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Abstract 
Summary: DNA sequencing continues to get cheaper and faster. In parallel, algorithmic 
innovations have allowed inference of a wide range of nuclear, mitochondrial, somatic and 
evolutionary from DNA sequencing data. To make automated, high-quality DNA sequencing 
more readily available, we created an extensible Nextflow meta-pipeline called 
metapipeline-DNA. Metapipeline-DNA supports processing raw sequencing reads through 
alignment, variant detection, quality control and subclonal reconstruction. Each step 
supports quality-control, data-visualization and multiple algorithms. Metapipeline-DNA is 
cloud-compatible and highly configurable, with options to subsect, optimize and optimize 
analyses, including with automated failure-recovery. Metapipeline-DNA enables high-scale, 
fault-tolerant, comprehensive analysis of genome sequencing. 

Availability: Metapipeline-DNA is an open-source Nextflow pipeline under the GPLv2 
license and is available at https://github.com/uclahs-cds/metapipeline-DNA.   
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Introduction 
High-throughput technologies have transformed biomedicine into a data-intensive field. DNA 
sequencing is one of key enabling technology, used in routine clinical care and a wide range 
of research studies1. Ongoing technological improvements in DNA sequencing continue to 
reduce costs and enable new discoveries, like the study of complex structural variants (SVs) 
and repetitive genomic regions by long-read sequencing2. Modern germline DNA 
sequencing studies routinely quantify single-nucleotide polymorphisms (SNPs), SVs, 
telomere length, mitochondrial variation and copy number3,4, and many other features5. 

DNA sequencing has been especially helpful in improving our understanding of cancer. In 
typical tumour-sequencing studies both a sample of a cancer and a “reference” normal 
sample from the same individual are sequenced to better distinguish somatic from germline 
variation. Cancers are characterized by widespread genomic rearrangements, variation in 
mutation clonality, specific patterns of somatic mutations associated with carcinogens or 
other features, and a host of features absent or uncommon in germline sequencing like 
kataegis and chromothripsis6. Comprehensive analyses of cancer sequencing can improve 
diagnosis, prognosis and management7,8. 

The growing availability of DNA sequencing data has been paralleled by rapid development 
and adoption of both specific algorithms and workflow software. New discoveries often rely 
heavily on complex workflows comprising a mixture of established and novel algorithms9. 
These workflows, often termed “pipelines”, can be implemented in a range of orchestration 
frameworks like Galaxy10, Snakemake11, Common Workflow Language (CWL)12, and 
Nextflow13. Workflows provide a way to automate processes by minimizing manual handling 
of data flow and facilitating stitching together of different tools to process raw data into 
refined forms. 

The use of complex workflows has placed a growing emphasis on standardization, 
extensibility, quality control and compute infrastructure. Workflow implementations routinely 
differ across research groups, with many groups creating their own. These often lack key 
features like unit testing, integration testing, error-handling, fault-tolerance, input-output 
verification, quality-control, data-visualization and use of multiple algorithms to create 
consensus calls14. Given the volume of data and the expense of compute, workflows are 
often bespoke to the high-performance computing environment used by a single group15. 
Portability of workflows to new environments is part of the “model to data” (M2D) paradigm 
in data sharing and processing16. M2D overcomes the cost, time and privacy risks of data-
transfer by bringing models or algorithms to the computing system where data is stored. 
M2D thus necessitates that models be portable across providers and environments to 
support workflow usage in conjunction with good data management principles hinging on 
findability, accessibility, interoperability, and reusability17. 

To address the need for a robust open-source DNA sequencing analysis pipeline, we 
created metapipeline-DNA. This Nextflow meta-pipeline is highly customizable and is 
capable of processing data from any stage of analysis. It can process DNA sequencing data 
starting from raw reads through alignment and recalibration, to variant calling, and even 
highly integrated analyses likely tumour subclonal reconstruction. Extensive quality control, 
testing and data-visualization are built into the workflow as a whole and into each individual 
step. It can work on multiple compute systems and clouds, facilitating analyses at any scale. 
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Figure 1. Data flow and visualizations. A. Data flow through metapipeline-DNA. B. Normalized tumour coverage relative to the matched 
normal (log2R) and the B-allele frequency of individual SNPs laid out across the genome to support CNA detection. C. Example intersection 
diagram of consensus variants between 4 SNV callers: MuSE2, SomaticSniper, Strelka2, and Mutect2. D. Variant allele frequencies based 
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on consensus between callers. VAFs are indicated for all combinations of consensus between one, two, three, and four variant callers, 
with each data point representing one combination. The adjusted VAF is calculated as an average of all variants present in the 
combination. 

