosis, amyloid, and 369 
APOE ε4) (Figure 3A, E, and I). Features that significantly differed between AD and CU also 370 
differed between APOE ε4+ and APOE ε4− (Figure 3A and C). Features that significantly 371 
differed between A+ and A− also differed between AD and CU (Figure 3D and E). Features that 372 
significantly differed between APOE ε4+ and APOE ε4− also differed between AD and CU 373 
(Figure 3G and I).  374 
 375 

3.4 Common gut microbiota features in clinical diagnosis, amyloid status, and APOE ε4 376 

status groups 377 

Venn diagrams were used to find common microbiome features across different AD 378 
conditions for each Bottom and Top group at each taxonomic rank (Table S2). At the phylum 379 
level, phyla Bacteroidota co-occurred between diagnosis and APOE ε4 in the Top group (Figure 380 
4A). Firmicutes_A co-occurred between diagnosis and APOE ε4, and Firmicutes_C co-occurred 381 
between amyloid and APOE ε4 in the Bottom group (Figure 4B). In the Top group at the family 382 
level, the family Lactobacillaceae co-occurred across all conditions, families Bacteroidaceae 383 
and Coprobacteraceae between diagnosis and APOE ε4, and families Nanogingivalaceae and 384 
Aerococcaceae co-occurred between diagnosis and amyloid (Figure 4C). In the Bottom group, 385 
UBA1829 and Turicibacteraceae co-occurred across all conditions (diagnosis, amyloid, and 386 
APOE ε4), families CAG-508, CAG-74, Oscillospiraceae, Clostridiaceae, Pasteurellaceae, and 387 
CAG-138 co-occurred between diagnosis and APOE ε4, families Ruminococcaceae, 388 
Anaeroplasmataceae, and CAG-312 co-occurred between diagnosis and amyloid, and family 389 
Neisseriaceae co-occurred between amyloid and APOE ε4 (Figure 4D). Multiple genera and 390 
species co-occurred across all conditions (Figure 4E-H). In the Top group, the genus 391 
Veillonella_A co-occurred across all conditions, and the following numbers of genera co-392 
occurred between each intersection, i.e., diagnosis and APOE ε4: 7, diagnosis and amyloid: 6, 393 
and amyloid and APOE ε4: 4 (Figure 4E, Table S2). In the Bottom group, 13 genera co-394 
occurred across all conditions including Prevotella and Turicibacter, and the following numbers 395 
of genera co-occurred between each intersection, i.e., diagnosis and APOE ε4: 30, diagnosis 396 
and amyloid: 9, and amyloid and APOE ε4: 8 (Figure 4F, Table S2). In the Top group at the 397 
species level, 12 species including Bacteroides ovatus, Collinsella tanakaei, Prevotella corporis, 398 
and more co-occurred across all conditions, and the following numbers of species co-occurred 399 
between each intersection, i.e., diagnosis and APOE ε4: 18, diagnosis and amyloid: 10, and 400 
amyloid and APOE ε4: 7 (Figure 4G, Table S2). In the Bottom group, 27 species including 401 
Ruminococcus_C callidus, Dialister succinatiphilus, Prevotella copri, and more co-occurred 402 
across all conditions, and the following numbers of species co-occurred between each 403 
intersection, i.e., diagnosis and APOE ε4: 42, diagnosis and amyloid: 13, and amyloid and 404 
APOE ε4: 16 (Figure 4H, Table S2).  405 
 406 
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3.5 Validation of shallow-shotgun data with the ADRC dataset on gut microbiota 407 

composition 408 

To validate the features linked with dementia-AD (AD) compared to healthy controls 409 
(CU), we tested the log-transformed ratios of features more and less abundant in AD in the 410 
MARS cohort against a larger cohort of participants who are part of the AGMP and who were 411 
recruited from multiple NIA-funded ADRC across the U.S. (n = 448; Figure 5). AGMP 412 
participants from Wisconsin were excluded to ensure a unique validation sample. The features 413 
that were differentially abundant in the MARS cohort (Kruskal-Wallis: 31.81, P value: < .001; 414 
Figure 5A) were also found to be differentially abundant in the larger validation cohort (Kruskal-415 
Wallis: 5.59, P value: .02; Figure 5B). 416 
 417 

