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ABSTRACT  

Gastrulation is the highly coordinated process by which the early embryo breaks symmetry, establishes 
germ layers and a body plan, and sets the stage for organogenesis. As early mammalian development is 
challenging to study in vivo, stem cell-derived models have emerged as powerful surrogates, e.g. human and 
mouse gastruloids. However, although single cell RNA-seq (scRNA-seq) and high-resolution imaging have 
been extensively applied to characterize such in vitro embryo models, a paucity of measurements of protein 
dynamics and regulation leaves a major gap in our understanding. Here, we sought to address this by applying 
quantitative proteomics to human and mouse gastruloids at four key stages of their differentiation (naïve ESCs, 
primed ESCs, early gastruloids, late gastruloids). To the resulting data, we perform network analysis to map 
the dynamics of expression of macromolecular protein complexes and biochemical pathways, including 
identifying cooperative proteins that associate with them. With matched RNA-seq and phosphosite data from 
these same stages, we investigate pathway-, stage- and species-specific aspects of translational and post-
translational regulation, e.g. finding peri-gastrulation stages of human and mice to be discordant with respect to 
the mitochondrial transcriptome vs. proteome, and nominating novel kinase-substrate relationships based on 
phosphosite dynamics. Finally, we leverage correlated dynamics to identify conserved protein networks 
centered around congenital disease genes. Altogether, our data (https://gastruloid.brotmanbaty.org/) and 
analyses showcase the potential of intersecting in vitro embryo models and proteomics to advance our 
understanding of early mammalian development in ways not possible through transcriptomics alone.  
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INTRODUCTION  

Gastrulation is a crucial process in metazoan development through which the implanted blastocyst 
transforms into a three germ layer structure, the gastrula1. Ethical and practical challenges prevent us from 
routinely obtaining or culturing gastrula-stage human embryos, such that our understanding of human 
gastrulation remains limited2,3. Although conserved aspects of mammalian gastrulation can be studied in vivo 
in the mouse, this also suffers from practical challenges (e.g. opacity, limited material, and the cost of genetic 
manipulation). Furthermore, mouse and human gastrulation are dissimilar in many respects. Most obviously, 
mouse gastrula are shaped like “egg cylinders”, while human gastrula, like most other mammals, are flat 
discs4. These morphological contrasts are accompanied by differences in the expression or source of key 
regulators (e.g. FGF8, BMP4) as well as in the origins and timing of appearance of various cell types (e.g. 
primordial germ cells, extraembryonic ectoderm)4.  

In vitro stem cell-derived embryo models are powerful surrogates for in vivo embryos, and in recent 
years have proliferated not only in usage but also with respect to the specific aspects of embryogenesis that 
are modelled5. One particular class of embryo models, gastruloids, are generated by first aggregating 
hundreds of embryonic stem cells (ESCs) and then inducing WNT signaling, which triggers axial elongation 
and the emergence of all three germ layers over the ensuing days6–8. In the presence of extracellular matrix-
like scaffolding material (“Matrigel”), mouse gastruloids form morphological structures resembling their in vivo 
counterparts, including an elongated neural tube and flanking somites8,9. Recently, we demonstrated that early 
retinoic acid, together with Matrigel, yields human gastruloids with these same morphological structures, as 
well as advanced cell types including neural crest, neural progenitors, renal progenitors, and myocytes (“RA-
gastruloids”)10. Importantly, gastruloids can be chemically and/or genetically manipulated, visually and/or 
molecularly characterized, and, owing to their ease of culturing, even grown in large numbers7.  

Various groups, including us, have subjected time-courses of gastruloids to scRNA-seq to characterize 
the dynamics of the transcriptome as ESCs diversify into germ layers and cell types11,12. However, RNA is only 
the messenger. It is proteins that are the workhorses of the cell, and in the context of differentiating gastruloids, 
proteins that form the structures that make emerging germ layers and cell types morphologically and 
functionally unique. It is challenging to accurately estimate protein abundances from transcriptomics alone13–17. 
Studies report varying levels of discordance18–22, e.g. one recent study found that in human cells, transcript 
abundance accounted for only ~40% of the variance in protein levels23. Moreover, post-translational 
modifications (PTMs) including phosphorylation, ubiquitination, and glycosylation vastly increase the functional 
diversity of cells’ proteomes to over ~10 million proteoforms24, aspects of identity and function that are entirely 
absent from a transcriptomic census. Such PTMs are known to dynamically regulate signaling pathways that 
critically underpin developmental patterning and cell type specification, e.g. WNT, BMP and FGF25. However, 
only a handful of studies to date have attempted to characterize the proteome in early mammalian 
developmental contexts, and, to our knowledge, none in human post-implantation embryos or gastruloids13,26.  

Here we applied high-throughput quantitative mass spectrometry to quantify proteins and phosphosites 
across four key stages of gastruloid differentiation. With these data, we map the dynamics of hundreds of 
known protein complexes, while also identifying additional proteins whose temporal profiles correlate with 
specific complexes, suggesting cooperative relationships during early development. With experimentally 
matched RNA-seq data, we identify pathway-specific patterns of concordance and discordance between the 
transcriptome and proteome during gastrulation. Extending our study to phosphorylated proteins, we also map 
the dynamics of thousands of phosphosites and predict stage-specific kinase activities across gastruloid 
development. Finally, by profiling the dynamics of proteins associated with developmental disorders, we 
identify their cooperative partners, interaction networks and phosphosite dynamics. Altogether, by focusing on 
the proteome and phosphoproteome in models of early gastrulation, these data and analyses lay the 
groundwork for closing the gap between transcriptomic vs. cellular views of early mammalian development. 
The data are made freely available together with a custom browser at: https://gastruloid.brotmanbaty.org/.  
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RESULTS 

Quantifying the dynamic proteome from ESCs to gastruloids  

We sought to profile the dynamics of RNA, protein, and phosphosite levels in human RA-gastruloids10 
and conventional mouse gastruloids9. Specifically, we performed matched bulk RNA-seq, quantitative 
proteomics and quantitative phosphoproteomics on whole cell extracts from both human and mouse samples 
corresponding to four stages of gastruloid differentiation, including two ESC stages (“naïve” and “primed”) and 
two gastruloid stages (“early” and “late”) (Fig. 1A; Sup. Fig. 1A). We focused on these four stages because 
they model pre-implantation, post-implantation, post-symmetry breaking, and anterior-posterior (A-P) 
elongation/patterning, respectively. For human primed ESCs, we analyzed two cell lines (H9, RUES2-GLR) to 
assess inter-cell-line variation27,28 (Fig. 1B). As such, we analyzed nine sample types altogether—four mouse 
(naïve ESCs, primed ESCs, early gastruloids, late gastruloids) and five human (naïve H9 ESCs, primed H9 
ESCs, primed RUES2-GLR ESCs, early RUES2-GLR gastruloids, late RUES2-GLR gastruloids)—in biological 
duplicate (transcriptomics) or triplicate (proteomics, phosphoproteomics) (Sup. Fig. 1B-C).  

To assess data quality, we calculated pairwise correlations between biological replicates of each 
sample type and confirmed high reproducibility for each data type (RNA: r > 0.98; protein: r > 0.93; 
phosphosite: r > 0.97; Sup. Fig 1D-F). Consistent with that, replicates for each data type were tightly grouped 
by Principal Components Analysis (PCA) (Sup. Fig. 1G). In human, for all three data types, PC1 separated 
naïve H9 ESCs from other samples (RNA: 43%; protein: 45%; phosphosite: 52% of variance explained) while 
PC2 broadly correlated with developmental progression (RNA: 26%; protein: 34%; phosphosite: 21% of 
variance explained). In mouse, for all three data types, PC1 separated late gastruloids from other samples 
(RNA: 56%; protein: 50%; phosphosite: 44% of variance explained), while PC2 once again resolved 
developmental progression (RNA: 26%; protein: 31%; phosphosite: 33% of variance explained) (Sup. Fig. 1G).  

 Across all replicates of all stages, we detected and quantified 7,352 human and 8,699 mouse proteins 
(Sup. Fig. 1C; Sup. Table 1). To gauge the depth of proteome sampling, we mapped these proteins onto the 
Human Protein Atlas29, and found all 34 annotated subcellular locations to be represented (Sup. Fig. 1H). To 
confirm that we are capturing developmental transitions, we searched for stage-specific markers at both the 
RNA and protein levels in each species. Results were generally consistent with expectation, e.g. in human 
samples, classic pluripotent markers NANOG and POU5F1 were highly expressed in ESCs, while TBXT, a 
marker of gastrulation and/or mesendoderm differentiation30, and PAX6, associated with neural tube 
differentiation31, were upregulated in early and late stage gastruloids, respectively (Fig. 1C). Many detected 
proteins also exhibited stage specificity. For example, again focusing on human samples, SUSD2, a cell-
surface marker for the naïve epiblast32, was only detected in naïve H9 cells, while TBXT and NCAM1 were 
specific to early and late stage gastruloids, respectively (Fig. 1D). Interestingly, CRAPBP2, a retinoic acid 
binding protein33, was detected only in human samples after addition of retinoic acid into the culture media34. 
For some markers, we observe consistent dynamics for mRNA and protein abundance, e.g. mouse Sox2/Sox2 
(Fig. 1C-D). Using sample multiplexed quantitative proteomics17,35, we also quantitatively profiled 1,209 human 
and 1,603 mouse phosphosites (Fig. 1E) and mapped their temporal dynamics across the four stages. For 
example, phosphorylation of DNMT3B Ser100 (human) and Dnmt3a Thr257 (mouse) are decreased in naïve 
ES cells, suggesting that their phosphorylation may be associated with DNA hypomethylation in ground state 
pluripotency and increased methylase activity during differentiation25,36–40. Taken together, these anecdotes, 
together with the high reproducibility across biological replicates, suggest that the data are of high quality and 
can be leveraged to study temporal trends in RNA, protein and phosphosite levels in these models of human 
and mouse gastrulation.  
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Figure 1. Quantifying the dynamic proteome from ESCs to gastruloids. (A) Representative brightfield images of 
human RA-gastruloids and mouse gastruloids imaged over the course of their development. Scale bar: 10 μm. (B) Multi-
omics profiling workflow. We sampled two human cell lines (H9 and RUES2-GLR) and one mouse cell line (E14) at the 
indicated stages. (C-E) Representative heatmaps depicting the temporal dynamics of RNAs (C), proteins (D), or 
phosphosites (E) for selected developmental marker transcripts, proteins or PTMs, respectively, across replicates and 
stages for both human and mouse. Color scale for RNAs indicates log2-fold change relative to the row mean. Color scale 
for protein and phosphorylation data indicates scaled TMT abundance.   
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Supplementary Figure 1. Mapping the dynamics of gastruloid development using multi-omics. (A) Timeline and 
conditions for human and mouse ESC culturing and gastruloid induction. (B) Total numbers of proteins quantified across 
all human or mouse samples. Protein identifications were filtered to a 1% FDR and required summed TMTpro reporter ion 
signal-to-noise ratios >100 for quantitation. (C) Total number of proteins quantified within each sample/replicate. (D) 
Scatterplots comparing the RNA counts between biological replicates for each sample. (E-F) All-by-all sample similarity 
matrices of pairwise Pearson correlation coefficients (rPearson) calculated from summed protein (E) or phosphosite 
intensities (F) across human (top) or mouse (bottom) samples. (G) PCA plots of PC1 vs. PC2 using RNA (top), protein 
(middle) or phosphosite (bottom) data across human (left) or mouse (right) samples. (H) Fraction of proteins assigned to 
each of 34 subcellular localizations by the Human Protein Atlas that were successfully detected here. Numbers within 
brackets indicate the total numbers of proteins within each class shown.   
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Time-resolved proteomics reveals biologically coherent shifts across gastruloid development  

To identify sets of proteins with similar temporal dynamics, we merged the human and mouse 
proteomic datasets by orthology and subjected them to hierarchical clustering (Fig. 2A). Focusing on 10 
clusters, i.e. sets of proteins that exhibit similar dynamics across both species, we assessed Gene Ontology 
(GO) enrichments41. Seven of the 10 clusters returned significantly enriched biological processes, i.e. cell 
division and DNA repair (cluster 1), mitochondria and aerobic respiration (cluster 2), RNA biogenesis (cluster 
3), cilia and pattern specification (cluster 4), small molecule metabolism (cluster 6), extracellular matrix 
organization (cluster 7) and tube development (cluster 8) (Fig. 2B; Sup. Table 2). These enrichments suggest 
that the abundance of proteins that underlie these biological processes are coordinated during gastrulation.  