Results 

Overview 

Metapipeline-DNA is a Nextflow meta-pipeline for analysis of DNA sequencing data ranging 
from targeted sequencing to whole-genome sequencing. It encompasses 12 pipelines 
(Table 1) that collectively transform raw sequencing reads into sets of detected variants and 
other genetic and evolutionary features (Figure 1A). Most individual pipelines can execute 
multiple alternative algorithms and create consensus calls from them. For example, four 
separate algorithms can be executed for somatic single nucleotide variant (SNV) detection14, 
automatically generating a consensus set of predictions and variant-associated data-
visualizations (Figure 1B-D). Each pipeline can be executed independently and can be 
extensively parameterized to customize the selection and tuning of algorithms. 

Several different sample run-modes are available, which we denote with the terminology nT-
mN, where n indicates the number of tumour samples and m the number of reference 
samples (Figure 2). Thus, classic paired tumour-normal analysis is 1T-1N. Metapipeline-
DNA fully supports modes like 0T-1N (i.e. germline DNA sequencing), 0T-3N (e.g. family 
trios), 1T-0N (i.e. unpaired tumour-only sequencing) and arbitrary multi-region tumour 
sequencing (e.g. 5T-1N). The primary limitation to multi-sample analyses is compute 
resource availability – particularly RAM and scratch-disk space. Metapipeline-DNA 
automatically handles input types for each mode and only executes feasible pipelines, 
independent of user-selections. For example, in 0T modes, variant detection is restricted to 
germline variants without users having to provide manual restrictions. 

 
Figure 2. Runtime and peak physical memory usage per pipeline. Time and memory usage of pipelines per sample for the three 
different processing cohorts: PCAWG with GRCh38, PCAWG with GRCh37, and TCGA with GRCh38. Time is measured as wall-clock 
time taken by each pipeline and the total time taken by metapipeline-DNA. Memory is measured as the peak RAM usage by any single 
process by any pipeline. 

The default mode of metapipeline-DNA accepts unaligned reads in FASTQ18 format and 
executes all pipelines. A range of alternative entry-points are accepted, including aligned 
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and unaligned BAM19 and CRAM files, with automatic BAM-to-FASTQ conversions as 
needed. A few pipelines also accept alternative entry-points, such as SNV and copy number 
aberration (CNA) calls for tumour subclonal reconstruction20 (Figure 1A). Documentation of 
all dependencies, input and output formats is available on standardized structured GitHub 
pages: current states at writing are summarized in Supplementary Table 1. 

We engineered metapipeline-DNA to be intrinsically flexible with all necessary 
dependencies automatically identified and executed based on user selection. All run-modes 
and dependency identification have defaults set to the most common behaviour across 
thousands of runs, but with easy parameterization. For example, when input data is already 
aligned the default is to use these alignments. Nevertheless, configuration parameter allows 
the user to control whether reads are back-converted to FASTQ and re-aligned and whether 
aligned reads are recalibrated and so forth. 

In a similar way, metapipeline-DNA is flexible to the specific genome build used, and has 
been tested extensively with GRCh37, GRCh38 and GRCm39. It can run in two basic 
modes: WGS mode and targeted-sequencing mode, based on user parameterization. 
Targeted-sequencing mode supports all subsets of the genome, including exome 
sequencing and arbitrary panels. Options are available to assess coverage, expand targets 
with off-target coverage sites, and automatically use expanded target intervals for 
downstream processing. 