3.6 Gut microbiome functional pathways in a clinical diagnosis group 418 

The DA analysis of gut microbiome functional pathways, stratified by species within each 419 
pathway, identified 116 distinct pathways that differ between individuals with AD and CU 420 
individuals (Table S3). Among 116 distinct pathways, we focused our analysis on pathways that 421 
only showed abundance in either the Top (more abundant in AD) or the Bottom (less abundant 422 
in AD) group. Among pathway features only with either the Top (15 pathways) or the Bottom (6 423 
pathways) group, the log ratios of Top/Bottom features were shown to be significantly different 424 
between AD and CU (Figure 6A). Furthermore, gut microbiome taxonomic features that were 425 
associated with pathway features (36 features) only with either the Top or Bottom group were 426 
visualized with each pathway category (Figure 6B). For example, a pathway, naphthalene 427 
degradation, was one of the Bottom pathways, and microbes associated with this pathway were 428 
species Turicibacter sanguinis, Bifidobacterium angulatum, and Lactococcus lactis (Figure 6B). 429 
Another example in the Top pathway is benzoate degradation which is associated with microbes 430 
including Anaerostipes caccae, Bacteroides finegoldii, and Bacteroides thetaiotaomicron 431 
(Figure 6B). 432 

RPCA on microbiome pathway features (36 features from DA analysis) visualized with a 433 
biplot indicated a significant separation between the clinical diagnosis group (AD and CU, P 434 
value = .004) (Figure 6C). Microbial features that belonged to the Top group indicated by the 435 
red vector directed towards many AD subjects indicated by the orange dots. Microbial features 436 
that belonged to the Bottom group indicated by the green vector directed towards many CU 437 
subjects indicated by the blue dots. For instance, multiple pathways from species Bacteroides 438 
thetaiotaomicron pointed towards the AD group suggesting a potentially stronger association 439 
between the Top features and AD group (Figure 6C). On the other hand, pathways from 440 
species Turicibacter sanguinis, Bifidobacterium angulatum, and Lactococcus lactis, which 441 
belonged to the Bottom group, pointed towards the CU group or showed different directions 442 
compared to the Top features suggesting a potentially weaker association between the Bottom 443 
features and AD group (Figure 6C). 444 
 445 
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3.7 Associations between gut microbiome compositional and functional features in 446 

clinical diagnosis group and CSF biomarkers of AD and related pathologies 447 

Associations between gut microbiome features (composition and function) and CSF 448 
biomarkers of AD and related pathologies were performed as described in the ‘Statistical 449 
analysis’ section of the ‘Methods’ (Figure 7). 450 

Overall, in the association between gut microbiome compositional features and CSF 451 
biomarkers of AD and related pathologies, most species that were more abundant in AD 452 
compared to CU individuals were positively correlated with CSF biomarkers. Conversely, 453 
species that were less abundant in AD were generally negatively associated with CSF 454 
biomarkers. CSF biomarkers for AD and related pathologies included in the analysis were 455 
amyloid pathology (Aβ42/Aβ40), tau pathophysiology (pTau181 and tTau), neurodegeneration 456 
(NfL), synaptic dysfunction and injury (neurogranin and α-synuclein), inflammation (IL-6), and 457 
glial activation (S100B, GFAP, YKL-40, and sTREM2) (Figure 7A). 458 

Species that were more abundant in AD were generally positively associated with CSF 459 
biomarkers. For example, Nanogingivalis gingivitcus, more abundant in AD, was positively 460 
associated with S100B, neurogranin, pTau181, and tTau. Fusobacterium_A mortiferum was 461 
positively correlated with neurogranin, pTau181, tTau, and α-synuclein, and negatively 462 
associated with CSF amyloid (Aβ42/Aβ40). Fusobacterium animalis was positively associated 463 
with neurogranin, pTau181, tTau, and α-synuclein. CAG-1031 sp000431215, a species within the 464 
Bacteroidetes phylum, was positively correlated with NfL, YKL-40, pTau181, tTau, and α-465 
synuclein. Berrvella sp001552935 was positively associated with YKL-40, sTREM2, tTau, and 466 
α-synuclein. Additionally, Lactobacillus acidophilus and Bifidobacterium vaginale were positively 467 
associated with S100B, CAG-977 sp000434295 was associated with pTau181 and tTau, 468 
Fusobacterium nucleatum was associated with tTau, Limosilactobacillus vaginalis and 469 
Collinsella tanakaei were associated with pTau181, and CAG-177 sp000431775 was associated 470 
with IL-6. 471 