To identify the changes in protein abundance that may underlie specific transitions in gastruloid 
development, we performed differential expression analysis across adjacent timepoints in each species, which 
identified thousands of differentially expressed proteins (DEPs) (Sup. Fig. 2A). For example, when comparing 
naïve and primed states of pluripotency within human H9 cells, we identified 3,499 DEPs. Among these was 
SUSD2, whose expression marks pre-implantation epiblasts in human blastocysts, which was detected only in 
the naïve state, as well as SOX2 and NANOG, which were enriched in the primed state (Fig. 2C). GO analysis 
of naïve vs. primed DEPs found that naïve cells were enriched for proteins involved in extracellular matrix 
(ECM) organization, while primed cells were enriched for proteins involved in nucleotide metabolism (Sup. Fig. 
2D). In comparing primed RUES2-GLR ESCs to early human RA-gastruloids, we identified 3,207 DEPs, 
including SOX2 enrichment in primed ESCs, and TBXT and CDX2 enrichment in early human RA-gastruloids. 
Upon GO analysis, DEPs upregulated in early gastruloids mapped to actin filament organization and 
cytoskeletal processes, while DEPs downregulated mapped to mitochondrial processes (Sup. Fig. 2D). In 
comparing early vs. late human RA-gastruloids, we identified 767 DEPs, including downregulation of TBXT, 
caudal axial progenitors marker WNT8A, and presomitic mesoderm marker TBX6, and upregulation of markers 
of advanced cell types including PAX3 (dorsal somites and neural tube), SOX1 & SOX2 (neural tube) and 
cardiomyocytes (MEIS1) (Fig. 2C). Upon GO analysis, DEPs upregulated in late gastruloids mapped to organ 
morphogenetic processes and body pattern specification, while DEPs downregulated mapped to small 
molecule transport (Sup. Fig. 2D). 

We also compared H9 vs. RUES2-GLR human primed ESCs and detected 3,047 DEPs (Sup. Fig. 2B). 
While both cell lines expressed detectable levels of characteristic primed ESC markers (e.g. SOX2, NANOG), 
DEPs largely mapped to mitochondrial processes (respiration, oxidative phosphorylation), which are 
upregulated in primed RUES2-GLR relative to primed H9 ESCs. Conversely, DEPs upregulated in primed H9 
ESCs were enriched for cytoskeletal processes and translation (Sup. Fig. 2C). This comparison reinforces the 
view that there are substantial differences between these widely used human ESC lines42. 

As such, the proteomes of primed RUES2-GLR ESCs were highly enriched for mitochondrial 
processes, relative to both primed H9 counterparts as well as RUES2-GLR-derived early RA-gastruloids (Sup. 
Fig 2C-D), with the latter suggesting that these processes are downregulated over the course of gastruloid 
differentiation. We sought to ask if this downregulation was specific to a subset of mitochondrially mediated 
metabolic pathways, as opposed to being more general. For this, we compared primed human ESCs vs. early 
and late RA-gastruloids (all RUES2-GLR-derived) with respect to individual proteins, broken down by pathway. 
Intriguingly, we observed highly consistent levels of downregulation of mitochondrial proteins involved in the 
TCA cycle and oxidative phosphorylation, and upregulation of proteins involved in the pentose phosphate 
pathway (Fig. 2D). Within oxidative phosphorylation, this consistency extended to individual protein 
complexes, e.g. the levels of vacuolar subunits of the ATPase complex remained relatively stable unlike their 
mitochondrial counterparts (Fig. 2D). These observations suggest that shifts in the levels of mitochondrial 
machinery are highly coordinated during gastruloid differentiation, consistent with previous studies of the 
remodeling of metabolic complexes across multiple organ systems during mammalian aging17.  
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Upon extending such analyses to the mouse data, we observed similar numbers of DEPs (Sup. Fig. 
2E), as well as stage-specific patterns that broadly matched expectation, e.g. pluripotency markers Sox2 and 
Nanog highly expressed in naïve mESCs compared to their primed counterparts. Similarly, when comparing 
primed mESCs vs. early mouse gastruloids, we observed upregulation of the mesenchymal cell marker Bmp7, 
and in comparing early vs. late mouse gastruloids, upregulation of endoderm marker Sox17, in the more 
differentiated sample. To systematically analyze conserved protein expression dynamics, we compared fold-
changes across pairwise stage transitions for orthologous human and mouse proteins. While we observed 
modest positive correlation in the naïve to primed (rPearson = 0.17) and early to late transitions (rPearson = 0.5), 
there was strong anticorrelation in the primed to early transition (rPearson = -0.8). However, this anticorrelation 
appears to be driven by the aforereferenced elevated levels of mitochondrial proteins in primed RUES2-GLR 
ESCs, i.e. the metabolic state of primed human RUES2-GLR ESCs is better matched to that of early mouse 
gastruloids than that of mouse primed ESCs (Sup. Fig. 2F).   
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Fig. 2. Time-resolved proteomics reveals biologically coherent shifts across gastruloid development. (A) Heatmap 
depicting the temporal dynamics of protein expression across human and mouse gastruloid differentiation samples and 
replicates. (B) Dotplot indicating the top Gene Ontology (GO) terms enrichment across clusters. Clusters 5, 9, and 10 did 
not have significantly enriched GO terms. Color scale indicates the Benjamini Hochberg (BH) adjusted p-values. Size of 
dots corresponds to the number of proteins associated with a particular GO term. (C) Volcano plots of the protein 
expression changes across consecutive stages of human gastruloid differentiation, where x-axis represents the log2 fold 
change between two adjacent timepoints and y-axis represents the negative log10 of the Benjamini-Hochberg-adjusted p-
value. (D) The log2 protein abundance ratio of early (yellow) or late (red) gastruloids compared to primed human ESCs 
(RUES2-GLR) for proteins associated with pluripotency and central metabolism including TCA cycle, pentose phosphate 
pathway and oxidative phosphorylation. Mean abundance ratios are indicated with dots and error bars represent the 
standard deviation. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2024. ; https://doi.org/10.1101/2024.09.05.609098doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.609098
http://creativecommons.org/licenses/by/4.0/


 

10 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2024. ; https://doi.org/10.1101/2024.09.05.609098doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.609098
http://creativecommons.org/licenses/by/4.0/


 

11 

  

 
 

Supplementary Figure 2. Mapping differentially expressed biological processes across gastruloid development. 
(A) Heatmap indicating the number of differentially expressed proteins (DEPs) between pairs of human samples. DEPs 
filtered to an absolute log2 fold change >= 1 and BH-adjusted p-value < 0.05. (B) Volcano plot depicting the DEPs 
between primed H9 vs. primed RUES2-GLR ESCs. (C) Dot plot indicating the GO terms enriched in DEPs between 
primed H9 vs. primed RUES2-GLR ESCs. (D) Dot plots indicating the GO terms enriched in DEPs between adjacent 
stages of human samples. Color scales for dot plots indicate the BH-adjusted p-value and sizes of dots indicate the 
number of genes detected within each term. (E) Volcano plots depicting the DEPs between adjacent stages of mouse 
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samples, where x-axis represents the log2 fold change between two adjacent timepoints and y-axis represents the 
negative log10 of the BH-adjusted p-value. (F) Scatter plots comparing mouse and human proteomes across adjacent 
stages. Comparisons were filtered to proteins with an absolute log2 fold change >= 1 across both species. Mitochondrial 
proteins highlighted in yellow.   
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Co-regulation analysis maps cooperative protein associations to known protein complexes and pathways  

The vast majority of proteins quantified here do not map to known protein complexes nor are they 
assigned specific biological functions during early human development. Given our observations that proteins 
assigned to cellular modules are coherently regulated across gastruloid development (Fig. 2D), we sought to 
explore such co-regulation at a more granular level, e.g. among members of a specific signaling pathway or 
protein complex. Functional proteomics has emerged as a powerful method to annotate and assign roles to 
proteins in understudied contexts43,44. Co-regulation analysis, based on calculating correlations of protein 
abundances in a pairwise fashion across experimental samples, can elucidate coordinated protein functions 
such as macromolecular complexes and biochemical pathways45–49. Correlated and anticorrelated edges within 
the resulting networks can reveal co-regulatory effects including direct protein interactions50, mechanisms of 
action for signaling networks51,52, and cell state-specific roles53.  

To apply co-regulation analysis to our data, we calculated correlations (rPearson) between all 19.6 million 
possible pairs of the 6,261 proteins that were successfully detected and quantified in all 18 primed ESC or 
gastruloid samples ([3 human RUES2-GLR stages + 3 mouse stages] x 3 biological replicates). For example, 
proteins within known complexes were highly correlated, e.g. TUBG1 and TUBGCP2, which constitute the �-
tubulin ring complex54, were highly correlated, while TUBG1 was anticorrelated with the Na+/K+ transporting 
ATPase, ATP1A1 (Fig. 3A). Across all pairs, we observed a bimodal distribution of rPearson, while a similar 
analysis after permuting sample IDs for individual proteins yielded a normal distribution of rPearson centered at 
zero (Fig. 3B). 

We focused on pairs that were either strongly correlated (rPearson >=0.95) or anticorrelated (rPearson <= -
0.95) at a false discovery rate (FDR) of 1% (Fig. 3C). The resulting network consisted of 5,681 nodes 
(proteins) and 489,417 significant correlations or edges, of which 62% were positively and 38% were 
negatively correlated (174±195 edges per protein; Fig. 3C; Sup. Fig. 3A-B; Sup. Table 3). We subsetted our 
network to 5,227 proteins by retaining only the canonical Uniprot protein isoforms detected in our datasets and 
validated positively correlated edges by mapping the resulting network onto the databases cataloging known 
gene ontologies41, subcellular localizations29, biochemical pathways55–59, protein-protein interactions60 and 
protein complexes61,62. The proportion of annotated edges that were positively correlated edges varied by 
database, e.g. 73–92% for proteins with shared GO annotations, subcellular localization or pathway 
databases, but 93% for proteins previously reported to interact, and 97% for proteins belonging to the same 
complex (Sup. Fig. 3C; Sup. Table 4). 

Of the positively correlated edges in the trimmed network, 37.8% were explained by at least one 
established annotation, a 1.4-fold enrichment over the 26.7% of all possible edges involving these 5,227 
proteins that are annotated in these databases (Sup. Fig. 3D-E). This was consistent with previous studies 
that attributed 34–42% of protein correlation network edges to previous annotations. Notably, those studies 
also required 41–375 different cell lines to generate co-regulation networks50,53. However, specific categories of 
annotation were much more enriched than others. For example, our network’s edges were only modestly 
enriched for shared subcellular localization (1.5-fold), but were strongly enriched for annotated protein-protein 
interactions (4.5-fold) and shared membership in a protein complex (7.4-fold) (Fig. 3D). 

