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Abstract

Systems vaccinology studies have been used to build computational models that predict
individual vaccine responses and identify the factors contributing to differences in outcome.
Comparing such models is challenging due to variability in study designs. To address this, we
established a community resource to compare models predicting B. pertussis booster
responses and generate experimental data for the explicit purpose of model evaluation. We
here describe our second computational prediction challenge using this resource, where we
benchmarked 49 algorithms from 53 scientists. We found that the most successful models stood
out in their handling of nonlinearities, reducing large feature sets to representative subsets, and
advanced data preprocessing. In contrast, we found that models adopted from literature that
were developed to predict vaccine antibody responses in other settings performed poorly,
reinforcing the need for purpose-built models. Overall, this demonstrates the value of
purpose-generated datasets for rigorous and open model evaluations to identify features that
improve the reliability and applicability of computational models in vaccine response prediction.

Introduction

Systems vaccinology aims to translate complex immunological data into actionable insights that
can guide vaccination strategies. Achieving this requires integrating diverse datasets including
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genomic, proteomic, and transcriptomic data, to evaluate the systemic response to vaccination
and build computational models of the vaccine-induced immune responses'=. As a scientific
community, we are advancing towards this goal by expanding cohort sizes, establishing
meta-analyses involving a broad range of immune responses, and continuously integrating
diverse datasets from single vaccines*® as well as multiple vaccines’® together. These efforts
aim to capture the full complexity of the immune system and enhance our understanding of
vaccine efficacy and safety across different populations *#.

A key challenge in this endeavor is to objectively test the generalizability and reproducibility of
the findings generated by models developed in different studies. It is well known for
genome-wide association studies® that a given study can overemphasize dataset-specific
results that do not replicate in other studies. The solution to this is to test previous findings in
independent future studies. This can be challenging for systems vaccinology as there is
significant variability between studies in terms of their design, specimen collection timing, and
assays used to evaluate results. In addition, systems vaccinology studies are resource
intensive, reducing the incentive for generating validation datasets. This means that most
systems vaccinology-based models are generated based on datasets analyzed at the point of
their publication, but they are not tested further on independent data.

To address this challenge, we initiated CMI-PB (Computational Models of Immunity to Pertussis
Booster; https://www.cmi-pb.org). Our main goal is to test computational models that predict the
outcome of booster vaccination which is performed through a series of data releases and
associated community prediction contests. We have previously completed the first of three
planned contests (Table 1) - a ‘dry-run’ involving CMI-PB consortium members forming teams
using different models to answer the contest questions™. In the current study, we report our
findings on the second ‘invited’ contest that included a select group of scientists from the
broader community who have previously published in systems vaccinology. The datasets from a
total of 96 subjects (Table 1) as part of the first challenge' were made available as a training
dataset to develop predictive models and we recruited a new cohort of 21 subjects which was
available as an unseen testing dataset. We assessed over 49 computational models that
applied various methodologies including classification-based techniques, such as naive Bayes
and random forest, regression-based approaches like elastic net, and various other strategies
encompassing multi-omics integration, gene signature analysis, and module scoring. We
describe the details of these approaches, as well as general trends arising from the
meta-analysis of all submissions. The full dataset, along with methods and scoring functions,
are freely provided to the research community, and available to benchmark future algorithms in
the field. The third public challenge will be open to community participation in August 2024.

Results

This results section covers two components: Sections 1-3 describe the experience of setting up
and running the invited prediction contest. Sections 4-7 describe the specific models developed
and discuss their performance on the prediction tasks.
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1. Invitation of a select group of challenge participants

Our goal for this ‘invited challenge’ was to recruit external participants, but to keep the number
at a manageable level of <50 teams to ensure we could provide individualized support. We
consulted CMI-PB investigators and reviewed journal articles from Pubmed to identify a list of 50
scientists with prior experience in computational modeling, bioinformatics, or immunology and
extended personal invitations to join the CMI-PB Challenge. Initially, 10 out of the 50 invited
participants confirmed that they or their lab members would be interested while others
mentioned conflicting schedules or time constraints as reasons for their inability to participate.
Eventually, a total of 10 teams were formed, with three teams making up 5-6 PhD and masters
students from the University of Minnesota each, one team of 3 researchers from different
institutions, and the six teams remaining consisting of individual researchers for a total of 27
external participants. In addition to the invitations sent to external participants, we also invited
participants from the labs of CMI-PB investigators who were not directly involved with the
project, resulting in 8 participants, plus 1 team consisting of 5 master students from UCSD.
Additionally, 5 members of the internal CMI-PB Consortium participated in the challenge. In
total, we gathered 18 participating teams, for a total of 25 models submitted in the Challenge,
which was a total of 49 people who participated in this invited challenge.