Species that were less abundant in AD were generally negatively associated with CSF 472 
biomarkers. Species SFMI01 sp004556155, Turicibacter sanquinis, and Dialister hominis, all 473 
within the Firmicutes phylum, were negatively associated with neurogranin, pTau181, tTau, and 474 
α-synuclein. UBA5809 sp002417965, another Firmicutes species, was also negatively 475 
associated with neurogranin, pTau181, tTau, and α-synuclein, as well as sTREM2. UBA11524 476 
sp000437595, another Firmicutes species, was negatively associated with NfL. 477 
Cryptobacteroides sp900544195 and Cryptobacteroides sp000432515, both species under 478 
phylum Bacteroidetes, were negatively associated with S100B. 479 

In the association between gut microbiome functional features and CSF biomarkers of 480 
AD and related pathologies, multiple microbial pathways more abundant in AD compared to CU 481 
showed a tendency to positively correlate with the CSF biomarkers, whereas pathways less 482 
abundant in AD compared to CU showed a tendency to have negative associations with the 483 
CSF biomarkers (Figure 7B). It should be noted that a lower Aβ42/Aβ40 ratio is associated with a 484 
higher risk of having AD pathology whereas higher levels of the rest of the CSF biomarkers are 485 
associated with a higher risk of having AD pathology. The same categories of CSF biomarkers 486 
for AD and related pathologies were included in the analysis including Aβ42/Aβ40, pTau181, tTau, 487 
IL-6, NfL, neurogranin, α-synuclein, S100B, GFAP, YKL-40, and sTREM2. 488 
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Microbial functional features in the Top group showed overall positive associations with 489 
CSF biomarkers with the exception of Aβ42/Aβ40. Multiple Bacteroides spp. and their related 490 
pathways were positively associated with several CSF biomarkers including NfL, neurogranin, 491 
α-synuclein, pTau181, and tTau. Bacteroides thetaiotaomicron and its associated pathways 492 
including benzoate degradation, ubiquinone and other terpenoid-quinone biosynthesis, 493 
biosynthesis of various plant secondary metabolites, inositol phosphate metabolism, lipoic acid 494 
metabolism, biosynthesis of various antibiotics, beta-alanine metabolism, carbapenem 495 
biosynthesis, neomycin, kanamycin and gentamicin biosynthesis, polyketide sugar unit 496 
biosynthesis, ascorbate and aldarate metabolism, and taurine and hypotaurine metabolism had 497 
generally positive relationship with CSF biomarkers including NfL, YKL-40, neurogranin, α-498 
synuclein, pTau181, and tTau, and negative relationship with IL-6. Collinsella stercoris and 499 
polyketide sugar unit biosynthesis pathway showed positive correlation with GFAP and 500 
sTREM2, and negative correlation with Aβ42/Aβ40. Collinsella stercoris and O-antigen repeat unit 501 
biosynthesis pathway showed negative correlation with Aβ42/Aβ40. 502 

Microbial functional features in the Bottom group showed overall negative associations 503 
with CSF biomarkers for AD and related pathologies. Two pathways, ether lipid metabolism and 504 
alpha-linolenic acid metabolism, related to Parabacteroides merdae, a species more abundant 505 
in CU group were associated with lower CSF Aβ42/Aβ40. It implies that higher abundance of 506 
these pathways of Parabacteroides merdae in CU individuals is associated with more brain 507 
amyloid. Moreover, bacterial chemotaxis pathway from Coprococcus eutactus was negatively 508 
associated with NfL and YKL-40, and naphthalene degradation pathway from Turicibacter 509 
sanguinis was negatively associated with α-synuclein, pTau181, and tTau. 510 
 511 

4 DISCUSSION 512 

In this study, we compared gut microbiome composition and function between several 513 
AD-relevant groups, including those with a clinical diagnosis, differential amyloid status, and 514 
APOE ε4 carrier status. The objective was to determine the association of gut microbiome 515 
features that are differentially abundant in AD dementia and determine association with CSF 516 
biomarkers of AD and related pathological features, to potentially identify gut microbial features 517 
associated with AD. 518 

Alpha and beta diversity analysis was performed between groups of each clinical 519 
diagnosis, amyloid status, and APOE ε4 status groups. Prior studies have found that alpha and 520 
beta diversities do not differ between AD vs CU61,62 and A+ vs A−63 while other studies showed 521 
significant differences in alpha and beta diversity indices in humans4,7 and mice.64–66  522 