Given the relatively high proportion of positively correlated edges corresponding to protein-protein 
interactions and macromolecular complexes, we leveraged the untrimmed network to map positively protein 
pairs to specific developmental genes or protein complexes (Sup. Fig. 3E-F). Anecdotally, many known 
protein-protein interactions were recovered. For example, BMP1, the metalloprotease that plays roles in the 
formation of the extracellular matrix including the processing of procollagens to their active fibril forms63, was 
highly correlated with collagens COL1A1 and COL1A2, while RPL7A, a constituent of the large ribosomal 
subunit, was highly correlated with other members of the large ribosomal subunit as well as tRNA synthetases 
(AARS1, TARS1, YARS1) that charge tRNAs with their cognate amino acids prior to translation (Fig. 3E). 
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To systematically ask whether the correlation network recovered known protein complexes, we focused 
on 1,357 complexes from CORUM61 or ComplexPortal62 with 3+ subunits represented in our correlation 
network. For this subset, an average of 80% of complex members were represented among the 5,681 proteins 
in the network (Sup. Fig. 3G). For example, 29 of 33 (88%) of 26S proteasome complex proteins were 
represented, with 87% of all possible edges among these proteins detected, 100% of which were positively 
correlated (Fig. 3F). Similar trends were observed for core metabolic modules, including in the citric acid cycle, 
for which 90% of edges connecting pathway members were positively correlated, with only ACO1 and ACLY 
participating in anticorrelated edges (Fig. 3G).  

In addition to recovering previously supported protein-protein relationships (37.8% of filtered network, 
Fig. 3D), we also nominated potentially novel relationships. Many of these novel edges are potentially driven 
by aspects of cell state that are unique to gastruloids and early development relative to the steady states of the 
workhorse cell lines that are the primary source material for the databases to which we compared our 
network50,53. Drawing from previous high-throughput proteomics studies47,60, we defined a protein cooperativity 
metric to enrich for first-degree neighbors of known complexes and pathways, termed “cooperative edges” 
(Sup. Fig. 3H). To evaluate this approach, when members of a complex were withheld from our analysis, our 
cooperative edge mapping framework should recover their association to the remaining protein complex 
network. For example, when we divided ribosomal proteins into 60S large and 40S small ribosomal subunit 
groups and asked which proteins were cooperatively associated with the 40S small ribosomal subunit, we find 
that among the top 5 most significant hits are the 60S complex members RPL5, RPL13A and RPL32 (Sup. 
Fig. 3H). 

With this framework, we identified 1,385 cooperative proteins associating with 218 ComplexPortal 
complexes62 and 1,944 cooperative proteins associating with 524 CORUM complexes61 (Sup. Table 5). The 
number of cooperative proteins per complex varied widely and was not correlated with the number of complex 
subunits (Fig. 3H-K; Sup. Fig. 3I). The number of complexes that a given protein is cooperatively associated 
with also varied widely (Sup. Fig. 3J). When comparing cooperative protein-complex relationships with protein-
protein interaction databases including BioGrid and BioPlex network of interactors60, we found that 1,610 
cooperative edges (involving 18.5% of cooperative proteins) were annotated as direct physical interactions 
(Sup. Fig. 3K). An illustrative example involves the Chaperonin-containing T (TRiC/CCT) complex, for which 5 
(13%) of the 36 most significantly cooperative proteins were primary BioPlex interactors, and 9 (25%) were 
BioGrid interactors (Fig. 3I-J). In summary, cooperative protein analysis recovered both known physical 
interactions as well as potentially novel associations between complexes and cooperative proteins.  

We reasoned that overlaps of cooperative proteins shared by multiple complexes might inform these 
proteins’ functional roles. To quantify such sharing, we calculated Jaccard similarity coefficients between pairs 
of complexes—a perfect overlap of cooperative proteins between a given pair of complexes would result in a 
Jaccard similarity of 1 (Fig. 3L). Although most pairwise comparisons yielded little to no overlap in cooperative 
proteins, those that did were highly structured (Fig. 3M). For example, exosome complexes and histone 
acetyltransferase complexes each largely exhibited discrete sets of cooperative proteins that overlapped with 
one another but not with other complexes. The 40S and 60S ribosomal subunits, while sharing extensive 
overlap in terms of their cooperative proteins, also shared overlaps with the 26S proteasome and the 
TRiC/CCT complex (Fig. 3M; Sup. Table 6). Other subsets of protein complexes exhibited varying degrees of 
sharing. For example, all SWI/SNF complexes shared cooperative proteins with other SWI/SNF complexes, 
but a subset of these also shared cooperative proteins with tethering complexes, as well as the ATAC (Ada-
two-A-containing) coactivator64 and histone methyltransferase complexes (Fig. 3M).  
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Figure 3. Co-regulation analysis maps cooperative protein associations to known protein complexes and 
pathways. (A) Scatterplots comparing abundances across selected protein pairs across samples. (B) Distribution of 
rPearson based on observed (top) and permuted (bottom) data. Observed distribution was obtained by calculating rPearson 

across all possible protein-protein pairs. Permuted distributions were generated by randomly sampling 50,000 protein 
pairs after randomly shuffling their respective timepoints 10 times each prior to calculating rPearson. Colors indicate strongly 
correlated (>=0.95; blue) or anticorrelated (<=-0.95; red) edges. (C) Distribution of protein edge counts across the 
trimmed correlation network. On average, each protein in the network participated in 174 edges. (D) Ratio of enrichment 
for the annotated edges in the correlation network (“observed network”) compared to the expected edge annotation 
frequencies across Gene Ontology biological process (GOBP), cellular component (GOCC), molecular function (GOMF), 
localization, pathways, protein-protein interactions (BioPlex) or protein complexes. Specifically, we calculated the 
enrichment for annotated edges as the fraction of annotated edges per category in the observed correlation network 
divided by the fraction of annotated edges among all possible edges involving the 5,227 proteins in the correlation 
network. The expected frequency of annotated edges was calculated by generating all possible pairs from 5,227 human 
proteins (Uniprot, 07/2024) and computing the number of pairs explained by each functional category. (E) Network 
analysis identifies known associations between proteins for BMP1 and RPL7A. (F-G) Network structure of the (F) 26S 
proteasome and (G) Citric Acid cycle pathway. Magenta nodes indicate known complex members annotated either from 
CORUM or EMBL ComplexPortal for protein complexes, or from BioCarta, KEGG, Protein Interaction Database (PID), 
Reactome, and WikiPathways (WP) for biochemical pathways. Blue edges indicate positive correlations between nodes 
while red edges indicate anticorrelations. (H-I) Cooperative proteins are highly correlated with members of established 
protein complexes including: (H) NuA4 chromatin remodeling complex and (I) Chaperonin-containing T (TRiC/CCT) 
complex. Magenta nodes indicate subunits of a given complex, while orange nodes indicate cooperative proteins i.e. 
proteins with correlated profiles to proteins constituting a particular protein complex. Cooperative node sizes indicate the 
negative log10 of the BH-adjusted p-value after computing significance from Fisher’s exact tests to determine cooperative 
association of a protein to a particular module. Blue edges indicate correlated edges while orange edges link cooperative 
proteins to members of a particular module. (J) Bioplex interaction network of the TRiC/CCT complex. Orange nodes are 
cooperative proteins with correlated profiles to proteins found in the TRiC/CCT complex. Gray edges indicate BioPlex 
evidence. (K) Histogram of protein complexes (x-axis) and their respective numbers of cooperative proteins (y-axis). (L) 
Heuristic to identify shared cooperative proteins between complexes. (M) Heatmap depicting a subset of shared 
cooperative proteins across manually curated EMBL ComplexPortal protein complexes namely exosomes, SWI/SNFs, 
ATAC remodelers, nucleosome remodelers (NuRDs), and histone acetyltransferase (HAT) and deacetylase (HDAC) 
complexes. Heatmap colored by Jaccard similarity coefficients calculated from overlapping sets of cooperative proteins 
between protein complex pairs and clustered using euclidean distances with average linkage. 
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Supplementary Figure 3. Mapping pairwise protein co-regulation onto known protein modules identifies 
cooperative protein associations across gastruloid development. (A) Number of observed edges (y-axis) in the 
correlation network as a function of absolute rPearson (x-axis). (B) Summary of correlated and anticorrelated edges in the 
network. (C) Fraction of correlated and anticorrelated edges stratified by GOBP, GOCC, Localization, Pathway, GOMF, 
BioPlex PPI, and Complex databases. Dashed line indicates the fraction of positively correlated edges in the trimmed 
network. (D) Fraction of correlated edges in the trimmed network explained by at least one database (y-axis) as a function 
of rPearson (x-axis). Horizontal and vertical dashed lines respectively indicate the fraction of edges explained in annotated 
network and rPearson at 0.95. (E) Summary of correlated edges in the trimmed network explained by shared membership in 
a Gene Ontology biological process (GOBP), cellular component (GOCC), molecular function (GOMF), localization, 
pathway, protein-protein interaction (BioPlex) or protein complex. Dotted line indicates the cumulative number of edges 
explained within the observed (circles) and annotated (triangle) networks. (F) Distribution of rPearson for protein pairs in 
CORUM and ComplexPortal complexes. (G) Fraction of complexes detected in correlation network (x-axis) versus size of 
protein complex (y-axis). Dots colored by database used to curate the protein complexes. (H) Workflow to map 
cooperative proteins associated with detected modules. (I) Number of cooperative proteins detected (y-axis) as a function 
of complex size (x-axis). (J) The number of annotated ComplexPortal complexes that were found to be cooperative with 
each individual protein in the correlation analysis (x-axis), e.g. ZZZ3 was assigned as a cooperative protein to 32 
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ComplexPortal protein complexes. (K) Venn diagram indicating the number of cooperative proteins with physical protein-
protein interaction evidence to at least one subunit of their associated complex.   
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Gastruloid stages and gene modules exhibit varying degrees of RNA-protein discordance  

 Previous studies spanning various biological contexts have reported varying extents of concordance 
between mRNA and protein levels15,16,50,65,66. Using the matched bulk RNA-seq data we acquired for these 
same samples, we next sought to assess the extent to which transcript abundances were predictive of protein 
levels in developing gastruloids. As noted above, our transcriptome data matched expectation with respect to 
temporal trends and stage-specific markers (Fig. 1D). Of note, HOX genes67 turned on with gastruloid 
induction in both species, both at the early stage in human gastruloids and the late stage in mouse gastruloids 
(Sup. Fig 4A).  

We next calculated RNA-protein correlations of individual genes. Across the 6,010 genes with both 
protein and RNA data for all sampled timepoints in both species, Pearson correlation coefficients were biased 
towards positive correlation, consistent with previous work50 (mean rPearson = 0.39; Fig. 4A; Sup. Table 7). 
When highly correlated (rPearson >=0.75) or anticorrelated (rPearson <=-0.75), RNA-protein relationships were 
stratified by broad gene classes68–71, e.g. genes associated with transcription (e.g. SOX2) tended to be 
positively correlated while those associated with the ribosome (e.g. NSA2) tended to be anticorrelated (Sup. 
Fig. 4B-C). At the level of Gene Ontology (GO) biological processes, genes exhibiting highly positive RNA-
protein correlation in our dataset were enriched for cytoskeletal and organ morphogenesis terms, suggesting 
that RNA levels are a reasonable proxy for protein abundance for these processes (Fig. 4B; Sup. Table 7). 
Drilling down further to the level of complex and pathways, complexes involved in transcription (e.g. SOX2-
OCT4 complex, CTNNB1-EPCAM-FHL2-LEF1 complex and the mRNA decapping complex) and signaling 
pathways (WNT and MAPK signaling) tended to be positively correlated (Fig. 4D-E). 