Pipeline Input Formats Output Artefacts Algorithms Features 

Convert-
BAM2FASTQ 

BAM/CRAM FASTQ SAMtools Automatic conversion from 
CRAM to BAM 

Align-DNA FASTQ BAM BWA-MEM2 

HISAT2 

Duplicate marking 

Calculate-
targeted-
coverage 

BAM 

Target region 
BED 

Expanded regions 

Per-base depth in 
target regions and 
dbSNP sites  

Hybrid-selection 
metrics 

SAMtools 

BEDtools 

Automatic expansion of regions 
to off-target dbSNP loci with 
coverage 

Recalibrate-BAM BAM 

Target regions 

INDEL realigned 
and base-quality 
score recalibrated 
BAM 

GATK Support for target regions 

Local INDEL realignment 

Base-quality score recalibration 

Generate-SQC-
BAM 

BAM BAM statistics 

Coverage metrics 

SAMtools 

Picard 

Qualimap 

Customizable selection of QC 

Coverage reporting and 
visualization 

Call-gSNP BAM 

Target regions 

Per-sample GVCF 

Germline SNP VCF 

GATK Variant quality score 
recalibration 

Ambiguous variant filtration 

Call-mtSNV BAM/CRAM Mitochondrial SNV 
VCF 

MToolBox 

mitoCaller 

Mitochondrial read extraction 
support for BAM and CRAM 

Heteroplasmy calling 

Call-gSV BAM Germline SV VCF 

Germline SV BCF 

DELLY 

Manta 

Germline CNV calling 

Variant call QC 

Call-sSV BAM Somatic SV VCF 

Somatic SV BCF 

DELLY 

Manta 

Germline SV filtration 

Call-sSNV BAM Somatic SNV VCFs Mutect2 Support for panel of normals 
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Somatic SNV 
calls 

Panel of normal 

Strelka2 

SomaticSniper 

MuSE 

BCFtools-
Intersect 

Tumour-only mode 

Multi-tumour mode 

Consensus callset and 
visualization 

Variant allele frequency 
distribution by callset 

Call-sCNA BAM Somatic CNA VCF 

or TSV 
Battenberg 

FACETS 

Standardized visualization 

Option for customizing 
Battenberg refit suggestions 

Call-SRC SNV calls 

CNA calls 

SNV clustering 

Reconstructed 
phylogeny 

PyClone 

PyClone-VI 

PhyloWGS 

DPClust 

FastClone 

CliP 

CONIPHER 

Customizable combinations of 
clustering algorithm and 
phylogeny algorithm 

Standardized clustering and 
phylogeny formats 

Table 1: metapipeline-DNA Constituent Pipelines. Pipelines encompassed within metapipeline-DNA and their inputs, outputs, 
algorithms, and key features. Inputs that are italicized are optional and inputs separated by “/” represent a list of choices from which one 
must be chosen. 

Data Visualization & Quality-Control 

Metapipeline-DNA includes a range of quality control steps and pipelines to assess data 
quality at many levels, including reads, alignments and variant calls. The reversion of 
alignment includes generation of SAM flag and alignment statistics of the original BAM along 
with a calculation and comparison of total reads before and after conversion to FASTQ to 
ensure no loss of reads. These quality-control analyses produce a variety of data-
visualizations and reports. For example, alignment quality is inferred from BAM (or CRAM) 
files in a range of ways including coverage distributions over the genome (or target region 
with or without padding; Figure 3A-B). Reads are quantified by a range of quality metrics, 
including total counts, mapping qualities, GC content, insert sizes, read lengths, duplications 
and others. Figure 3C shows an example of read number stratified by a range of quality 
groupings. A range of software are used to generate these metrics, including SAMtools19, 
Picard21, and Qualimap22. Pileup summaries at common sites are generated and used as a 
precursor to estimate contamination across samples. In targeted-sequencing mode, 
additional coverage assessment is performed through per-base read depth calculations at 
target regions and well-characterized off-target polymorphic sites provided from dbSNP23. 