2. Summary of data sets and challenge tasks

Providing experimental data for training and testing prediction models

We generated data derived from more than 600 blood specimens collected from 117 subjects
participating in a longitudinal study of B. pertussis booster vaccination. Blood specimens were
collected on up to three days prior (day -30, -14, 0) and four days post-booster vaccination (day
1, 3, 7, and 14). The repeat pre-vaccination samples were intended to give a stable estimate of
baseline and variability. For each specimen, we performed i) gene expression analysis
(RNAseq) of bulk peripheral blood mononuclear cells (PBMC), ii) plasma cytokine concentration
analysis, iii) cell frequency analysis of PBMC subsets, and iv) analysis of plasma antibodies
against Tdap antigens (Figure 1; See Online Methods for a detailed description of the profiling
data sets). The contestants were supplied with pre- and post-vaccination data as a training
dataset to build their prediction models that consisted of two independent cohorts, the 2020 and
2021 cohorts, for a total of 96 subjects, which are discussed in detail in two previous
publications'". For this challenge, we generated data from 21 new subjects. Baseline
(pre-vaccination) challenge data was made available to contestants. The post-vaccine response
challenge data was hidden from the contestants and used as ground truth for model evaluation.

Our data processing and harmonization approach

As the training dataset includes two multi-omics datasets from the 2020 and 2021 cohorts,
which involved changes in the technicians performing the assay, and in the manufacturers setup
of the assys, we are expecting batch effects that should be corrected before integrating them.
While data processing and normalization methods are inherently user-specific, the CMI-PB team
has developed a standardized data processing approach inspired by the methodology used in


https://doi.org/10.1101/2024.09.04.611290
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.04.611290; this version posted September 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the internal CMI-PB challenge™. This involves 1) identifying common features, 2) baseline
median normalization, and 3) batch-effect correction.

As a first step, we identified what features should be included in our analysis. Features are
analytes measured in individual omics assays, such as cytokines in the Plasma cytokine
concentrations assay. After the removal of features that were not found in all datasets, we were
left with 58,302 overlapping features (Figure 1A). Many of these features had low information
content, especially for the transcriptomic assay. To address this, for gene expression, we filtered
zero variance and mitochondrial genes and removed lowly expressed genes (genes with
transcript per million [TPM] <1 in at least 30% of specimens). Similarly, we filtered features with
zero variance from cytokine concentrations, cell frequency, and antibody assays. This resulted
in 11,660 features including 11,589 features from PBMC gene expression, 23 from PBMC cell
frequency, 28 from Plasma cytokine concentrations, and 20 from Plasma antibody titers assays.

In the second step, we ran assay-specific data normalization. We performed baseline
normalization on cell frequency, antibody titer, and cytokine concentration data. Specifically, we
calculated the median using day zero time point data as a normalization factor per analyte and
divided all values by this factor. We did not apply any normalization to the gene expression data.
As a third step, we applied batch-effect correction on assay data within the training dataset to
harmonize the data across 2020 and 2021 years. We employed the ComBat algorithm from the
sva package, which adjusts for batch effects by modeling both batch and biological
covariates''3, After batch-effect correction, we validated the effectiveness of this step by
examining the distribution of features across batches. We observed a significant reduction in
cross-year batch-associated variability, confirming that the correction process was successful.
This allowed us to move forward with a harmonized dataset for contestants for their analysis.

The challenge dataset underwent similar data processing and normalization to the training set to
ensure consistency and comparability. This included using the median of pre-vaccination data to
normalize cell frequency, antibody titer, and cytokine concentration data. We did not apply any
normalization to the gene expression data. This processed data, along with raw data, was made
available in TSV files and R data object formats, and the codebase used to transform from raw
to processed was made available through GitHub.

Prediction tasks

We formulated six tasks asking contestants to predict a ranking of subjects from the highest
response to the lowest response for each task based only on the pre-vaccination immune state
data (Table 2). In task 1.1, contestants were asked to predict plasma IgG levels against the
pertussis toxin (PT) on day 14 post-booster vaccination. Task 1.2 consisted of predicting the fold
change of the plasma IgG levels against the pertussis toxin (PT) between day 14 post-booster
vaccination and baseline. Tasks 2.1 and 2.2 required contestants to predict the overall
frequency of monocytes among PBMCs on day 1 post-booster vaccination and the
corresponding fold change, respectively. Similarly, in tasks 3.1 and 3.2 the CCL3 gene
expression on day 3 post-booster vaccination and the corresponding fold change values
compared to baseline needed to be predicted. This focus on 6 tasks that combine 3 targets with
2 readouts makes for a simpler setup compared to our previous competition.
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Each team could enter submissions for up to 3 different models and was allowed to update their
submissions until the deadline. In total, We received 25 submissions for this invited challenge
from 20 participating teams. In addition, we constructed 2 control models and incorporated 22
models previously identified from the literature, bringing the total number of models evaluated to
49. All teams provided detailed information about their computational methods and deposited
their source code on GitHub, as listed in Supplementary Note S1.