On the other hand, at the level of GO biological processes as well as shared subcellular localization 
(Human Protein Atlas29), mitochondrial genes, particularly those involved in the electron transport chain and 
oxidative phosphorylation, tended to have anticorrelated RNA and protein levels (Fig. 4B-C), consistent with 
post-transcriptional and post-translational control of mitochondrial protein levels during development72,73. Once 
again drilling down further, this trend was driven by mitochondrial protein complexes (e.g. F1-F0 ATPase and 
complex I) and pathways involved in central metabolism (e.g. TCA cycle and oxidative phosphorylation) (Fig. 
4D-E; Sup. Table 8). In the case of Complex I, previous work in HeLa cells74 demonstrated that proteins in this 
complex were rapidly degraded post-translationally, suggesting that these systems are regulated in a similar 
fashion during gastruloid development. 

We next sought to better understand the relationship between RNA and protein abundance as a 
function of developmental stage. Across all genes within each stage, we found that early mouse gastruloids 
exhibited substantially lower RNA-protein correlation than all other human or mouse stages (rPearson = 0.26; 
Sup. Fig. 4D). We defined a metric of discordance between RNA and protein measurements—the log2 
transformed ratio of the average fold change of a protein to its corresponding RNA—at a given stage of 
gastruloid development. Thus, discordance values close to 0 signify comparable levels of RNA and protein, 
positive discordance implies that the protein is more abundant than its corresponding transcript and vice versa. 
Focusing on mouse gastruloids (where for our data, all stages arose from the same cell line), Gata6 
discordance was high at the naïve ESC stage (higher than expected protein, given RNA levels); while in late 
gastruloids, Gata6 protein-RNA discordance was low (Fig. 4F). In contrast, SOX2 transcript and protein 
abundance remained relatively consistent over time (Fig. 4F).  

Overall, we observed varying profiles of discordance across mouse gastruloid development (Fig. 4G, 
Sup. Fig. 4E). Applying GO enrichment analysis to genes with absolute discordance ratios greater than 1 (i.e. 
protein either highly more or less abundant than expected, given RNA levels), we observed that mitochondrial 
and metabolic processes tended to be discordant mainly in early mouse gastruloids (Fig. 4H; Sup. Table 9). 
To understand discordance at the gene module level, we calculated the median RNA-protein discordance 
among genes belonging to a particular protein complex. The distributions across the four developmental states 
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were centered at 0 (Fig. 4I). We next compared the fold changes of RNA and proteins between two temporally 
adjacent stages with the aim of delineating when discordance emerges or resolves (Fig. 4J). We found that 
most complexes had no significant differences in discordance between stages (e.g. core Mediator complex, 
Fig. 4J). However, a minority did, e.g. 12% (33/279) of the protein complexes analyzed exhibited significantly 
different RNA and protein fold changes when comparing early vs. late stages of mouse gastruloid 
development. These included cytoplasmic and mitochondrial ribosomal subunits, intraflagellar transport 
complex B, and Complex I of the oxidative phosphorylation pathway (Fig. 4J; Sup. Fig. 4F). 

Finally, we sought to assess whether the protein levels of developmental transcription factors (TFs) 
could be used to adjudicate potential targets (Sup. Fig. 4G). For this, we focused on Sox2, Sox3, Tfap2c, and 
Gata6, which exhibit distinct patterns of stage-specific protein expression during mouse gastruloid 
differentiation (Sup. Fig. 4H). Anecdotally, transcripts for established targets of each of these TFs were indeed 
upregulated in a corresponding pattern, e.g. Nanog with Sox2, Top2a with Sox3, Dppa3 with Tfap2c, and 
Sox17 with Gata6 (Sup. Fig. 4I)75–80. Although each of these TF has thousands of targets according to 
databases such as TFlink81, the RNA levels of only a subset of these are well-correlated with the TF’s protein 
levels in our data (rPearson >= 0.9), e.g. 582 for Sox2 (3.4% of its targets), 122 for Sox3 (3.4% of its targets), 218 
for Tfap2c (3.4% of its targets), and 347 targets for Gata6 (3.4% of its targets) (Sup. Fig. 4J). Among the 
enormous sets of putative targets81, this subset may be more likely to be valid in the context(s) modeled by 
differentiating gastruloids.  
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Figure 4. Gastruloid stages and gene modules exhibit varying degrees of RNA-protein discordance. (A) Histogram 
of correlations (rPearson) between protein and RNA expression for all genes detected at the transcript and protein level in 
our samplings of human and mouse gastruloid development. Dashed line indicates the mean rPearson across all genes. 
Representative genes with varying extents of correlation are highlighted. (B) GO term dotplot highlighting GO-defined 
biological processes exhibiting high RNA-protein correlation (rPearson >= 0.75) or anticorrelation (rPearson <= -0.75). (C) 
Boxplot depicting the distribution of protein-RNA correlation (x-axis) as a function of subcellular location (y-axis). Rank 
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plots of median RNA-protein rPearson across (D) protein complexes or (E) biochemical pathways. Colors indicate databases 
from which the module sets were curated. (F) Representative examples of RNA-protein discordance profiles (for any 
given gene, mean across replicate is shown) for various stages. (G) Boxplot depicting the distributions of RNA-protein 
discordances (for any given gene, mean across replicates is shown) for various mouse stages. (H) Dotplot highlighting the 
biological processes significantly enriched in genes exhibiting protein-abundant (circles; discordance >=1) or RNA-
abundant (triangles; discordance <=-1) RNA-protein discordance. Color scale indicates the p-value adjusted using the 
Benjamini-Hochberg procedure and sizes of dots indicate the number of genes detected within each term. (I) Median 
RNA-protein discordances of members of protein complexes at each stage of mouse gastruloid development. (J) 
Comparison of the RNA and protein log2-scaled fold-changes between early vs. late mouse gastruloids in the Mediator 
complex (left), intraflagellar transport complex B (middle), and mitochondrial Complex I of the oxidative phosphorylation 
pathway. Significance testing on RNA and protein distributions was performed using a standard t-test.  
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Supplementary Figure 4. Identifying patterns of RNA-protein discordance across gastruloid development. (A) The 
temporal dynamics of the HOX gene expression cluster. Rows indicate genes, while columns signify samples. Color scale 
represents the log2 fold change of transcripts normalized to each sample’s respective species mean. (B) Representative 
examples of RNA vs. protein abundance correlation for SOX2 (red) and LAMTOR2 (teal). (C) Distributions of RNA-protein 
correlations (rPearson) for gene sets grouped by protein class (curated from Human Protein Atlas). (D) Scatterplot of RNA 
(x-axis) and protein (y-axis) abundance across stages of mouse or human gastruloid development. (E) Hierarchical 
clustering of patterns of RNA-protein discordance ratios across genes during mouse gastruloid development. (F) Protein 
complexes whose RNA abundances differ significantly from their protein abundances when comparing early vs. late 
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mouse gastruloids. (G) Workflow for identifying putative downstream targets of stage-specific transcription factors. (H) 
Stage-specific protein expression of Sox2, Sox3, Tfap2c and Gata6. (I) Representative heatmap depicting the rPearson 
correlation coefficients of transcription factor protein abundance (columns) to downstream target transcripts (rows) (J) 
RNA abundance distributions (y-axes) of target transcripts to aforementioned transcription factors (top). Colors indicate 
the enriched (cyan) or background (gray) target transcripts to the corresponding transcription factor. Significance 
estimated using ANOVA (n.s. denotes not significant; * denotes p < 0.05; **** denotes p < 1.3e-8).  
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Quantitative phosphoproteomics reveals kinase activities across gastruloid development  

Developmental programs are largely driven by core signaling pathways (e.g. WNT, BMP, FGF) that are 
dynamically regulated via post-translational modifications (PTMs)25. To identify PTMs that might underlie such 
regulation during gastruloid development, we applied time-resolved quantitative phosphoproteomics to our 
sample set (Fig. 1A-B; Fig. 5A; Sup. Fig. 5A-B; Sup. Table 10). Human and mouse phosphosites were well 
correlated with their protein abundances (median rPearson = 0.71 (human) and 0.84 (mouse)) and included 
residues of known stem cell markers such as DOT1L, LIN28A, SALL1, and UTF1 (Sup. Fig. 5C-D). In addition 
to temporal trends in individual phosphosites across gastruloid development, we also identified patterns of 
sharing or difference for phosphosites in the same protein. For example, multiple UTF1 phosphosites were 
enriched in naïve ESCs38,82, while for H1-3, T147 phosphorylation abundance was highest in naïve ESCs while 
S105 phosphorylation abundance was highest in fully differentiated gastruloids (Fig. 5B).  

We reasoned that phosphoproteomics could discern the abundance and state of proteins targeted by 
the chemical treatments used to induce gastruloid development. In particular, mouse gastruloids were treated 
with Chiron, a small molecule used to activate WNT signaling by inhibiting GSK3 kinase activity83–85. We found 
that Gsk3a and Gsk3b protein abundances were elevated in late gastruloids (after Chiron had been removed) 
and both kinases were anticorrelated to WNT signaling effectors Ctnna1 and Ctnnb1. Interestingly, we 
observed that the abundance of Gsk3a-activating phosphorylation at Y279 was inversely correlated with 
Chiron treatment, potentially reflecting Chiron-dependent perturbation of Gsk3a activity during mouse 
gastruloid induction (Sup. Fig. 5E). This observation highlights the potential impact of Chiron on GSK3 
phosphorylation states and is consistent with a recent study predicting decreased Gsk3 activity in 72 hr mouse 
gastruloids compared to ESCs86.  

We mapped phosphosites in our datasets onto known targets of pluripotency markers POU5F1, SOX2 
and NANOG curated from previous studies39,40 (Sup. Table 11). We identified a total of 113 phosphosites on 
72 proteins downstream of these pluripotency markers and focused on the subset that we successfully 
measured with proteomics. Of these, 14 proteins were shared targets of the pluripotency markers POU5F1, 
SOX2, and NANOG and phosphorylation sites on these 14 targets exhibited temporal changes in total 
phosphorylation over the course of gastruloid development (Fig. 5C). For example, compared to naïve ESCs, 
DPPA4 phosphorylation (T215) was more abundant in primed ESCs; however, we found residues on DPYSL2 
(S570 and T514) and DPYSL3 (S682 and S684) tended to have more total phosphorylation in early and late 
gastruloids. These results are consistent with previous work as DPPA4 is a known marker of pluripotency87 
while DYSL2 and DPYSL3 are associated with nervous system development88. TCF20, a transcriptional co-
activator associated with neurodevelopmental disorders, displayed two distinct patterns with respect to its 
detected phosphosites. TCF20 residues S1522 and S1671 had maximal phosphosite abundance in primed 
ESCs, correlating with upstream pluripotency factors NANOG, POU5F, and SOX2. However, phosphorylation 
of TCF20 S574, however, was most abundant in early and late gastruloids, when pluripotency factor 
abundance is low (Fig. 5D). Consistent with previous work39,40, these data suggest divergent post-translational 
control of developmental transcription factors, possibly modulated by canonical pluripotency factors. 