The DA analysis in gut microbiome composition at each taxonomic level using BIRDMAn 523 
was performed in AD-related groups. Similar results were reported in other studies6,67 while 524 
opposite findings were also found, where fewer Bacteroidetes and more Firmicutes were 525 
reported in MCI compared to healthy controls and fewer genera Bacteroides and Alistipes and 526 
more genus Bifidobacterium were found in AD compared to health controls.68,69 A meta-analysis 527 
of gut microbiome compositional differences in AD across studies between 2000 to 2021 528 
demonstrated similar outcomes measured by overall pooled effect size at each taxonomic 529 
level.7  530 
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Discrepancies between studies may be due to differences in sample size, population 531 
variation, disease heterogeneity, sequencing method, and confounding factors.70 Our study 532 
addresses these discrepancies through robust methodologies. Firstly, we utilized shotgun 533 
metagenomic sequencing, which provides more comprehensive taxonomic and functional 534 
profiling of microbial communities compared to 16S rRNA sequencing.71 Additionally, we 535 
employed advanced statistical methodologies that have been shown to be replicable across 536 
multiple cohorts.52 Lastly, we validated our findings with a larger cohort from the AGMP, which 537 
significantly enhances the reliability and generalizability of our result. Our validation of the DA 538 
analysis in a larger cohort largely recapitulates what we found in the smaller sample, confirming 539 
that alterations in gut microbiome composition are present in AD dementia. 540 

To further determine co-occurring gut microbes among clinical diagnosis, amyloid status, 541 
and APOE ε4 status groups, a co-occurrence analysis was performed on differentially abundant 542 
microbes in each group. Investigating co-occurring taxonomic features may be useful in the 543 
examination of gut microbiota that could potentially coexist and contribute to AD pathology 544 
related to amyloid pathology or APOE ε4 pathology which are phenotypic and genotypic 545 
pathological signatures of AD. Studies have shown gut microbiota differences between CU+ 546 
(Aβ-positive) and CU− (Aβ-negative).8,11,72 One of the studies showed that Phylum 547 
Bacteroidetes, class Bacteroidia, and order Bacteroidales were enriched in CN+ and phylum 548 
Firmicutes, class Clostridia, order Clostridiales, families Lachnospiraceae and 549 
Ruminococcaceae, and genera Faecalibacterium and Bilophila were enriched in CN−.11 Higher 550 
abundance of genera Faecalibacterium and Bilophila was negatively correlated with the global 551 
brain Aβ burden.11 Another study explored gut microbiome taxa which are pro-inflammatory with 552 
blood inflammation markers.73 Genus Escherichia/Shigella was significantly more abundant in 553 
A+ compared with A− individuals. Genus Escherichia/Shigella was correlated positively with 554 
peripheral inflammatory cytokines in individuals with cognitive impairment and brain 555 
amyloidosis.73 556 

Taken together, results from our study and other studies suggest that diverse and 557 
distinct gut microbiota taxonomic composition is altered in AD dementia, among individuals with 558 
preclinical AD, and individuals with genetic risk for AD. However, studies are limited to 559 
taxonomic and compositional associations and the determination of microbial functions in AD 560 
pathogenesis is needed to better understand the role of specific gut microbes and their 561 
functions in the progression of AD. 562 

This study further examined the functional pathways of gut microbiome in a clinical 563 
diagnosis group between AD and CU. Gut microbiome pathways and associated species that 564 
are differentially abundant between AD and CU were determined. We found 116 distinct 565 
pathways between AD and CU. Among 116 KO pathway features, 21 pathways had 566 
associations either with AD (Top) or CU (Bottom) group. The log ratios of these Top/Bottom 567 
microbial pathway features between AD and CU were significantly different. Interestingly, 568 
species that were associated with these microbial pathways were mostly Bacteroides spp. (B. 569 
finegoldii, B. thetaiotaomicron, and B. ovatus) under phlyum Bacteroidota in the Top group. 570 
Multiple studies have reported the association between Bacteroides and AD.4,74,75 Administration 571 
of Bacteroides fragilis to AD mice increased Aβ plaques and inhibition of microglial clearance of 572 
Aβ was observed after introduction to B. fragilis.76 Another study showed the role of B. fragilis in 573 
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AD pathology in mice.77 Studies have suggested that genus Bacteroides to be dominant in older 574 
adults compared with healthy and younger controls.78,79 However, contrasting findings have 575 
been reported related to Bacteroides8,80 and further strain-specific studies are needed to 576 
understand the role of Bacteroides in AD pathology. 577 

Additionally, RPCA showed a distinct significant separation between AD and CU groups. 578 
RPCA is known to handle sparse and high-dimensional datasets and is sensitive to datasets 579 
with outliers.54 Microbiome datasets are often sparse and zero-inflated, thus we employed 580 
RPCA to identify microbiome features that could explain the separation between groups. 581 
Consistent with the DA analysis, RPCA showed microbial pathways that are more abundant in 582 
AD (Top) were more associated with AD dementia, whereas microbial pathways less abundant 583 
in AD (Bottom) were less associated with AD dementia. 584 