3. Establishing control models and literature models

We established two simple control models that set a baseline of what more complex models
should outperform. Model 1 is based on our finding that predicting vaccine responses solely
based on the chronological age of the subject (the older, the worse) outperformed a lot of other
models in predicting the antibody response to the Tdap vaccination. Therefore, we
implemented Control Model 1 simply by ranking subjects on their calendar age. Similarly,
Control Model 2 captures that pre-vaccination levels of assay readouts are highly correlated
with post-vaccination levels of the same readouts''. We implemented this for tasks 1.1 and
1.2, by using the baseline IgG antibody titer values against pertussis toxin as the predictor. For
tasks 2.1 and 2.2, we used pre-vaccination monocyte frequencies, and for tasks 3.1 and 3.2, we
used pre-vaccine levels of CCL3 gene expression values. These control models are intended to
set a baseline that more complex prediction models should exceed.

Additionally, we have implemented a set of 22 literature-derived models developed within the
systems vaccinology field that aim to predict vaccination outcomes, as described in [38490204].
It is important to note that these models were repurposed for our prediction tasks and not
evaluated in their original intended areas or studies. Instead, we evaluated these adapted
models for their prediction performance on B. pertussis booster vaccination to determine the
generalizability of these predictors. All of the literature models we identified were developed to
predict antibody titers, so we only ran them on Task 1.

4. Contestants' methods to predict vaccine response

We received a total of 25 submissions with the majority (19/25) of teams attempting all six tasks.
Two teams completed five tasks, one team completed four tasks, two teams completed two
tasks, and one team completed only one task. Contestants were asked to describe the
methodologies they utilized, which included linear regression, nonlinear regression (regression
trees), sparse linear regression, PLS (partial least-squares) or PC (principal component)
regression, ensemble/model selection, and others (those methods not falling cleanly into the
previous five categories). All methods are listed in Table 3 with a short description that covers
data pre- and postprocessing and expanded team summaries can be found in Supplementary
note S1.

Most teams built their models using the provided preprocessed data. Some teams performed
additional data processing required as a prerequisite for specific algorithms. These
preprocessing techniques included data transformation and scaling (e.g., log10, square root),


https://doi.org/10.1101/2024.09.04.611290
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.04.611290; this version posted September 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

encoding for categorical features such as race and biological sex (e.g., label, one-hot), data
imputation (e.g., PCA, Bayesian), and data normalization.

Preprocessing and feature selection are core components of building a predictor. In this
challenge, features in the profiling data sets (P) far outnumber the total samples (N), increasing
the risk of overfitting. To address this, teams often reduced the number of features modeled by
correlating the features in the profiling dataset to the post-vaccination response data. A few
teams also performed multi-omics integration and PC-based techniques to construct combined
meta-features. Other preprocessing steps included principal component analysis, categorical
regression, regularized regression (e.g., LASSO, ridge, or elastic nets), and mapping gene-level
measurements to biological pathways or transcriptional modules.

Post-processing also differed in the specific models used for individual tasks. Most teams used
summarizing or integrating one prediction model for all six tasks. In this approach, models were
re-trained for specific tasks and evaluated separately to achieve better performance for each
task. Other teams built entirely separate models for each task. Additionally, teams employed
various cross-validation approaches, including leave-one-out, k-fold, 5-fold, and cross-cohort
(testing on the 2020 cohort and evaluating on the 2021 cohort, and vice versa). Detailed
descriptions of the team methods can be found in Table 1.

5. Evaluating Task performance on vaccine response predictions

We first evaluated the prediction performance of the control models and models from the
literature. As specified in the contest description, Spearman's Rank Correlation Coefficients
were utilized as a metric for the evaluation of the submitted models for each task. For Control
Model 1 which was solely based on the age of subjects, we found no significant relationship for
any of the six tasks (Figure 2A). In contrast, we observed a significant positive correlation for
Control Model 2 between the ranking of post-vaccination responses and their respective
baselines for all three tasks: Monocytes on day 1, CCL3 on day 3, and IgG-PT on day 14
(Figure 2A). This suggests that overall, the booster vaccination does not disrupt the pre-existing
ranking of subjects in these readouts. In contrast, a strong negative correlation was noted
between the fold change of IgG-PT at day 14 and its baseline. This translates to subjects with
low pre-vaccination antibody titers showing the largest fold-change increase in titers post
vaccination. Notably, this is not observed for the other two readouts (CCL3 gene levels and
Monocyte frequency), suggesting that it is not just a result of ‘regression to the mean’. Rather,
individuals with very low antibody titers seem to benefit the most from a booster vaccination.