We next sought to assess conservation of cellular signaling axes in human vs. mouse gastruloid 
development. Using matched developmental timepoints between humans and mice (primed ESCs, early and 
late gastruloids), we calculated the correlation between orthologous phosphosite residues. We observed a 
wide distribution of Pearson correlation coefficients (median rPearson = -0.14) suggesting divergent 
phosphorylation dynamics between both species (Sup. Fig. 5F). The neural stem cell regulator DPYSL2 
T514/Dpysl2 T514 phosphosite abundances were consistent moving from mouse to human gastruloids, while 
chaperone HSP90AB1 S255/Hsp90ab1 S255 and ribosomal protein kinase RPS6KB1 S447/Rps6kb1 S447 
displayed species-specific phosphosite dynamics (Sup. Fig. 5F). Conserved phosphorylation sites for primed 
stem cell marker DNMT3B S100 and Dnmt3b S116 exhibited highly consistent phosphorylation profiles across 
gastruloid differentiation. Notably, the N-terminal region around the S100/S116 site has been challenging to 
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resolve in structural studies89, lies outside of the methyltransferase catalytic domain of DNMT3B, and is 
important for DNA binding89,90. Owing to DNA methylation’s established role in mouse epiblast91–93 and primed 
ESCs94, the conserved phosphorylation dynamics of DNMT3B S100 and Dnmt3b S116 suggests the possibility 
of posttranslational control of DNA methylation via these sites in early development.  

We next sought to map differential phosphorylation changes across stages of gastruloid development. 
Given our previous observation of high correlation between proteins and their phosphosites, we normalized the 
phosphosite changes to their corresponding protein fold changes to map protein-level-independent abundance 
changes in phosphorylation. While these reduced the numbers of differentially expressed phosphosites, we still 
identified hundreds of sites changing independently of the protein abundances (Fig. 5E; Sup. Fig. 5G). The 
highest number of differential phosphosites were detected between naïve and primed H9 ESCs while the 
lowest number of differential phosphosites was in comparing early and late gastruloids.  

Towards nominating driver kinases for temporally dynamic phosphorylation states, we identified 
kinases detected in our data based on established kinome databases95. We detected 262 of 534 (49%) known 
human kinases spanning all kinase classes (Sup. Fig. 5H). We performed kinase-substrate enrichment 
analysis96–99 to identify upstream kinase modules associated with phosphorylation across gastruloid 
development. Upon clustering kinases with similar z-score profiles, we broadly observed three clades of kinase 
activity (Fig. 5F). In line with a recent study profiling mouse gastruloids86, the activities of GSK3B and DYRK2 
tended to be higher in primed ESCs compared to human gastruloids. This is expected because like mouse 
gastruloids, early human gastruloids were also cultured in the presence of the GSK3A/B inhibitor Chiron. The 
decreased predicted kinase activity of GSK3B in gastruloids is consistent with increased inhibitory N-terminal 
phosphorylation of GSK3B100. We also observed increased phosphorylation of a GSK3A/B peptide 
(GEPNVSY#ICSR) with exact sequence identity to activating phosphorylation sites101–103 of GSK3A (Y279) and 
GSK3B (Y216). While these sites cannot be disambiguated owing to their tryptic peptide sequences, GSK3B-
specific N-terminal phospho-inhibition103,104 coupled with increased phosphorylation of the GSK3A/B activating 
site and a ~1.5-fold higher Chiron IC50 for GSK3A (10.1nM for GSK3A; 6.7nM for GSK3B)105 hints at differential 
roles for these isozymes in gastruloid development, consistent with previous findings for the role of GSK3A in 
ESC differentiation106 and nervous system development107. Notably, GSK3-activating phosphorylation was 
modulated with the Chiron treatment (Sup. Fig. 1A) and elevated in late gastruloids (Fig. 5F) when we would 
expect neural mesodermal progenitor cells to be present10. Owing to the poor correlation between GSK3A 
phosphorylation and protein abundance, these data suggest both coordinated temporal expression and 
activating phosphorylation of this key signaling axis during gastruloid formation.  

Our phosphoproteomics analysis also captured known kinase-substrate relationships including 
MAPKAPK2 phosphorylation of ZFP36L1 at Ser92 and PRKCI phosphorylation of ECT2 Thr359 (Fig. 5G). 
ZFP36L1 is a downstream target of NANOG and its protein abundance peaked in early gastruloids, suggestive 
of post-transcriptional and/or post-translational regulation (Fig. 5D). ZFP36L1 is an RNA binding protein and 
mediates degradation of transcripts when activated by MAPK signaling. We found that ZFP36L1 Ser92 
phosphorylation was correlated with MAPKAPK2’s predicted activity (Fig. 5F,G). At the protein level, NANOG 
abundance had an inverse relationship with that of ZFP36L1. This finding is in line with previous studies in 
mESCs108,109 and suggests ZFP36L1 Ser92 may play a role in stabilizing ZFP36L1 levels and be involved in 
the degradation of NANOG during gastruloid development. While AKT1 was known to phosphorylate ZFP36L1 
on Ser92, we found that AKT1 activity was predicted to be lower in the late gastruloids, consistent with a 
temporal association between ZFP36L1 and MAPKAPK2. Overall, over the course of gastruloid development, 
we observed a median Pearson’s correlation of 0.35 between kinase protein abundances and kinase substrate 
phosphorylation abundance (Sup. Fig. 5I). There were 62 correlated pairs and 24 anticorrelated pairs with an 
absolute rPearson >=0.5, including major kinase classes and many known kinase-substrate relationships 
including CDK1 substrates RB1, NUCKS1, and LIG3 (Fig. 5H). Taken together, our findings nominate kinase-
substrate relationships across gastruloid development, together with their temporal dynamics.  
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Figure 5. Quantitative phosphoproteomics reveals kinase activities across gastruloid development. (A) The 
temporal dynamics of phosphorylated peptides across human gastruloid development. Rows indicate phosphosites, while 
columns signify sample type. Color scale indicates the scaled TMT abundance of individual phosphopeptides. (B) 
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Ridgeplots depicting the characteristic phosphorylation states within a given protein. (C) Venn diagrams depicting the 
detection of phosphorylated proteins that are targets of pluripotency factors SOX2, POU5F1 and NANOG. Gene sets 
curated from Van Hoof et al.110 (D) Phosphosites associated with downstream targets of pluripotency factors. Y-axis 
indicates the log2 abundance ratio of early (yellow) or late (red) gastruloids to primed RUES2-GLR ESCs. Mean 
abundance ratios are indicated with dots and error bars represent the standard deviation. (E) Volcano plots of 
phosphosite abundance changes across consecutive stages of human gastruloid developmental stages. X-axis 
represents the log2 fold change between 2 timepoints and the y-axis represents the negative log10 of the BH-adjusted p-
value. Phosphosites were normalized to their protein levels before differential expression testing. Labeled points indicate 
the top 5 most significant differentially expressed phosphosites between pairs of comparisons. (F) Heatmap depicting the 
z-scores of kinase-substrate enrichment analysis. (G) Representative examples of temporal phosphosite dynamics in 
comparison to their respective proteins and cognate kinases. Color scale indicates the abundance z-score. ECT2 T359 
was correlated with PRKCI, while ZFP36L1 S92 was strongly correlated with both MAPKAPK2 and AKT1. (H) Network of 
kinases (circles) connecting to their substrates (rectangles). Pairs annotated from PhosphositePlus. Edge colors indicate 
correlated (blue) or anticorrelated (red) relationships (absolute rPearson >= 0.5) between kinase and substrate phosphosite 
nodes.  
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Supplementary Figure 5. Mapping phosphorylation states across gastruloid development. (A) The temporal 
dynamics of phosphorylated peptides across mouse gastruloid development. (B) Number of phosphorylated sites (y-axis) 
identified per amino acid residue (x-axis). (C-D) Distribution of Pearson correlation coefficients (rPearson) from comparing 
the abundances of phosphosites to their respective (C) human or (D) mouse proteins. (E) Effects of temporal Chiron 
treatment on protein and/or phosphorylation dynamics of Gsk3a, Gsk3b, Ctnna1, and Ctnnb1. (F) Distribution of rPearson 
computed from comparing temporal abundances of conserved phosphorylation motifs between human and mouse (left). 
Representative tile plots of conserved and diverged phosphosite profiles across motifs shared between humans and mice 
(right). Detected peptide (bold) and phosphorylated residue (magenta) are highlighted above each tile plot. (G) Volcano 
plots comparing differentially expressed phosphosites between primed RUES2-GLR vs. late gastruloids (left) or between 
H9 vs. RUES2-GLR primed ESCs (right). X-axis represents the log2 fold change between 2 samples and the y-axis 
represents the negative log10 of the BH-adjusted p-value. (H) Proportion of human protein kinases detected by kinase 
group. Kinase annotations curated from KinMap explorer111. (I) Histogram of rPearson between human kinase-substrate 
pairs detected across human gastruloid development. Pairs curated from PhosphositePlus.   
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Co-regulatory networks of protein dynamics in gastruloids link to shared phenotypes and developmental 
disorders 

In vitro models of early development offer tractable platforms to model congenital disease states and 
map the molecular mechanisms underlying them. To investigate the temporal dynamics of proteins linked to 
developmental disorders, we intersected our dataset with the Gene Curation Coalition (GenCC)112 and 
Deciphering Developmental Disorders (DDD)113 databases. There were 1,980 proteins (27%) quantified in our 
datasets with at least one disease association in at least one of these databases (Fig. 6A; Sup. Table 12). 
Anecdotally, genes linked to the same disease tended to be co-regulated across gastruloid development. For 
example, genes associated with Leigh Syndrome, a congenital early-onset neurological disorder associated 
with mitochondrial dysfunction, tended to be upregulated in primed ESCs, while genes linked with broad 
intellectual disability mostly showed increased abundance during the gastruloid stages (Fig. 6A). To ask if co-
regulation was a general trend among genes associated with the same disease, we calculated the mean 
Pearson correlation coefficient across all pairs of detected proteins associated with a given disease by GenCC, 
and found these tended to be positively correlated (average rPearson = 0.46, Fig. 6B).  

Mapping disease-associated genes onto known protein complexes can inform their molecular roles in 
developmental disorders. There are 461 developmental disease-associated genes whose protein products 
contribute to 217 ComplexPortal and 631 CORUM complexes (Sup. Table 12). Complexes were associated 
with an average of 2.95 ± 2.68 developmental diseases, with the spliceosome E complex and mitochondrial 
respiratory Complex I are associated with the largest number of developmental disorders (Fig. 6C). With the 
goal of identifying additional disease genes that might be related to these protein complexes, we leveraged our 
data together with the aforedescribed co-regulatory analysis heuristic (Fig. 3A; Sup. Fig. 3J). Towards 
supporting these protein-complex associations, we mined BioPlex and BioGrid, which identified 232 edges 
linking cooperative disease proteins to CORUM complexes, and 180 edges linking cooperative disease 
proteins to ComplexPortal complexes (Sup. Fig. 6A).  

Functional proteomics can be a powerful approach to nominate molecular functions for disease-
associated genes with molecular functions, as well as to advance our mechanistic understanding of how their 
aberrant function in specific developmental contexts might give rise to specific disease phenotypes114,115. To 
illustrate how the data reported here might be useful in this regard, we highlight examples involving Leigh 
Syndrome and Ritscher-Schinzel Syndrome.  