At the variant call level, variant-specific metrics are calculated, assessed, and visualized 
(Figure 1B-D). Germline SNP calls undergo filtration using models built from variant quality 
scores for both SNPs and Indels. Somatic SNVs are assessed based on consensus between 
callers and associated variant allele frequencies. Somatic CNAs are supported through 
genome-wide plots of normalized tumour coverage relative to the matched normal and B-
allele frequencies (BAF). 
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Figure 3: Alignment and coverage metrics. A. Percent of bases in the genome at each fold of coverage for normal and tumour samples 
(each line represents one sample) for all five WGS PCAWG patients. Each line represents a different sample, with the percentage of 
bases calculated using the coverage metrics. B. Distribution of mean and median coverage across all samples, highlighting two rough 
separations arising from the normal samples and tumour samples with the normal samples being in the lower coverage separation. C. 
Distributions of read numbers across alignment metrics including mapped/unmapped, low mapping quality, duplication, and paired. 

Software-Engineering & Pipeline Robustness 

We placed a heavy focus on generating re-usable and extensible software that could 
automatically detect and recover from common errors, particularly in the compute 
environment. This led us to adopt or create a series of development practices and pipeline 
features aimed at maximizing quality. All software is open-source, available on GitHub 
(https://github.com/uclahs-cds/metapipeline-DNA), with transparent tracking of issues and 
discussions. Development followed a test-driven approach using the NFTest framework14. 
Metapipeline-DNA has a suite of 71 unit, integration, and regression tests that are run for 
each new release with testing performed for different stages of execution from end-to-end 
tests to individual pipeline tests. Our extensive use of Docker containers allows seamless 
co-existence of multiple pipeline versions, and the combination of automated testing and 
containerization facilitates rapid updating with new features or dependency versions. 
Standardized GitHub issue templates support robust reporting of both bugs and new feature-
requests, allowing ideal collaboration (Supplementary Figure 1). At writing, development 
has involved 42 contributors making 1,293 pull-requests, and 45 individuals making 995 
suggestions, feature-requests and issue-reports across 13 pipeline repositories. 
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Bioinformatics data has high intrinsic variability, and bioinformatics software can be prone 
to significant numbers of failures – particularly in heterogeneous high-performance 
computing (HPC) environments. Failure handling is built into metapipeline-DNA to predict 
and minimize wasted computation. We automated input and parameter validation to catch 
issues prior to commitment of compute resources24. Validation of pipeline parameters is also 
implemented to foresee potential errors prior to resource commitment. Individual pipelines 
are modularized and set up to be fault-tolerant such that errors or failures in one pipeline 
stay isolated from and do not terminate other pipelines that are not their direct dependencies. 
With the robust input formats and configurable pipeline selection, metapipeline-DNA can be 
easily re-run in cases of failure, starting from prior partial results. 

All outputs are organized with standardized directory and naming structures 
(Supplementary Figure 2). Filenames have been standardized to provide dataset, patient 
and sample information in a consistent way across pipelines. Metapipeline-DNA similarly 
organizes log-files to ensure saving of and ready access to the metapipeline-DNA logs, 
individual pipeline-level logs and compute partition logs. These logs capture execution and 
resource usage metrics for every process. Robust tooling has been developed around 
process and pipeline execution to ensure logs are captured for both successful and failing 
steps to enable debugging and record-keeping. Scripts have been created that automatically 
“crawl” over a series of pipeline runs to extract and tabulate information about run success, 
compute resources and other features. 

Compute Infrastructure 

Metapipeline-DNA includes customizability for compute infrastructure, execution, and 
scheduling in a distributed, cloud-agnostic workflow, with successful testing and validation 
performed in both Microsoft Azure and AWS computing environments. Execution follows the 
pattern of a single leading job responsible for submission and monitoring of per-sample or 
per-patient analysis jobs. Execution is currently performed with the Slurm executor with 
optional specification of compute partitions25. Parameters also exist to control rate of job 
submission and amount of parallelization/resources usage. Once configured and submitted, 
metapipeline-DNA automatically handles processing of an entire cohort with input parsing 
and job submission without user intervention. Real-time monitoring is available through 
email notifications sent from a server watching individual step start, end, and status. The 
choice of executor itself is parameterized and can be easily extended to other environments. 