To determine whether distinct microbial features in AD and CU correlate with CSF 585 
biomarkers of AD and related pathologies, the relationship between CSF biomarkers and each 586 
compositional and functional gut microbiome feature was explored using the OLS regression 587 
model. 588 

Key microbiome species, particularly Fusobacterium nucleatum, Fusobacterium 589 
animalis, and Nanogingivalis gingivitcus, identified as commonly more abundant between AD 590 
and A+, were associated with more intense tau pathophysiology (pTau181 and tTau) and/or 591 
synaptic dysfunction and injury (neurogranin and α-synuclein). Interestingly, the species 592 
Fusobacterium nucleatum is an oral bacteria often associated with cavity and periodontal 593 
diseases as well as colorectal cancer.81,82 Fusobacterium nucleatum produces 594 
lipopolysaccharides (LPS) that induce microglial activation with elevated expression of 595 
proinflammatory cytokines.83 In prior studies using the 5XFAD mouse model, the mRNA 596 
expression levels of the same proinflammatory cytokines as well as numbers of microglia in the 597 
mice brain were increased after Fusobacterium nucleatum infection.83 Moreover, enhanced Aβ 598 
accumulation, tau protein phosphorylation, and memory impairment were observed in 5XFAD 599 
mice compared to controls.83 The oral infection of Fusobacterium nucleatum in AD-like 600 
periodontitis rats exhibited increased accumulation of Aβ and pTau181 expression in the brain.84 601 
Although these results propose valuable mechanistic backgrounds for Fusobacterium 602 
nucleatum and AD, further investigation in humans is needed. 603 

The species Dialister hominis, a microbe that co-occurred between CU and A− displayed 604 
a negative correlation with AD pathology (pTau181), neuronal damage (tTau), and synaptic 605 
dysfunction and injury (neurogranin and α-synuclein). These findings are similar to previous 606 
works which identified genus Dialister (less in AD) to be more abundant in CU individuals.85,86 607 
Another species Turicibacter sanguinis which was a microbe that co-occurred between CU and 608 
APOE ε4− showed a negative correlation with pTau181, tTau, neurogranin, and α-synuclein. In 609 
animal models for AD, Turicibacter sanguinis is reported to be less abundant in AD compared to 610 
controls.87,88 In humans, Turicibacter was observed to be less abundant in individuals with AD.4 611 
However, studies on the role of species specific to Dialister hominis and Turicibacter sanguinis 612 
in AD pathology are scarce. 613 

This result indicates that microbiota compositional features in CU are related to lower 614 
levels of AD pathology whereas microbiota features in AD are related to higher levels of AD 615 
pathology, suggesting overall microbiota composition in people with AD may be vulnerable to 616 
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development or progression of AD compared to CU individuals. While these results support a 617 
relationship between gut microbiome composition and AD pathology, further investigation into 618 
these mechanisms is required to find a causal relationship. 619 

 Multiple Bacteroides spp. and their related functional pathways more abundant in AD 620 
were associated with greater AD pathology represented in CSF biomarkers of AD and related 621 
pathologies. Biomarkers including neurodegeneration (NfL), synaptic dysfunction and injury 622 
(neurogranin and α-synuclein), and tau pathophysiology (pTau181 and tTau) showed a positive 623 
relationship with Bacteroides thetaiotaomicron and their functions. Studies have linked the 624 
abundance of Bacteroides thetaiotaomicron with AD. The abundance of B. thetaiotaomicron 625 
was significantly higher in AD mice and was related to poorer spatial learning.89 Increased 626 
abundance of B. thetaiotaomicron was reported in AD participants.90,91 However, in a non-AD 627 
model, B. thetaiotaomicron was suggested to regulate enteric neuronal cell populations and 628 
neurogenic function.  629 

Although evidence related to these microbial functions is limited, these results suggest 630 
that alterations in gut microbiome composition and function are related to AD pathological 631 
markers measured in CSF. 632 