Leigh syndrome is an early-onset mitochondrial neurometabolic disorder impacting the central nervous 
system. Its symptoms include, ataxia, developmental delay and hypotonia116. We found that the protein levels 
of 51 Leigh Syndrome-associated genes detected in our data were highly correlated with one another in our 
data (Fig. 6B, mean rPearson = 0.87). In our co-regulation network, Leigh syndrome proteins clustered with 
genes associated with central metabolism (e.g. Complex I and mitochondrial ATP synthase) and were 
significantly enriched in a oxidative phosphorylation co-regulation subnetwork (p < 9.6x10-15, Fisher’s Exact 
test, Sup. Fig. 6B). 

Ritscher-Schinzel syndrome is a developmental disorder characterized by abnormal craniofacial, 
cerebellar, and cardiovascular malformations, classically associated with WASHC5 and CCDC22 but more 
recently with VPS35L and DPYSL5 being implicated as well117–122. These four proteins were positively 
correlated in our data (mean rPearson= 0.78) with two of them (CCDC22 and VPS35L) clustering within a co-
regulation network involving subunits of the Commander complex (Fig. 6C). The Commander complex 
consists of two subcomplexes, CCC and Retriever123, and is mainly involved in trafficking of cargo including 
endosomal recycling of proteins124. While we detected all 16 Commander subunits, including the three 
heterotrimeric components of the Retriever complex (Sup. Fig. 6C), our co-regulation network contained 7 
CCC subunits, 1 Retriever subunit, and 23 cooperative proteins (Fig. 6D). 
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While we detected 2 of the 4 genes associated with Ritscher-Schinzel syndrome, we also observed 7 of 
the 31 proteins in the Commander network had GenCC disease associations. We hypothesized that 
cooperative disease-associated proteins in the Commander network would share similar phenotypic features. 
To measure the extent of phenotypic overlap among disease-associated proteins in the Commander network, 
we leveraged the Monarch database of gene-phenotype relationships125. We found phenotype associations for 
8 proteins in the Commander network, which clustered into groups based on shared sub-phenotypes (Fig. 6E). 
For example, and unsurprisingly given how the syndrome is defined, Ritscher-Schinzel syndrome genes 
CCDC22 and VPS35L shared highly similar phenotypes. More broadly however, Commander-cooperative 
proteins exhibited overlapping phenotypic characteristics, including abnormality of the nervous system, mental 
function, and musculoskeletal system (Fig. 6E). This analysis suggests putative disease associations in genes 
that may be associated with Leigh syndrome and Ritscher-Schinzel syndrome and offers starting points to 
characterize disease genes in these developmental contexts.  

Finally, to investigate phosphorylation dynamics of disease genes, we intersected our phosphorylation 
dataset with the DDD database, and found 202 phosphosites across 105 proteins that are temporally 
quantified in our dataset (Sup. Fig. 6C). For example, phosphosites on CDK13, TCF20 and NONO, genes that 
are known to be strongly associated with intellectual disability, exhibit varying temporal profiles (Sup. Fig. 6D). 
For example, TCF20 Ser1522 and Thr1671 peak in primed ESCs while Ser574, similar to its protein levels, 
peaks during gastruloid differentiation. Thus, our data may serve as a resource for nominating PTM targets for 
future investigation of the complex regulation of genes underlying congenital and developmental disorders. 
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Figure 6. Co-regulatory networks of protein dynamics in gastruloids link to shared phenotypes and 
developmental disorders. (A) Overlap of proteins detected across our dataset, GenCC and DDD. Heatmaps correspond 
to the temporal abundance changes of human proteins (rows) associated with a specific developmental disorder across 
human gastruloid development (columns). (B) Distribution of mean Pearson correlation coefficients across GenCC 
disease sets. Only diseases with >=2 genes are plotted. Mean rPearson was calculated by averaging Pearson correlation 
coefficients detected pairs of proteins in our dataset. (C) Histogram of the number of developmental disorders associated 
(y-axis) with genes comprising protein complexes (x-axis). (D) Co-regulation network of the Commander complex 
subunits. Size of orange nodes indicates the significance of cooperative association (-log10 of the adjusted p-value; 
Fisher’s exact test, see Methods). Proteins associated with developmental disorders (blue stars) were linked to the 
Commander complex co-regulation network. (E) Heatmap depicting the extent of shared phenotypic overlap (columns) 
across genes (rows) in the Commander subnetwork.   
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Supplementary Figure 6. (A) Number of cooperative disease proteins with physical evidence in BioPlex or BioGrid to 
known protein complexes. (B) Oxidative phosphorylation co-regulatory network (pathway associations curated from 
WikiPathways). Proteins associated with Leigh syndrome (blue stars) were enriched in the oxidative phosphorylation co-
regulation network (Pathway curated from WikiPathways). (C) Temporal protein profiles of the Commander complex 
across human and mouse gastruloid development. (D) Histogram of quantified phosphopeptides, kinases and 
phosphorylated proteins associated with developmental disorders. (E) Temporal phosphorylation states and protein 
profiles of CDK13, TCF20, and NONO broadly associated with intellectual disability and related developmental disorder. 
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DISCUSSION 

In this study, we leveraged the tractable and scalable properties of stem cell derived human and mouse 
gastruloids to systematically profile temporal changes across four key stages of their development. While the 
numbers of in vitro models of embryogenesis continue to expand and are increasingly characterized with 
scRNA-seq or scATAC-seq, only recently have they been subjected to phenotyping at the protein level. For 
example, a recent study applied mass spectrometry to map the temporal protein dynamics across stages of 
mouse gastruloid development, yielding insights into germ layer proteomes and associated phosphorylation 
states86. However, this study was restricted to mice and stages surrounding gastruloid induction. Thus, we 
sought to extend the application of these approaches to a human model of gastrulation to enable multi-species 
comparisons and explore additional developmental states mapping to pre- and post-implantation to gain a 
more comprehensive view of mammalian gastrulation.  

By applying high-throughput quantitative proteomics to both mouse and human gastruloid development, 
we aimed to generate a dataset that foundationally informed the transcriptional, proteomic and 
phosphoproteomic dynamics of this model. These differences tended to correspond to systemic shits in 
biological processes across stages. Notably, we observe that over human gastruloid development, proteins in 
the TCA cycle tend to be upregulated in primed ESCs as compared to late gastruloids, and late gastruloids 
display elevated levels of glycolytic proteins. These results suggest a refocusing of cellular composition on 
metabolic energy production in support of larger organismal changes, in broad agreement with previous 
studies demonstrating the metabolic shift to glycolysis in post-implantation embryos126,127. It is important to note 
that while previous studies using transcriptomic approaches suggest a bivalent metabolic state in epiblast 
cells127, we found that primed RUES2-GLR cells had increased abundance of oxidative phosphorylation 
proteins. Additionally, we found that RUES2-GLR proteomes when compared to primed H9 cells displayed an 
elevated oxidative phosphorylation profile, showing stem cell line-specific metabolic states.  

Our data enabled comparison of temporal dynamics of protein expression and conservation (or lack 
thereof) across human and mouse gastruloid development. While late gastruloids across both species were 
only modestly correlated, key developmental genes often displayed conserved patterns of expression. For 
example, in both species the protein abundance for pluripotency markers POU5F1, NANOG, CDH1 were all 
lower in late gastruloids compared to their stem cell progenitors. Conversely, ZEB2 (a key protein involved in 
epithelial-mesenchymal transition128), SOX9 (a neural crest marker), CDX2 (a caudal axial stem cell marker), 
and MEIS1 (a cardiomyocyte marker) protein abundances all increased at the protein level in both human and 
mouse gastruloids. We found conserved upregulated biological processes include regulation of cell 
differentiation, organ morphogenesis, heart/muscle development, while conserved downregulated processes 
include amino acid metabolism and transport. These findings highlight the extent of conservation of 
gastrulation programs across 90 million years of evolutionary divergence.  

Upon comparing the stages sampled across both species, we surprisingly found that the proteomes of 
primed RUES2-GLR cells were closest to those of the early mouse gastruloids. While this association was 
largely driven by upregulation of mitochondrial proteins, it is possible that RUES2-GLR cells (thought to be 
between pre- and post-implantation states) may already be primed towards gastrulation at the protein level. 
Our results thus also highlight potential species-specific differences in staging, particularly with respect to 
metabolic and mitochondrial states. However, more work is needed to understand the extent of these effects 
and to rule out the possibility that these are due to cell line-specific differences that do not reflect in vivo 
effects. We imagine that a more continuous sampling of early differentiation, together with computational 
staging between species10 will resolve this question. When comparing protein abundances to their 
corresponding transcripts, we observe modest correlation (rPearson = 0.39) with a clear discordance between 
mitochondrial proteins and transcripts including proteins underlying key metabolic pathways such as oxidative 
phosphorylation being anticorrelated. However, this was not the case for other pathways such as WNT 
signaling, steroid biosynthesis and glycolysis. Our findings are in broad agreement with other studies mapping 
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RNA-protein relationships in developmental contexts across a range of organisms16,18–22 and highlight the roles 
of post-transcriptional regulation in gastruloid development as well as the need to study multiple layers of 
biomolecular composition of organisms during development. Future studies, applying ribosome profiling129 and 
single cell multi-omics of the proteome and transcriptome130 may inform the translation and turnover rates of 
specific proteins across developmental stages. 

Studies of co-regulation of protein systems (i.e. complexes and pathways) during gastrulation have 
been limited owing to the lack of tractable and scalable models of mammalian gastrulation. Here we recover 
hundreds of known macromolecular protein complexes and biochemical pathways and map their dynamics 
during gastruloid development. In mining our co-regulatory networks of protein expression, we identify 
thousands of new cooperative proteins associating with existing complexes and pathways suggesting possible 
developmental roles in gastrulation. While many proteins were discrete to the complexes they cooperated with, 
we also found shared sets of cooperative proteins. For example, chromatin remodelers (SWI/SNFs and BAFs) 
and histone methyltransferases (SIN3A/SIN3B histone methyltransferases) and acetyltransferases (HBO 
complexes) shared cooperative proteins. These relationships represent a resource for further exploration using 
biochemical assays to disentangle those proteins that directly interact from those in shared pathways.  

Finally, we found that co-regulation and network analysis were able to identify disease neighborhoods. 
Often we observed that genes associated with the same developmental disorders were highly correlated with 
one other at the protein level. Subunits of the Commander complex are associated with Ritscher-Schinzel 
syndrome131,132. The cooperative network containing this complex consisted of 2 of the 4 genes strongly linked 
to Ritscher-Schinzel syndrome. Other proteins in the Commander network are associated with similar 
phenotypic characteristics, potentially for shared reasons, which may serve as a starting point to understanding 
their roles in gastrulation. Finally, this study offers scalable and multidimensional approaches to provide high-
content phenotyping going beyond ubiquitous nucleic acid-centric assays. For example, generalizable protein-
focused approaches can be extended to phenotype genetically and chemically perturbed gastruloids along with 
other clinically relevant stem cell models that are increasingly being used to model embryogenesis5.  