Metapipeline-DNA includes optimizations for disk usage, including (optional) eager 
intermediate file removal and built in checks to allow for optimized disk usage (performing 
I/O operations from high-performance working disks). Resource allocation for individual 
steps is also automatically handled, with pipelines running in parallel as available resources 
allows. Resource-related robustness is also built into pipelines to detect shortages in 
memory allocation and automatically retry processes with higher allocations. 
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Figure 4: Subclonal reconstruction. Reconstructed phylogeny of tumour samples SA478344, SA528788, and SA528876 using 
consensus SNV callset comprising variants called by at least two out of four SNV callers (MuSE2, SomaticSniper, Strelka2, Mutect2) and 
FACETS CNAs. Nodes represent identified subclones with the evolutionary history depicted over SNV accumulation. Along the x-axis is 
the cellular prevalence (CP), indicating the fraction of all cells comprising each subclone. 

Use-Case: PCAWG-63 normal-tumour pairs and TCGA sarcoma normal-

tumour pairs 

As a demonstration, ten normal-tumour pairs were processed through the entirety of 
metapipeline-DNA. Five pairs were selected from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG)26 63 dataset and another five from The Cancer Genome Atlas 
(TCGA)27. The PCAWG-63 samples were sequenced with whole-genome sequencing and 
derived from multiple cancer types: one from uterine corpus endometrial carcinoma, one 
from biliary tract carcinoma, and three from esophageal adenocarcinoma. The samples had 
a median coverage of 63X (range: 45X-65X) for the tumour samples and 38X (range: 34X-
54X) for the normal samples. The TCGA samples were derived from soft tissue sarcoma 
samples sequenced with exome-targeted sequencing. Both pairs were processed using 
metapipeline-DNA from alignment to subclonal reconstruction. The PCAWG-63 samples 
were processed with both GRCh38 and GRCh37, with similar runtimes across the two 

reference builds at an average of 81.76 hours (95% CI:  14.23) for GRCh38 and 83.36 

hours (95% CI:  12.99) for GRCh37. Across the ten pairs, memory usage peaked in call-

sSNV (average  95% CI: 48.54GB  2.30 and 29.32GB  3.82 for PCAWG63 GRCh37 and 

TCGA GRCh38 respectively) and in align-DNA (average  95% CI: 51.42  5.07 for 
PCAWG63 GRCh38). Runtimes and peak memory usage of metapipeline-DNA for these 
samples are visualized in Figure 4 and summarized in Supplementary Table 2. Examples 
of reconstructed phylogeny for three samples are shown in Figure 5. Variant allele 
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frequencies aggregated over all combinations of consensus calls are shown for all samples 
in Supplementary Figure 3. 

 
Figure 5: Metapipeline-DNA sample run-modes. Sample combinations supported by metapipeline-DNA. The nT-nN combination 
indicates any arbitrary numbers of normal and tumour samples. Each combination is automatically detected and considered during 
processing of all pipelines to select appropriate algorithms and processing modalities. 

Discussion 
Metapipeline-DNA was designed to facilitate the analysis of DNA sequencing data at scale 
while retaining the configurability and flexibility needed in academic environments. This is a 
key contrast to field programmable gate array (FPGA)-like approaches such as DRAGEN28. 
These strategies can have benefits in speed through hyper-optimization of hardware to suit 
specific algorithms and data formats but come at the expense of flexibility in areas with rapid 
ongoing methodologic development such as novel algorithms and sequencing technologies. 
As the field of genomics evolves, the ability to quickly integrate and test emerging methods 
becomes increasingly important, highlighting a limitation of fixed-function hardware 
solutions. 

Metapipeline-DNA fills this key niche of supporting the rapidly expanding volume of 
sequencing data, supporting a range of existing tools and algorithms, and remaining flexible 
for ongoing expansion. By easing and optimizing the multi-step analyses intrinsic to DNA 
sequencing data, it reduces the barrier to incorporating new methods and analyzing large 
datasets. Indeed, it is entirely feasible for Metapipeline-DNA to leverage and incorporate 
FPGA-enabled and graphics processing units (GPU)-accelerated methods directly as part 
of its modular structure (e.g., for alignment); this is a key area of ongoing development. 