The main limitation of our study is the small number of cognitively impaired participants 633 
relative to CU participants. The sample size decreased after matching clinical measurements, 634 
gut microbiome data, and presence of CSF biomarkers. The resulting low statistical power may 635 
have led to losing significance after multiple test corrections for association analyses between 636 
gut microbiome features and CSF biomarkers. A similar challenge is the inclusion of cognitively 637 
impaired individuals in both the A+ and APOE ε4 groups. Excluding these individuals reduced 638 
the sample sizes, resulting in low statistical power. Future studies should aim to collect sufficient 639 
samples to separate these groups, allowing for a clearer distinction between disease effects and 640 
symptom effects. Moreover, due to the cross-sectional approach, it is difficult to capture the 641 
longitudinal changes over time considering the progression of AD for each individual. We 642 
included the ADRC validation cohort to account for differences in gut microbiome composition 643 
across diverse populations, however, due to the limitation of the availability of biomarkers 644 
matched with fecal samples, we were not able to test associations with CSF biomarkers in the 645 
validation cohort. Additionally, the results are correlational, and further mechanistic studies are 646 
needed to find causal relationships between gut microbiome features and biomarkers for AD 647 
pathology. Finally, other environmental factors (exposome) which may impact the gut 648 
microbiome and which contribute to AD risk require additional study in the future. 649 

 650 

5 CONCLUSIONS 651 

This study suggests that gut microbiome composition and function differ between people with 652 
AD dementia and CU individuals. Beta diversity indices differed among AD-related groups: 653 
diagnosis (AD vs CU), amyloid (A+ vs A−), and APOE ε4 (APOE ε4+ vs APOE ε4−) groups, 654 
indicating that the gut microbiome diversity varies between each group. Multiple gut microbes at 655 
each taxonomic level including phylum, family, genus, and species were differentially abundant 656 
across AD groups. Co-occurring gut microbes across AD-related groups were determined, 657 
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many of which showed associations with CSF biomarkers for AD and related pathologies. 658 
Microbial functional pathways were differentially abundant between AD and CU, which were 659 
correlated with AD pathology markers measured in CSF. These findings identify specific targets 660 
for stratifying key gut microbes and microbial pathways that may be related to AD pathology. 661 
Further investigation on metabolomic changes as well as exposome and host genome that may 662 
be mediating the interconnectome between the gut microbiome and AD pathology is needed. 663 
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Figure legends 1051 