Limitations of the study  

Though this study quantitatively profiles the transcriptome, proteome, and phosphoproteome across 
gastruloid development, it is not complete nor comprehensive. First, while we sample 4 stages of embryonic 
development in gastruloids, profiling more time points with finer windows across gastruloid development would 
provide greater resolution and enhance our understanding of the temporal dynamics present in these samples. 
Secondly, though we quantified ~7,500 human and ~8,700 mouse proteins, which represents a substantial 
portion of the observable proteome133, additional coverage of low abundance, developmentally associated 
genes could be attained using targeted, quantitative mass spectrometric analyses. Thirdly, gastruloids consist 
of diverse cell types arising from all three germ layers. Our approaches were all bulk measurements and 
lacked cell-type-specific resolution. Additional characterization of separate cell types with fluorescence 
activated cell sorting (FACS) before phenotyping mouse gastruloid development with proteomics86, could 
overcome this limitation. Finally, although gastruloids are powerful surrogates to model specific characteristics 
of early mammalian embryogenesis, they still do not entirely reconstitute embryogenesis in vitro. Future multi-
omic studies will lay the foundation for advancing these stem cell models to more accurately recapitulate 
embryogenesis and allow us to better understand the cellular and molecular mechanisms driving embryonic 
development.  
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METHODS  

 
Mouse cell lines 

E14Tg2a cell line was obtained from Dr. Christian Schroeter (Max Planck Institute). 
 
Mouse naïve ESC culture 

Mouse naïve ESCs were maintained in 2iLif medium84 containing 3 µM CHIR99021 (Millipore-Sigma, 
SML1046), 1 µM PD0325901 (Stemcell Technologies, 72184), and 1,000 U/ml LIF (Millipore, ESG1107) and 
passaged with TrypLE (Thermo, 12604021) every other day onto new wells, which were coated with 0.01% 
poly-L ornithine (Millipore Sigma, P3655-10MG) and 300 ng/ml Laminin (Corning, 354232). 
 
Mouse EpiLC differentiation 

Mouse EpiLC differentiation was performed as previously described134. Briefly, 1x105 mouse naïve 
ESCs were seeded onto a well on a 12-well plate, which was coated with human plasma fibronectin (Thermo, 
33016015) in EpiLC differentiation medium (N2B27 + 20 ng/ml ActivinA + 12 ng/ml bFGF + 1% KSR). The 
medium was changed a day after the seeding. Day2 EpiLCs were dissociated with TrypLE (Thermo, 
12604021) and sampled. 
 
Mouse gastruloid induction 

Mouse gastruloid induction was performed as previously described9. Briefly, mESCs cultured in 2iLiF 
medium were dissociated with TrypLE, and 300 cells were seeded into U-bottomed, non-adherent 96-well 
plates in N2B27 medium and kept for 48 hours in 37°C 5% CO2 incubator. After 48 hours, 150 µl of N2B27 
containing 3 µM CHIR99021 was added to each well. At 72 and 96 hours, 150 µl medium was replaced with 
fresh N2B27 medium lacking CHIR99021. Mouse gastruloids were sampled at 72 and 144 hours after 
induction. 
 
Human cell lines 

Pluripotent stem cell lines, hESCs (RUES2-GLR), were gifted by Dr. Ali Brivanlou (Rockefeller 
University). Chemically reset (cR) H9 naïve and primed cells were kindly gifted by Dr. Austin Smith (University 
of Exeter). 
 
Human naïve ESC culture 

Chemically reset (cR) H9 naïve hESCs were propagated in N2B27 with PXGL (P-1mM PD0325901, 
2mM X- XAV939 , G- 2mM Gö 6983 and L- 10 ng/mL L-human LIF) on irradiated MEF feeders as described 
previously32,135. Y-27632 and Geltrex (0.5mL per cm2 surface area; Thermo Fisher Scientific, A1413302,) were 
added during re-plating. To remove MEF cells, cells were passaged on geltrex-coated wells with the 1 μL/cm2 
and were repeatedly passaged by dissociation with Accutase (Biolegend, 423201) every 3-5 days for five 
successive passages. 

 
Human primed ESC culture 

Human primed ESCs were cultured in StemFlex (Thermo, A3349401) on Geltrex (Thermo, A1413201) 
and were routinely passaged using StemPro Accutase (Thermo, A1110501) to new Geltrex-coated wells as 
recommended by the manufacturer. For the first 24 hrs after passaging, hESCs were cultured in StemFlex with 
10�μΜ of Rho Kinase inhibitor Y-27632 (Sellek, S1049) to prevent apoptosis. 
 
Human RA-gastruloid induction 

Human RA-gastruloids were induced as described previously10. Briefly, ~4x10^4 hESCs were plated 
onto a single well of a Vitronectin-coated 12-well dish (Gibco, A14700) in Nutristem hPSC XF medium 
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(Biological Industries, 05-100-1A) in the presence of 10 µM Y-27632. After 24 hours, the medium was replaced 
with Nutristem containing 5 µM Y-27632. At 48hrs the medium was replaced with Nutristem containing 4 µM 
CHIR (Millipore, SML1046). At 72 hrs, the medium was replaced with Nutristem containing 4 µM CHIR and 500 
nM RA (Millipore Sigma, R2625). Pre-treated cells were detached using StemPro Accutase, dissociated into 
single cells suspension, and then 4,000 cells per well of a U-bottom shaped 96-well plate with 50 µl Essential 6 
medium (Thermo, A1516401) containing 1 µM CHIR and 5 µM Y-27632. At 24 hrs, 150 µl of Essential 6 
medium was added to each well. At 48 hrs, 150 µl of the medium was removed with a multi-channel pipette, 
and 150 µl of Essential 6 medium containing 5% Matrigel and 100 nM RA was added and maintained at 37°C 
and 5% CO2 until 120 hrs. Human gastruloids were sampled at 24 and 120 hours after induction. 
 
RNA-seq analysis 
Sample preparation 

Each stage consisted of 2 biological replicates. Approximately 0.5 million cells per replicate were 
harvested across mouse and human cells across the 4 gastruloid developmental stages. DNA and RNA from 
each sample were isolated using the Qiagen AllPrep DNA/RNA kit (Qiagen #80204). Approximately, 500ng of 
total RNA was used as input for library preparation. mRNAs were isolated using the NEBNext Poly(A) mRNA 
Magnetic Isolation Module (NEB #E7490) and prepared for sequencing using the NEBNext UltraII RNA Library 
Prep Kit for Illumina (NEB #E7770).  
 
Sequencing and data analysis 

Concentrations of cDNA libraries across all samples were estimated from either the Qubit (Invitrogen) 
and/or visualized by Tapestation (Agilent) to ensure standard ranges for library sizes. All libraries were dual-
indexed with 8 nucleotide indexes using NEBNext® Multiplex Oligos for Illumina® (Index Primers Set 1) and 
were sequenced on NextSeq 2000 (Illumina) either by 2x150bp or 2x50bp configuration.  
 

Basecall files were converted to fastq formats using bcl2fastq (Illumina) and demultiplexed on the i5 
and i7 indexes. Fastqc was performed to estimate the quality of the reads. Adapter trimming and filtering for 
low quality reads was performed using Trimmomatic v0.39136 either in paired-end or single end mode trimming 
low-quality reads (<2) at the ends and applying a 4 base sliding window across reads retaining reads with 
average quality above 15. Depending on the species, trimmed reads were then aligned using STAR137 to either 
the human GRCh38 or mouse GRCm39 reference assemblies. Human samples had an average unique 
mapping rate of 64% while those of mouse samples were 48%. Finally, count matrices for each species were 
then generated with bam files using FeatureCounts. 
 
Mass spectrometry data collection 
Sample preparation 

For each stage analyzed we collected 1-2.5 million cells per replicate across 4 gastruloid 
developmental stages. Stem cells across each stage were harvested from culture plates by enzymatic 
dissociation using AccutaseTM (StemCell Technologies, #07920). Since each gastruloid is cultured in a single 
well of a 96-well U-bottom plate, gastruloids were first pooled together to reach the 2.5 million cell number and 
gently centrifuged at 500g for 5 min to remove growth media followed by Accutase treatment to dissociate the 
gastruloids. Once dissociated, Accutase treatment for both gastruloid and stem cell samples was quenched by 
addition of a wash buffer consisting of either StemFlex or mTeSR+ along with rock inhibitor (Y-27632). Finally 
cells were washed twice with PBS to remove cell debris, lysed cells, and matrigel from the samples. Samples 
were finally stored at -80C after aspirating the PBS before proceeding to protein isolation. 
 

Cell pellets were thawed on ice and resuspended in lysis buffer (8M urea, 250mM EPPS pH 8.5, 50 
mM NaCl, Roche protease inhibitor cocktail, Roche PhosSTOP). The cell pellets were homogenized using a 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2024. ; https://doi.org/10.1101/2024.09.05.609098doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.609098
http://creativecommons.org/licenses/by/4.0/


 

38 

21-gauge needle to syringe pump lysate. Lysates were cleared by centrifugation at 21,130 g at 4°C for 30 
minutes. Supernatants were placed in clean microcentrifuge tubes and a BCA assay (Pierce) was performed to 
determine protein concentrations. Lysate containing 25 ug of protein material for biological triplicates at each 
point of gastrulation were reduced and alkylated with 5 mM Dithiothreitol (DTT) for 30 minutes at room 
temperature and 20 mM Iodoacetamide (IAA) for 1 hour in the dark at room temperature. The IAA reaction was 
then quenched with 15 mM DTT. Single-pot solid phase sample preparation (SP3)138 using Sera-Mag 
SpeedBeads was performed to desalt the reduced and alkylated samples. An on-bead protein digestion was 
performed by adding LysC at a 1:100 ratio (protease:protein) overnight (16-24 hours) on a thermocycler at 
room temperature then adding trypsin at a 1:100 ratio for 6 hours at 37°C at 900 rpm. TMTpro was used to 
label each sample at a 2.5:1 ratio of TMTpro reagents to the peptide mixtures for each sample. Samples were 
left at room temperature for 1 hour for TMTpro labeling and labeling efficiency was verified to be >99% for 
lysines and >97% for N-termini. The labeling reaction was quenched with 5% hydroxylamine diluted to a 
concentration of 0.3% for 15 minutes at room temperature. Samples were then placed on a magnetic rack to 
aggregate SP3 beads and labeled peptide supernatants from each sample were pooled. The pooled sample 
was then partially dried down by speed-vac and 10% formic acid was added to bring the pH of the pooled 
sample to below 3 for desalting. The pooled sample was desalted using a Sep-Pak C18 cartridge (Waters) and 
then dried down completely. 
 
Phosphoproteomics sample preparation 

Pooled sample was resuspended in 94 uL of 80% acetonitrile and 0.1% trifluoroacetic acid for Fe3+-
NTA magnetic bead phosphopeptide enrichment139. 100 uL of 75% acetonitrile 10% formic acid was added to 
a clean microcentrifuge tube and the Fe3+-NTA magnetic beads were washed twice with 1 mL of 80% 
acetonitrile and 0.1% trifluoroacetic acid and the supernatant was removed. After the final wash, the peptides 
in 94 uL of 80% acetonitrile and 0.1% trifluoroacetic acid were added to the tube with the washed beads. The 
sample was vortexed and incubated for 30 min on thermoshaker (250 rpm, 25 C). After the incubation period, 
the sample was washed 3 times with 200 uL of 80% acetonitrile and 0.1% trifluoroacetic acid and all 
flowthrough was saved in a clean microcentrifuge tube as it contains non-phosphorylated peptides. 100 uL of 
50% acetonitrile and 2.5% NH4OH was added to elute phosphorylated peptides from magnetic beads and then 
sample was transferred to tube with 100 uL of 75% acetonitrile and 10% formic acid. The phosphopeptide 
enriched sample was dried down immediately by speed-vac and resuspended in 100 uL of 5% formic acid and 
a C18 stage tip was used to desalt the phosphopeptide enriched sample. The sample was then transferred to a 
MS insert vial that was placed within a microcentrifuge tube. The sample was placed in a -80 C freezer for 30 
minutes and then dried down completely in a speed vacuum. The sample was then resuspended in 10 uL of 
2% formic acid and 5% acetonitrile within the MS insert vial. 
 