Individual pipelines within metapipeline-DNA are organized in a modular fashion, allowing 
for a plug-and-play architecture that can be adapted to support additional technologies as 
they become available. Algorithms and workflows for processing long-read data, for 
example, pose an avenue for expanding the meta-pipeline as such tools mature and long-
read datasets become more common. The context of DNA also brings up the possibility of 
similar meta-pipelines for other biological molecules such as RNA and proteins. Workflows 
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across different biomolecules can share the architecture, automation and quality-control of 
metapipeline-DNA in a way that allows improvements to any one to improve others. Such 
workflows are currently under development to provide a similar level of configurability and 
extensibility for analyses of RNA and protein data. 

The volume of data and size of individual samples being generated and processed in 
sequencing studies is often very large. With that comes a need for optimization of analysis 
pipelines’ data handling. Metapipeline-DNA contains several disk usage optimizations to 
efficiently handle large amounts of data while minimizing I/O operations and cross-file 
system data movement. The framework connecting analyses automatically identifies 
necessary outputs from dependent pipelines and makes it available without any redundant 
copying or duplication. There are additional enhancements that are underway to minimize 
duplicated data and disk usage of metapipeline-DNA by building plugins to enable moving 
of files rather than copying when possible and optimizing individual pipelines to avoid 
shuffling around large output files. 

Metapipeline-DNA is a highly customizable DNA sequencing analysis pipeline combining 
speed and flexibility in a modular framework to enable processing of data at any point from 
read alignment to tumour subclonal reconstruction. By facilitating the integration of diverse 
tools and supporting the rapid development of new methodologies, it positions itself as a 
versatile platform for future enhancements as novel DNA sequencing and analysis methods 
are developed. 
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Methods 
Analysis Cohort 

To demonstrate the use of metapipeline-DNA, we chose ten normal-tumour pairs. Five were 
WGS pairs from PCAWG-63: one from uterine corpus endometrial carcinoma donor 
DO43506, one from biliary tract carcinoma donor DO218695, and three from esophageal 
adenocarcinoma donors DO50342, DO50407, and DO50311. Five were exome sequencing 
pairs of soft tissue sarcoma pairs from TCGA donors TCGA-QQ-A8VD, TCGA-X6-A8C6, 
TCGA-HS-A5N8, TCGA-DX-A1L2, and TCGA-HB-A2OT26,27. 

Alignment and Variant Calling 

Sequencing reads were aligned to the GRCh38.p7 reference build including decoy contigs 
from GATK using BWA-MEM229 (v2.2.1) in paired-end mode followed by duplicate marking 
with MarkDuplicatesSpark using GATK30 (v4.2.4.1). For the GRCh37 runtime benchmarking, 
alignment was performed to the GRCh37 reference build including decoy contigs. The 
results alignments were recalibrated through Indel realignment using GATK (v3.7.0) and 
base-quality score recalibration using GATK (v4.2.4.1). Quality metrics were generated 
using SAMtools19 (v1.18) stats and Picard21 (v3.1.0) CollectWgsMetrics. Germline SNPs 
were called using HaplotypeCaller from GATK (v4.2.4.1) followed by variant recalibration 
using GATK (v4.2.4.1). Germline SVs were called using Delly231 (v1.2.6) and Manta32 
(v1.6.0). Mitochondrial SNVs were called using mitoCaller3 (v1.0.0). Somatic SNVs were 
called using MuSE233 (v2.0.4), SomaticSniper34 (v1.0.5.0), Strelka235 (v2.9.10), and 
Mutect230 (v4.5.0.0) followed by a consensus workflow to identify variants called by two or 
more callers using BCFtools36 (v1.17) with quality control plots generated with BPG37 
(v7.1.0) and VennDiagram38 (v1.7.4). Somatic SVs were called using Delly231 (v1.2.6) and 
Manta32 (v1.6.0). Somatic CNAs were called using CNV_FACETS39 (v0.16.0) for the 
PCAWG sample and using Battenberg40 (v2.2.9) for the TCGA sample with visualization 
generated using BPG37 (v7.1.0). Taking the consensus set of somatic SNV calls and the 
CNA calls, subclonal reconstruction was performed using PyClone-VI41 (v0.1.2), 
PhyloWGS42 (v2205be1), and FastClone43 (v1.0.9). Reconstructed phylogeny was 
visualized using CEV44 (v2.0.0). Data validation was performed with PipeVal24 (v5.1.0) and 
data processing was done using Nextflow13 (v23.04.2). 
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