Of the 22 literature models tested, only four provided a significant Spearman correlation
coefficient, and all of those were for task 1.2 (antibody fold-change). None of the literature
models outperformed the ‘baseline’ Control Model 2 (Figure 2B). Overall this suggests that the
Control Models we implemented provided a good baseline that needs to be exceeded by new
models to prove their value.

In terms of contestant-submitted predictions, among the 25 submissions received, 20
demonstrated at least one significant correlation coefficient. These models were considered
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important, and their performances are discussed subsequently (Section 6). In the top 20
models, prevalent techniques for selecting predictor genes included univariate feature ranking,
meta-gene construction through multi-omics integration, and literature-based gene selection.
The common prediction models employed were random forest and regularized regression
methods (LASSO and ridge regression), with the latter being notably used by the top-ranked
Team 49 in this sub-challenge.

Contestant-submitted predictions were aggregated by teams, where the score of each team was
calculated using a point system to rank all submissions and identify the overall winner of the
challenge. We awarded 3 points to the submission ranked highest in a particular task and 1
point if the contestant attempted the task. The team with the highest points was awarded as the
winner of the challenge. The final scores revealed that the winning team is from the University of
Minnesota (Team 49), achieving superior predictions in tasks 1.2 (r = 0.7, p-value = 0.001) and
2.1 (r = 0.81, p-value = 0.0031) (Figure 2). Two teams from the LJI (Teams 54 and 38) ranked
second overall. A team from the National Institutes of Health (Team 51) ranked third overall and
achieved the top rank for task 2.2 (see Figure 2A for details). Team 54 ranked top for task 1.1,
and Team 38 ranked top for task 3.1. As no submissions showed a significant correlation
coefficient for task 3.2, there was no team declared as winner for that task.

6. Top-performing methods include distinct approaches: multi-omics
integration, categorical regression, and subject-based training

The top-performing team from the University of Minnesota developed a machine learning
method that integrated multi-omics profiling data sets and knowledge-enhanced data
representations into a nonlinear, probabilistic regression model to learn and predict vaccine
response tasks (Figure 3 and source code provided as Supplementary Software). Starting with
raw experimental data, the workflow involved initial data imputation and batch effect correction
that considered different time points separately to help maintain the temporal integrity of the
data'®. Feature selection was then performed using various statistical techniques, including
LASSO, Ridge, PCA, PLS, and Multiple Co-Inertia Analysis (MCIA). MCIA was then chosen as
the best-performing method, which integrates different data modalities to produce a reduced set
of key multi-omics features'. These features were then utilized in a linear mixed effect model,
structured to differentiate between fixed and random effects. The model was trained on a subset
of the data, with validation through 5-fold cross-validation, and then tested to evaluate its
predictive performance.

There were two second-best-performing teams. The team led by Dr. Thrupp from LJI utilized
multi-omics integration with Multi-Omics Factor Analysis (MOFA) which is also a factor analysis
model that provides a general framework for the integration of multi-omic data sets in an
unsupervised fashion. Initially, processed data from the 2020 and 2021 training cohorts, which
included all four assays, were used to construct 10 MOFA factors. Subsequently, LASSO was
employed to identify the best-performing feature'. The model was trained on a subset of this
data, validated through 5-fold cross-validation, and then tested to assess its predictive
performance. The team led by Dr. Jarjapu from LJI utilized the Catboost Regression model,
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which was trained on the 2020 and 2021 training cohorts®. Feature selection was conducted
manually, selecting features that exhibited consistent Spearman correlation coefficients when
the model was trained separately on the 2020 and 2021 datasets. This approach ensured that
only the most reliable and stable features were used for the final model, aiming to enhance the
robustness and accuracy of the predictive outcomes.

The third-ranked team led by Dr. Gibson from the NIH adopted a distinctive strategy by employing
a Random Forest classifier to simulate training individual subjects and XGBoost to determine
the final rankings??2. They attempted four of the six tasks, specifically excluding the gene
expression tasks. This team utilized processed data from three assays: cell frequency, cytokine
concentrations, and antibody titers. For tasks 1.1 and 1.2, they implemented data imputation
using median antibody titers per feature. To validate their model, they applied K-fold validation,
ensuring the robustness and reliability of their predictive model through systematic resampling
and evaluation.