Total proteomics sample preparation 

The saved flowthrough was dried down using the speed vacuum, resuspended in 500 uL of 5% formic 
acid, and a Sep-Pak C18 cartridge (Waters) was used to desalt the sample. The flowthrough sample was dried 
down completely in speed vacuum after desalting. The flowthrough sample was resuspended and neutralized 
in 1 mL of 10 mM ammonium bicarbonate/90% acetonitrile and dried down completely in speed vacuum again. 
Sample was resuspended in 115 uL 10 mM ammonium bicarbonate and 5% acetonitrile and 110 uL were 
transferred to a sample vial. High-pH Reverse-Phase HPLC Fractionation was performed on the flowthrough 
sample using an Agilent 1200 HPLC system. After HPLC fractionation140, fractions were dried down in speed-
vac, resuspended in 100 uL of 5% formic acid, and cleaned via C18 stage tip. Elution from each stage tipped 
fraction was placed in a MS insert vial and dried down in vial. Fractions were then resuspended in 5 uL of 2% 
formic acid 5% acetonitrile within the MS insert vial. 
 
Mass spectrometry data acquisition 
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Proteomics 
All analyses were performed using an Orbitrap Eclipse Tribrid Mass Spectrometer (Thermo Fisher 

Scientific) in-line with an Easy-nLC 1200 autosampler (Thermo Fisher Scientific). The peptides underwent 
separation using a 15 cm-long C18 column with a 75 μm inner diameter, with a particle size of 1.7 μm 
(IonOpticks). Each fraction collected from the off-line fractionation was analyzed using a 90 min gradient of 2% 
to 26% acetonitrile in 0.125% formic acid with a flow rate of 500 nl/min. The MS1 resolution was set to 120,000 
with a scan range of 400-2000 m/z, a normalized automatic gain control (AGC) target of 200%, and a 
maximum injection time of 50 ms. The FAIMS voltage was cycled between activated at a constant 
compensation voltages (CV) of -40 V, -60, and -80 V. MS2 scans were collected with an AGC target of 200%, 
maximum injection time of 50 ms, isolation window of 0.5 m/z, CID collision energy of 35% (10ms activation 
time), and “Rapid” scan rate. SPS-MS3141 scans were triggered based on the real-time search (RTS) filter35. 
Briefly, RTS was run by searching species specific Uniprot protein databases (downloaded 04/2023) for mouse 
(taxid: 10090) and human (taxid: 9606) with static modifications for carbamidomethylation (57.0215) on 
cysteines and TMTpro acylation (304.2071) on peptide N-termini and lysines; variable modification of oxidation 
(15.9949) on methionines, one missed cleavage, a maximum of three variable modifications per peptide. Scan 
parameters of the SPS-MS3 were set to collect data on 10 SPS ions at a resolution of 50,000, AGC target of 
400%, maximum injection time of 150 ms, and HCD normalized collision energy of 45%.  
 
Phosphoproteomics 

Duplicate injections (4 μL) were analyzed on an Orbitrap Eclipse Tribrid Mass Spectrometer (Thermo 
Fisher Scientific) along with an Easy-nLC 1200 autosampler (Thermo Fisher Scientific). The peptides 
underwent separation using a 15 cm-long C18 column with a 75 μm inner diameter, with a particle size of 1.7 
μm (IonOpticks). Each fraction was analyzed using a 90 min gradient of 2% to 26% acetonitrile in 0.125% 
formic acid with a flow rate of 400 nl/min. The MS1 scan resolution was set to 120,000 with a scan range of 
400-1800 m/z, a normalized AGC target of 200%, and a maximum injection time of 50 ms. The FAIMS voltage 
was cycled between compensation voltages of -40, -60, and -80 V. MS2 scans were collected with an AGC 
target of 250%, maximum injection time of 35 ms, isolation window of 0.5 m/z, CID-Multistage Activation (MSA) 
collision energy of 35% (10ms activation time) with additional activation of the neutral loss mass of n-97.9763, 
and “Rapid” scan rate. For SPS-MS3 scans141 a resolution of 50,000, AGC target of 300%, maximum injection 
time of 86 ms, and HCD normalized collision energy of 45%. 
 
Proteomic and phosphoproteomic data analysis 
Peptide spectral matching 

Raw files were searched against the relevant annotated proteome from Uniprot (Human: October 2020; 
Mouse: March 2021). Sequences of common contaminant proteins and decoy proteins were added to the 
Uniprot FASTA file to also be searched. Comet search algorithm142 was utilized to match peptides to spectra 
with the following parameters: 20 ppm precursor tolerance, fragment_tolerance of 1.005, TMTpro labels 
(304.207145) on peptide N-termini and lysine residues, alkylation of cysteine residues (57.0214637236) as 
static modifications, and methionine oxidation (15.9949146221) as a variable modification. Phosphoproteomics 
runs were also searched for phosphorylation as a variable modification on serine, threonine, and tyrosine 
residues (79.9663304104). Peptide-spectrum matches (PSMs) were filtered to a 1% false discovery rate (FDR) 
using a linear discriminant analysis35. Proteins were filtered to an FDR of 1% using the rules of protein 

parsimony and the protein picker methods143. For quantitation, PSMs were required to have a summed TMT 

reporter ion signal-to-noise ≥100141. 

 
Protein module analysis 
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All quantified proteins were mapped onto known transcription factors (curated from the Transcription 
Factor Database144, protein complexes (curated from CORUM61 and EMBL ComplexPortal62), biochemical 
pathways (curated from BioCarta56, KEGG57, PID59, Reactome58 and WikiPathways55), subcellular localization 
(curated from Human Protein Atlas29,145), and Gene Ontology (GO) terms41. For biochemical pathways and 
complexes, we filtered module sets to those where we detected greater than 2 members. With respect to 
subcellular locations, if a protein in Human Protein Atlas was listed as localized to multiple regions in its main 
subcellular location, we considered each location as unique. We avoided searching our data against overly 
broad descriptions of GO terms by filtering for terms containing fewer than or equal to 150 genes and greater 
than 2 members detected in our data. All mappings were based on Uniprot annotations69,146 unless otherwise 
stated.  
 
Correlation network construction and network analysis 

We first intersected the human and mouse protein datasets and used 6,261 proteins that were 
observed across the shared timepoints within a cell line i.e. primed ESCs, early and late gastruloids. We 
normalized each protein’s abundance in given replicate to its respective species geometric mean and log2 
transformed values for subsequent analysis unless otherwise stated. To construct our correlation network, we 
first calculated the Pearson correlation coefficients (rPearson) across all 19,596,930 possible pairs of proteins. 
Since we already calculated rPearson across all possible pairs of proteins, we permuted sample labels across our 
dataset to generate the null distribution of correlation coefficients. We then stringently filtered the network 
edges with Benjamini-Hochberg (BH) adjusted p-values < 0.01 and absolute rPearson >= 0.95. This step filtered 
the network down to 489,417 (301,561 correlated and 187,856 anticorrelated) pairs and was used for 
subsequent network analysis.  
 
Edge annotation in correlation network 

We considered seven major annotations as literature evidence for any given edge: 1) Protein-protein 
interaction, 2) Belonging to the same protein complex or 3) biochemical pathway, 4) GO biological process, 5) 
GO molecular function, 6) GO cellular component or 7) Subcellular location. Protein complex annotations were 
obtained from CORUM61 (downloaded 9/12/2022) and ComplexPortal62 (downloaded 1/7/2024). Annotated 
gene sets for pathways55–59 and GO41 were downloaded from the Molecular Signatures Database147. Protein 
localization annotations were curated from Human Protein Atlas29,145. Networks were illustrated using the 
igraph R package or Cytoscape148.  
 
Bioinformatic identification cooperative protein interactions 

We searched all nodes in our correlation network against known complexes and pathways which 
consisted of at least 3 subunits. We adapted a previously described approach60 and employed a Fisher’s exact 
test to compute statistical enrichment of cooperative complexes with established modules. For each protein 
complex or pathway module, we tested its neighboring proteins (first-degree edges) for significant association 
with a particular module and termed those as cooperative proteins. For each protein tested, we first counted 
the number of edges that it shared with the established module, second we counted the number of edges that 
linked the module to other proteins (excluding the candidate protein) in the network, third we counted the 
number of edges the candidate protein had to rest of the correlation network (i.e. excluding the module of 
interest) and finally, we counted the number of edges that were not associated with the candidate protein nor 
the module of interest. These edge counts were used to compute statistical significance using Fisher's exact 
test. We independently repeated this test for all 6,261 proteins against 1,357 known protein complexes and 
select metabolic pathways. The p-values obtained were adjusted for multiple hypothesis testing using the BH 
procedure and only cooperative proteins with adjusted p-value < 0.05 were considered significant.  
 
Comparison of RNA and protein abundance analysis 
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Global RNA-protein correlations were calculated using all 9 observations of transcripts and proteins 
across mouse and human gastruloid development. To ensure stringent analysis, we filtered for genes detected 
in both species for the downstream analysis. Pseudocounts of 1 were added to filtered count matrices and 
were converted to transcripts per million (TPM). Mean transcript and protein abundances were converted to 
log2 fold change ratios to their respective species geometric mean. For every gene, we calculated the per-
gene RNA-protein correlation (rPearson) using a vector of abundances across 9 samples. GO term enrichment of 
biological processes in correlelated and anticorrelated genes was performed using ClusterProfiler149. We 
intersected the 6010 genes detected across both datasets with Human Protein Atlas29 for subcellular locations, 
CORUM61 and ComplexPortal62 for protein complexes and KEGG for biochemical pathways57. To measure the 
extent of correlation of transcripts and RNAs within mouse timepoints we calculated the ratio of protein to RNA 
mean fold changes across each timepoint. In summary, a discordance of 0 implied that the protein and RNAs 
were highly correlated while discordance less than 0 implied that the RNAs were more abundant than protein 
levels and vice versa. Discordance scores for protein complexes was calculated by taking the median protein-
RNA correlation across constituent members. To prevent averaging pairs of proteins, we only considered 
complexes where more than 2 proteins were detected in our data. Transcriptional signatures of stage specific 
mouse transcription factors were detected as follows. First, we calculated the Pearson correlation comparing 
transcription factor protein abundances to all observed transcripts. We subset the resulting correlation matrix to 
identify protein-transcript pairs with high correlation (rPearson >= 0.9) and used TFLink81 to select only transcripts 
that were annotated as targets of specific transcription factors. We confirmed the identified transcription factor 
targets displayed similar temporal regulation to their upstream transcription factor by comparing target 
transcript abundance at each stage to determine the maximum transcript abundance.  
 
Phosphoprotein and Kinase analysis 

For differential expression testing and analysis, in every pairwise comparison, log2 ratios for all 
quantified phosphosites were calculated following subtraction of the log2 ratios of the corresponding proteins to 
identify protein independent phosphorylation changes. Kinase substrate pairs were curated from 
PhosphositePlus98. Human kinases were annotated using KinMap111. For Kinase-Substrate prediction and 
enrichment analysis, for each phosphosite, we first calculated the log2 fold change ratio to the row mean 
(across all samples) subtracted the corresponding protein log2 fold change ratios and used that as input into 
the KSEA app96 with a minimum substrate cutoff >=2 to calculate z-scores for kinases. Kinase substrate pairs 
with absolute rPearson >= 0.5 were visualized as a network using Cytoscape148. 
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