 1052 
Figure 1 1053 
Alpha and beta diversity metrics across AD groups. (A-C) Shannon, Evenness, and Faith's 1054 
PD metrics for individuals categorized by clinical diagnosis (CU vs. Dementia-AD). (D-F) Metrics 1055 
for amyloid status (Negative vs. Positive). (G-I) Metrics across APOE ε4 status (Negative vs. 1056 
Positive). Each box plot is overlaid with individual data points, enhancing visualization of the 1057 
data distribution within each group. Kruskal-Wallis test was used to determine statistical 1058 
significance. (J-L) Differences in beta diversity metrics (Bray Curtis, Weighted UniFrac, and 1059 
Unweighted UniFrac, respectively) for individuals categorized by clinical diagnosis (CU vs. 1060 
Dementia-AD). (M-O) Metrics for amyloid status (Negative vs. Positive). (P-R) Metrics across 1061 
APOE ε4 status (Negative vs. Positive). Principal coordinates (PC)1 and PC2 axes represent 1062 
the most variance in data. Each plot is color-coded by the respective group, highlighting the 1063 
spatial distribution and clustering based on the dissimilarity indices. PERMANOVA was used to 1064 
determine statistical significance. 1065 
 1066 
Figure 2 1067 
Differential abundance (DA) across AD groups. Forest plots illustrating the DA of microbial 1068 
features associated with AD groups. (A, D, G, and J) Contrasts in the abundance of various 1069 
bacterial taxa at (A) phylum, (D) family, (G) genus, and (J) species levels between AD dementia 1070 
and CU. (B, E, H, and K) The differences in abundance at these taxonomic levels between A+ 1071 
and A− individuals. (C, F, I, and L) The microbial features differentially abundant between APOE 1072 
ε4+ and APOE ε4− groups. The x-axes quantify the log ratio of presence between groups, with 1073 
values above one indicating a higher abundance in the first-mentioned group. Circles denote 1074 
"Top" features, indicating a positive association with AD groups (dementia diagnosis, amyloid 1075 
positivity, and APOE ε4 positivity), whereas triangles denote "Bottom" features, indicating a 1076 
negative association. The lines are color-coded by unique phylum as labeled in the legend. DA 1077 
analysis was conducted using BIRDMAn. 1078 
 1079 
Figure 3 1080 
Comparative analysis of top and bottom features across AD groups. Box plots comparing 1081 
the distribution of log-transformed ratios of differentially abundant microbial species in relation to 1082 
diagnosis, amyloid status, and APOE ε4 status. (A-C) The log-transformed ratios of microbes for 1083 
diagnosis groups (AD vs CU). (D-F) The log-transformed ratios of amyloid-related microbes (A+ 1084 
vs A−). (G-I) The log-transformed ratios of APOE ε4-related microbes (APOE ε4+ vs APOE 1085 
ε4−). Each column compares the CU and AD groups (A, D, and G), A+ and A− groups (B, E, 1086 
and H), and APOE ε4+ and APOE ε4− groups (C, F, and I). Each panel includes a Kruskal-1087 
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Wallis test statistic and associated P value, indicating the statistical significance of the 1088 
differences observed. 1089 
 1090 
Figure 4 1091 
Venn-diagram of co-occurrence of microbial features across AD groups. The diagrams on 1092 
the left column (A, C, E, and G) depict the Top (positively-associated) differentially abundant 1093 
features, while those on the right column (B, D, F, and H) show the Bottom (negatively-1094 
associated) differentially abundant features. (A and B) Top and Bottom microbial phyla, 1095 
respectively. These diagrams identify unique and shared phyla associated with each of the 1096 
three AD groups. (C and D) Top and Bottom microbial families, respectively. These diagrams 1097 
highlight the family-level microbial differences that correlate with AD diagnosis, amyloid 1098 
presence, and APOE ε4 genotype presence. (E and F) Top and Bottom microbial genera, 1099 
respectively. These diagrams provide insight into the genus-level microbial composition 1100 
influenced by the specified AD groups. (G and H) Top and Bottom microbial species, 1101 
respectively. These diagrams detail the number of species that are unique and shared across 1102 
the three AD groups. Each diagram contains colored regions representing intersections 1103 
between the groups: red for dementia, green for amyloid, and blue for APOE ε4. The numbers 1104 
within each segment of the diagrams indicate the count of microbial features unique to or 1105 
shared between the conditions. Specific microbial features are listed in Table S2. 1106 
 1107 
Figure 5 1108 
Comparison of log-transformed dementia biomarker ratios in CU and AD dementia 1109 
across two cohorts. (A) The results from the MARS cohort. Box plots show the distribution of 1110 
log-transformed ratios of top dementia biomarkers to bottom dementia biomarkers for CU 1111 
individuals (light blue) and AD dementia (dark blue) (Kruskal-Wallis = 31.81, P value < .001). (B) 1112 
The results from a larger validation cohort (n = 448). Box plots present the distribution of log-1113 
transformed ratios of top dementia biomarkers to bottom dementia biomarkers found in the 1114 
MARS cohort for CU individuals (light blue) and people with AD dementia (dark blue) (Kruskal-1115 
Wallis = 5.59, P value = .02). Each point represents an individual sample, with the boxes 1116 
indicating the interquartile range (IQR) and the whiskers extending to 1.5 times the IQR. The 1117 
horizontal line within each box denotes the median value. 1118 
 1119 
Figure 6 1120 
Differentially abundant microbial pathways between AD and CU. (A) The distribution of the 1121 
log ratios of Top/Bottom pathway features between AD (orange) and CU (blue) was shown in a 1122 
box plot. Mann–Whitney U test was performed to determine statistical significance. Asterisks 1123 
indicate a significant difference between AD (4.90) and CU (2.74) groups in the median of the 1124 
log ratios of Top/Bottom pathway features (P value < .001). (B) A total of 36 differentially 1125 
abundant features of microbial species and their corresponding pathways between AD and CU 1126 
were displayed in a forest plot. Circles denote "Top" features, indicating a positive association 1127 
with AD, whereas triangles denote "Bottom" features, indicating a negative association. The 1128 
lines are color-coded by unique species and their corresponding pathways. DA analysis was 1129 
conducted using BIRDMAn. (C) RPCA on the clinical diagnosis group and a biplot of 1130 
microbiome pathway features and their corresponding species. Each point represents an 1131 
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individual sample color-coded by the respective group, with CU colored in blue and AD colored 1132 
in orange. Vectors represent the direction (arrows) and magnitude (length) of the contribution of 1133 
feature variables to the principal components (PCs). Vectors in red indicate Top features and 1134 
vectors in green indicate Bottom features. PC1 and PC2 axes represent the most variance in 1135 
data. Statistical analysis on RPCA was performed with PERMANOVA between AD and CU 1136 
groups. 1137 
 1138 
Figure 7 1139 
Heatmap illustrating the associations between gut microbiome compositional and 1140 
functional features and CSF biomarkers in AD and related pathologies. (A) This heatmap 1141 
represents the coefficients of regression analysis between the top and bottom 20 gut microbial 1142 
species linked to dementia and CSF biomarkers in two groups: Top (more abundant in AD, 1143 
denoted by the pink bar) and Bottom (less abundant in AD, denoted by the green bar). The color 1144 
scale indicates the strength and direction of the associations, with red representing positive 1145 
associations and blue representing negative associations. The intensity of the color corresponds 1146 
to the magnitude of the coefficient. Listed on the left are the gut microbiome species that were 1147 
identified as more or less abundant in dementia-AD through BIRDMAn. (B) The heatmap 1148 
depicts the coefficients of regression analysis between the gut microbial pathways and CSF 1149 
biomarkers. Coefficients are scaled by colors indicating the strength and direction of the 1150 
associations, with green representing positive associations and pink representing negative 1151 
associations. The intensity of the color corresponds to the magnitude (strength) of the 1152 
coefficient. Microbial species and their associated pathway features are listed on the left of the 1153 
plot and two groups (Top: more abundant in AD, denoted by the light pink bar; and Bottom: less 1154 
abundant in AD or more abundant in CU, denoted by the light green bar) from DA analysis using 1155 
BIRDMAn are displayed on the right of the plot. 1156 
The biomarkers listed along the bottom include amyloid pathology (Aβ42/Aβ40), tau 1157 
pathophysiology (pTau181 and tTau), neurodegeneration (NfL), synaptic dysfunction and injury 1158 
(neurogranin and α-synuclein), inflammation (IL-6), and glial activation (S100B, GFAP, YKL-40, 1159 
and sTREM2). Asterisks indicate the level of statistical significance of the associations: ***P < 1160 
.001, **P < .01, and *P < .05 (uncorrected). 1161 
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Table 1. Participant demographics at fecal sample collection by clinical diagnosis. 