Discussion

In this study, we evaluated multi-omics data from Tdap booster immunizations to predict vaccine
outcomes. We focused on Bordetella Pertussis (BP) because of its continued public health
importance and the ability to compare different vaccination regimes. BP causes whooping
cough, a highly contagious respiratory infection that most severely affects infants?®. The
introduction of whole-cell pertussis (wP) vaccines in ~1950 massively reduced the incidence of
infections. Due to observed reactogenicity side effects, the wP vaccines were replaced with
acellular pertussis (aP) vaccines in 1996. Following this, pertussis incidence has been rising in
the last two decades, likely due to waning immunity post aP vaccination®*-?8. Studies, including
our own"2°%®  have shown long-lasting effects and differences in T cell responses in adults
originally vaccinated with aP versus wP vaccines, despite subsequent aP booster vaccination,
but it remains unclear how these differences are maintained over time3'*2, To address these
questions, our near-term goal is to determine how an individual responds to pertussis antigen
re-encounter by characterizing the resulting cascade of events (i.e., recall memory response)
and relating it to the pre-vaccination immune state.

This 'invited’ challenge differed from our first ‘dry run’ challenge by including teams from labs
other than the organizers. Insights gained from all 49 submitted methods and their relative
performance provide a valuable resource for future algorithm development (Table S2). We
observed that the top-performing methods employed distinct and innovative approaches to the
challenge. These included strategies such as multi-omics data integration, which leverages the
combined information from multiple omics to enhance predictive power; categorical regression,
which effectively handles discrete outcome variables; and subject-based training, where models
were tailored to individual-specific characteristics to improve accuracy in predicting vaccine
responses. The diversity of these successful methodologies highlights the complex and
multifaceted nature of TDap booster vaccination response prediction and emphasizes the
importance of adopting various approaches to tackle this challenge effectively.
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Furthermore, the presented results-based models showed significant Spearman correlation
coefficients. Contestants employed diverse methods that included different composite features
through both supervised (e.g., BTMs) and unsupervised (e.g., PCA, MOFA, MCIA) approaches.
The diversity in methodology reflects the contestants' attempts to capture the complex and
multi-dimensional nature of the data. A critical component in the success of these models was
the approach to data preprocessing. Key steps, such as normalization, handling missing values,
and feature scaling, were employed by most models (19/25) to ensure the data was adequately
prepared for analysis. These preprocessing techniques are known to reduce biases,
standardize the data, and optimize it for model training®. Overall, effective data preprocessing
played a crucial role in the improved performance and reliability of the predictive models.

We observed that the control models we established, which relied on the subject's age and
pre-vaccination state as task variables, performed well as baseline models for comparing more
complex models submitted by contestants. Modeling post-vaccine immune responses involves
significant variability due to individual differences in immune system behavior, the influence of
prior exposures, and other unknown confounding factors'3*3%. Despite these complexities, it
was essential to construct robust baseline models that captured the fundamental biological
responses using minimal variables. By focusing on straightforward, readily available variables
such as age and pre-vaccination state, we were able to create a reliable reference point. This
allowed us to accurately assess how more complex models, incorporating immunological and
demographical data, predicted post-vaccine responses. These baseline models thus played an
important role in evaluating the complexity of the advanced approaches while providing a fair
comparison.

The IgG-PT-D14 tasks (both titer and fold change) demonstrated the highest number of models
with significant correlations, indicating that these tasks were the most successfully predicted. In
contrast, the Monocyte-D1 and CCL3-D3 (tasks 2.2 and 3.2) fold change tasks had fewer
models showing significant correlations, suggesting greater difficulty or variability in their
prediction. Additionally, the Monocyte-D1 and CCL3-D3 (tasks 2.1 and 3.1) response prediction
tasks exhibited a mix of results, with some models performing well while others demonstrated
inconsistent performance, indicating moderate difficulty in predicting these tasks. These mixed
results underscore the need for innovative modeling techniques to better capture the nuances of
monocyte and CCL3 responses, specifically fold-change values. Overall, the variability in
prediction success across these tasks highlights the inherent challenge of modeling Tdap
post-vaccination immune responses, particularly when compared to the more predictable IgG
responses.

We believe this collaborative and innovative approach will create a hub for immunologists to
push for novel models of immunity against Tdap boost. We expect the resultant models will also
be relevant for other vaccinology studies. Contestants from the research community that are
interested in participating are encouraged to contact us via cmi-pb-challenge@lji.org and check
the website (www.cmi-pb.org) for the upcoming contest information.
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Methods

Challenge data and ground truth

The invited CMI-PB prediction challenge is outlined in Figure 1. A total of three multi-omics
datasets were provided to contestants consisting of 117 subjects. The entire dataset was split
into training and challenge datasets. The training dataset includes two independent cohorts, the
2020 cohort and the 2021 cohort, and these cohorts are discussed in detail in two recent
publications: da Silva Antunes et al. ' and Shinde et al.'’, respectively. The challenge or ground
truth evaluation dataset consists of 21 subjects, and we conducted experimental assays similar
to those performed on the training datasets, as described in the following:

Experimental model and subject details.

The characteristics of all 21 subjects are summarized in Table SX3, with human volunteers who
had received either the aP or wP vaccination during childhood being recruited for the study. All
participants provided written informed consent before donation and were eligible for Tdap (aP)
booster vaccination. Longitudinal blood samples were collected pre-booster vaccination (day
-30, -14, 0) and post-booster vaccination after 1, 3, 7, and 14 days. This study was performed
with approvals from the IRB at the La Jolla Institute for Immunology, and written informed
consent was obtained from all participants before enroliment.

Experimental data generation.

Each multi-omics dataset consists of metadata about subjects and experimental data generated
using four assays: plasma antibody measurements, PBMC cell frequencies, plasma cytokine
concentrations, and RNA sequencing. We run experiments on three pre-booster (day -30, -14,
0) timepoints and four post-vaccine responses (day 1, 3, 7, and 14) time points.

1) Plasma antibody measurements. An indirect serological assay was employed using xMAP
Microspheres (Luminex Corporation) to measure TdaP antigen-specific antibody responses
in human plasma. Pertussis antigens (PT, PRN, Fim2/3, FHA), Tetanus Toxoid (TT),
Diphtheria Toxoid (DT) , and Ovalbumin (negative control) were coupled to uniquely coded
beads (xMAP MagPlex Microspheres). A detailed description is provided by da Silva
Antunes et al.".

2) PBMC cell frequencies. Twenty-one different PBMC cell subsets were identified using
manual gating using FlowJo (BD, version 10.7.0). The detailed description is provided
here".

3) Plasma cytokine concentrations. Plasma samples were randomly distributed on 96 well
plates for quantification of different plasma cytokines by Olink proteomics assay. The
detailed description is provided here™.

4) RNA sequencing. Library preparation was performed using the TruSeq Stranded mRNA
Library Prep Kit (lllumina). Libraries were sequenced on a HiSeq3000 (lllumina) system. The
paired-end reads that passed lllumina filters were further filtered for reads aligning to tRNA,
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rRNA, adapter sequences, and spike-in controls. The remaining reads were aligned to the
GRCh38 reference genome and Gencode v27 annotations using STAR (v2.6.1)%. DUST
scores were calculated with PRINSEQ Lite (v0.20.3)%, and low-complexity reads (DUST >4)
were removed from the BAM files. The alignment results were parsed via the SAMtools to
generate SAM files®®. Read counts to each genomic feature were obtained with the
featureCounts (v1.6.5 using the default options along with a minimum quality cut-off (Phred
>10))%.

Contestants were supplied with the baseline immunoprofiling data for all challenge dataset
subjects. The post-vaccine response data, which contain the ground truth, were hidden from the
contestants.

Data processing

In addition to the original raw data generated by immunoprofiing, we performed data
pre-processing as described in Figure 1. In addition to the original raw data generated by
immunoprofiling, we performed data pre-processing as described in Figure 1. First, we
identified common features between the training and challenge datasets and excluded features
with a coefficient of variance less than 0.3. Second, we performed baseline normalization on cell
frequency, antibody titer, and cytokine concentration data. Specifically, we calculated the
baseline median as a normalization factor per analyte and divided all values by this factor. Third,
we ran CombatSeq with default parameters to correct batch effects’?. To maintain consistency,
we performed baseline normalization on cell frequency, antibody titer, and cytokine
concentration data in the test dataset but did not apply any normalization to the gene expression
data.

Formulating the prediction tasks

Contestants were challenged to predict a ranked list of the highest response (to be ranked first)
to the lowest response (to be ranked last) subjects for each prediction task provided. We
formulated six prediction tasks in order to quantitatively compare different approaches to model
immune responses to Tdap booster vaccination. We selected biological readouts known to be
altered by booster vaccination under the premise that these readouts would likely capture
meaningful heterogeneity across study subjects based on our previous work". We formulated
six prediction tasks: three required contestants to predict specific biological readouts on
particular days following the vaccine response, and the other three required contestants to
predict the fold change between specific biological readouts on particular days following the
vaccine response and the pre-vaccination state.

In task 1.1, contestants had to predict plasma IgG levels against the pertussis toxin (PT) on day
14 post-booster vaccination. For task 1.2, contestants were required to predict the fold change
of the plasma IgG levels against the pertussis toxin (PT) between day 14 post-booster
vaccination and baseline. Tasks 2.1 and 2.2 required contestants to predict the overall
frequency of monocytes among PBMCs on day 1 post-booster vaccination and the
corresponding fold change, respectively. Similarly, tasks 3.1 and 3.2 required contestants to
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predict CCL3 gene expression on day 3 post-booster vaccination and the corresponding fold
change values compared to baseline.