Variable N Overall, N = 232† Dementia-AD, N = 24† CU, N = 208† P value‡ 

Age 232 67 (±7) 71 (±7)§** 66 (±7) .002 

Sex 232       .7 

    Female   142 (61%) 16 (67%) 126 (61%)   

    Male   90 (39%) 8 (33%) 82 (39%)   

Race 232    >0.9 

    Black or African American  10 (4.3%) 1 (4.2%) 9 (4.3%)  

    White  222 (96%) 23 (96%) 199 (96%)  

APOE genotype 227       <.001 

    ε2ε3   22 (9.7%) 0 (0%) 22 (11%)   

    ε3ε3   120 (53%) 5 (21%)§** 115 (57%)   

    ε2ε4   5 (2.2%) 0 (0%) 5 (2.5%)   

    ε3ε4   64 (28%) 11 (46%) 53 (26%)   

    ε4ε4   16 (7.0%) 8 (33%)§**** 8 (3.9%)   

APOE ε4 genotype 227       <.001 

    Negative (non-carrier)   142 (63%) 5 (21%) 137 (67%)   

    Positive (carrier)   85 (37%) 19 (79%)§**** 66 (33%)   

Bristol stool type 232       .031 

    1   16 (6.9%) 0 (0%) 16 (7.7%)   

    2   19 (8.2%) 3 (13%) 16 (7.7%)   

    3   35 (15%) 9 (38%)§* 26 (13%)   

    4   105 (45%) 6 (25%) 99 (48%)   

    5   37 (16%) 4 (17%) 33 (16%)   

    6   19 (8.2%) 2 (8.3%) 17 (8.2%)   

    7   1 (0.4%) 0 (0%) 1 (0.5%)   

BMI 232 28.2 (±5.4) 26.0 (±4.7)§* 28.4 (±5.4) .030 

Amyloid status 145       <.001 

    0 (A−)   104 (72%) 0 (0%) 104 (78%)   

    1 (A+)   41 (28%) 12 (100%)§**** 29 (22%)   

Medication status 232    .7 

    medicated   213 (92%) 23 (96%) 190 (91%)  

    non-medicated   19 (8.2%) 1 (4.2%) 18 (8.7%)  

Abbreviations: AD, Alzheimer’s disease; CU, cognitively unimpaired; APOE, apolipoprotein E; BMI, body 
mass index; A, amyloid status. 
NOTE. The Bristol stool types are classification tools for the diagnosis of human feces form. 
†Mean (±SD); n (%) 
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‡Kruskal-Wallis rank sum test; Pearson's Chi-squared test 
§Significantly different Dementia-AD vs CU 

*P < .05, **P < .01, ***P < .001, ****P < .0001 (P values are Bonferroni test corrected) 
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