Prediction challenge evaluation

After receiving contestants' predicted ranked list for each task, we curated the rank file. If we
found NA values in the ranked list, we imputed them with the median rank for that list.
Evaluations were performed in two steps.

First, we chose the Spearman rank correlation coefficient as evaluation metric to compare the
predicted ranked list (p) for each task, t, and n subjects (n=21 for the set of challenge dataset
subjects), R, = (1, h2 ..., I,) against ground truth (g) ranked list Ry, = (ry s, rgo ..., fgn). The
Spearman rank correlation coefficient (p) is given by:

\[
\rho {R {d,t}, R {p,t}} =1 -\frac{6 \sum_{i=1}*n} d_i"2K{n(n"2 - 1)}
\]

where d; = Ry, - R,; is the difference between the ranks of each pair. In this way, each task
submitted by constant was evaluated.

Second, we devised a point system to rank all submissions and identify the overall winner of the
challenge. Specifically, we awarded 3 points if a submission was top-ranked in a particular task
and 1 point if the contestant attempted the task.

Data availability

Training and challenge data of this prediction challenge can be found at:
https://www.cmi-pb.org/data

Quantification and statistical analysis

Statistical analyses are detailed for each specific technique in the specific Methods section or in
the figure legends, where each specific comparison is presented. Statistical tests were
performed using R (version 4.1, www.r-project.org/) of the Spearman correlation coefficient.
Details pertaining to significance are also noted in Figure 2 legends, and p < 0.05 is defined as
statistical significance.

Limitations of the study

Our challenge dataset cohort comprised multi-omics data for 21 subjects, a size smaller than
the training data cohorts of 96 subjects, maintaining just an 80:20 training-to-challenge dataset
ratio. The smaller size of the challenge cohort may result in reduced precision and heightened
sampling variation in Spearman rank calculations, which were used as an evaluation matrix,
potentially impacting the reliability and generalizability of correlation results. However, models
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developed by contestants exhibited strong performance, surpassing control models in four
tasks. To address this limitation, we intend to enhance the size of our challenge cohort in the
upcoming public contest.
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Figure 1. Generation of multi-omics datasets for 117 study participants. Contestants were
provided with training datasets containing two cohorts (datasets 2020 and 2021), while the
prediction dataset contained a newly generated cohort (dataset 2022). The training datasets
contain pre-vaccination and post-vaccination immune response data, whereas the prediction
dataset for 21 participants only contains pre-vaccination immune response data.
Post-vaccination data was released after the challenge ended and used to evaluate submitted

models.
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Figure 2 Evaluation of the prediction models submitted for the invited CMI-PB challenge.
a) control models and models submitted by contestants b) models from systems vaccinology
literature. Model evaluation was performed using Spearman’s rank correlation coefficient
between predicted ranks by a contestant and actual rank for each of (1.1 and 1.2) antibody
titers, (2.1 and 2.2) immune cell frequencies, and (3.1 and 3.2) transcriptomics tasks. The
number denotes Spearman rank correlation coefficient, while crosses represent any correlations
that are not significant using p = 0.05.
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Figure 3. The method implemented by the winning team. Schematic overview of the data
processing, feature selection, and prediction modeling workflow. (a) The workflow begins with
raw experimental data, including training and challenge datasets from plasma antibody levels,
PBMC gene expression, PBMC cell frequency, and plasma cytokine concentration assays. The
common features across these datasets are identified, followed by batch-effect correction and
timepoint-wise imputation. (b) Feature selection was performed using various dimension
reduction techniques, including LASSO, Ridge, PLS, PCA, and Multiple Co-inertia Analysis
(MCIA). MCIA outperformed the other models and was selected for further analysis. MCIA
integrates different data types (e.g., X1, X2, X3, X4) and their associated weights (A1, A2, A3,
A4) to produce MCIA factors (G) that represent the combined data structure. (c) These MCIA
factors were then used in a Linear Mixed Effects (LME) model to predict the outcome. The
model was trained on 80% of the data (train set) using 5-fold cross-validation and evaluated on
the remaining 20% (test set). The trained model was then applied to the challenge baseline data
to generate predictions, which were used to rank subjects according to their predicted
outcomes.
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Table 1: Overview of past and future CMI-PB prediction challenges. Our commitment
involves conducting three annual challenges. The first challenge was completed in May 2022
with participation from the CMI-PB consortium. The second challenge concluded in January
2024 and featured the CMI-PB consortium along with a limited number of invited contestants
from outside the consortium. We will involve members of the public in the third challenge. The
second challenge included training data from the first challenge and newly generated challenge
data. Similarly, we will use the training and challenge data from previous challenges as the
training data for future challenges and generate new data for testing purposes.

Prediction Contestants Subjects in dataset Status
challenge title
Train Test

1| First: Internal dry [ CMI-PB 60 (28 aP + |36 (19 aP + [ Concluded in May
run consortium 32 wP) 17 wP) 2022

2| Second: Invited | Invited 96 (47 aP + |21 (11 aP + | Concluded in January
challenge contestants 49 wP) 10 wP) 2024

3| Third: Open | Public 117 (58 aP | 54 (27 aP + | Announced in August
Challenge + 59 wP) 27 wP) 2024

Table 2. List of Prediction tasks. The tasks are grouped into three main types: antibody titer
tasks, cell frequency tasks, and gene expression tasks. For each group, we asked to rank
subjects based on either the absolute values of the biological readouts
post-vaccination or the fold change compared to pre-vaccination measurement.

individual

TaskIlD | Task statement

1) Antibody titer tasks

1.1 Rank the individuals by IgG antibody titers against pertussis toxin (PT) that we
detect in plasma 14 days post booster vaccinations.

1.2 Rank the individuals by fold change of IgG antibody titers against pertussis toxin
(PT) that we detect in plasma 14 days post booster vaccinations compared to titer
values at day 0.
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2) Cell frequency tasks

2.1 Rank the individuals by predicted frequency of Monocytes on day 1 post boost after
vaccination.
2.2 Rank the individuals by fold change of predicted frequency of Monocytes on day 1

post booster vaccination compared to cell frequency values at day 0.

3) Gene expression tasks

3.1 Rank the individuals by predicted gene expression of CCL3 on day 3 post-booster
vaccination.
3.2 Rank the individuals by fold change of predicted gene expression of CCL3 on day 3

post booster vaccination compared to gene expression values at day 0.

Table 3. CMI-PB invited prediction challenge methods. The 25 team submissions were
categorized according to their underlying methodology. Additional method characterizations can
be found in Supplemental Note 1.

Team TEAMID Synopsis

Sparse linear regression

1[team_52 [ImputePCA and training and prediction were made using elastic net regression

Features were reconstructed using JIVE multi-omics integration, training data consist
of 2020 + 2021 datasets, All four assays and subject information was used, training
2 team9_3  and prediction was done using ElasticNet

Features were reconstructed using JIVE multi-omics integration, training data consist
of 2020 + 2021 datasets, All four assays and subject information was used, training
3 team9_4  and prediction was done using ElasticNet CV

4 team47 SuperlLearner Ensemble

Features were using MOFA multi-omics integration and final features were

handpciked instead of solely relying on LASSO regression, training data consist of

2021 datasets, All four assays and subject information was used, training and
5 team48_1 prediction was done using LASSO regression

Features were using MOFA multi-omics integration and final features were

handpciked instead of solely relying on LASSO regression, training data consist of

2020 + 2021 datasets, All four assays and subject information was used, training and
6 team48 2 prediction was done using LASSO regression

7 teamb5

Establishing purpose-built models using multiple co-inertia analysis, features consist|
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8 team6

9 team9_2

10 team_40

11 team25

12 team9 _1

13 team49

14 team32

15 team50

available under aCC-BY-NC-ND 4.0 International license.

of four omics, baseline values of tasks and

Ensemble approach using SPEAR-constructed supervised multi-omics factors with
demographic data

Multi-omics Integration with JIVE and Lasso

Different regression models on multi-omics data using features from the
baseline (day 0)

Semi-manual feature selection learned between the 20202021 datasets, followed
by linear regression

Multi-omics Integration with JIVE and Basic Linear Regression

Dimension reduction through Multiple Co-inertia analysis and modeled with Linear
mixed effects

Semi-manual feature selection followed by dimensionality reduction and residual
from baseline prediction

Semi-manual feature selection followed by dimensionality reduction and residual
from baseline prediction

Nonlinear regression (regression trees)

16 team_38
21 team_53

18 team_54

19 team45

20 team46

21 team51
22 team5b5
Others

23 team30

24 team34

25 team34

Catboost Regression model trained on 2020 training cohort
Catboost Regression model trained on 2021 training cohort
Catboost Regression model trained on 2020+2021 training cohort

Model comparison to determine the best algorithm; Manual feature selection;
Random forest regression

Block forest regression

Random forest classifier to simulate training individuals, XGboost to determine final
ranking

DecisionTree and Random Forest Regressor

Fully Connected 2-layer neural network with imputation

AutoML based on the most predictive assay or clinical data (trained on 2020 and
tested on 2021)

AutoML based on the most predictive assay or clinical data (trained on 2020 and
tested on 2021)
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Control models
26 Use age of study subject as predictor

27 Utilize baseline pre-vaccination state of a task as predictor

Supplementary Information: Enclosed with this document

Supplementary Note 1: A detailed description of CMI-PB invited prediction challenge methods.
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