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During development and under normal physiological conditions, biological tissues are continuously subjected
to substantial mechanical stresses. In response to large deformations cells in a tissue must undergo multicellu-
lar rearrangements in order to maintain integrity and robustness. However, how these events are connected in
time and space remains unknown. Here, using computational and theoretical modeling, we studied the mechan-
ical plasticity of epithelial monolayers under large deformations. Our results demonstrate that the jamming-
unjamming (solid-fluid) transition in tissues can vary significantly depending on the degree of deformation,
implying that tissues are highly unconventional materials. Using analytical modeling, we elucidate the origins
of this behavior. We also demonstrate how a tissue accommodates large deformations through a collective se-
ries of rearrangements, which behave similarly to avalanches in non-living materials. We find that these ‘tissue
avalanches’ are governed by stress redistribution and the spatial distribution of vulnerable spots. Finally, we
propose a simple and experimentally accessible framework to predict avalanches and infer tissue mechanical
stress based on static images.

I. INTRODUCTION

During morphogenesis and under normal physiological
conditions, biological tissues continuously experience sub-
stantial mechanical stresses [1]. Research efforts to under-
stand the remarkable deformability of epithelial tissues em-
ploy both experimental and simulation approaches. Exper-
imentally, studies focus on the tissue’s responses to exter-
nal stresses [2–5], where a stress-driven unjamming transi-
tion has been noted [4]. On the simulation front, the cellu-
lar Potts and Vertex-based models are utilized to probe tissue
rheology [6, 7], uncovering nonlinear elasticity and rheolog-
ical properties [7, 8]. However, with few exceptions [9], re-
search has predominantly focused on the shear startup regime.
This leaves a gap in our understanding of tissue behavior
under steady shear and the mechanisms underpinning yield-
stress behavior in tissues. Beyond the yield stress, mate-
rials typically flow through plastic rearrangements. Simi-
larly, within tissues, mechanical plasticity occurs through cel-
lular rearrangements, enabling the maintenance of integrity
and robustness. While there is extensive literature on how
individual cells rearrange with their neighbors [10–13], sig-
nificant gaps remain in understanding how these localized
events connect over time and space. Moreover, a major
challenge lies in elucidating how these collective interac-
tions lead to mechanical responses at the tissue level. In the
context of material plasticity, avalanche-like behavior, preva-
lent in phenomena ranging from earthquakes to ferromag-
nets, involves small perturbations triggering significant col-
lective responses [14]. Systems exhibiting these instabilities
display self-organized criticality [15] and power law scaling
in their observables, indicating the universality class of the
process. Proliferation-driven avalanche-like behavior has re-
cently been observed in the Drosophila eye disc, suggesting
that avalanches provide a macroscopic mechanism for epithe-
lial tissues to alleviate accumulated proliferative stress [16].
Moreover, shear-induced avalanches have been documented
in vertex-based models [8, 9, 17], yet a detailed examination
of these avalanches’ growth is still lacking.

In this work, we investigate tissue mechanical plastic-

ity using the Voronoi-based Vertex model under quasi-static
shear. Our results demonstrate that the solid-fluid transition
point—also referred to as the jamming-unjamming transition
in recent literature—does not occur at a singular point but
varies depending on the degree of shear deformation the tissue
undergoes. Furthermore, challenging traditional definitions,
we discover states where tissues possess yield-stress prop-
erties but lack a conventional shear modulus. These states
exist in a solid-fluid coexistence phase near the jamming-
unjamming transition, which we explore through a modified
version of the Soft Glassy Rheology (SGR) model to eluci-
date the origins of these complex states. Our research not
only clarifies how tissue manages large deformations through
multicellular rearrangements akin to avalanches observed in
non-living materials but also connects these phenomena to
the tissue-level mechanical responses discussed earlier. These
“tissue avalanches” are driven by stress redistribution and the
spatial distribution of vulnerable spots, elements that echo the
earlier discussions on mechanical responses and rheological
properties. By quantifying the spatial and temporal correla-
tions within these rearrangements, we advance the field’s un-
derstanding and propose a novel methodological framework
capable of predicting collective rearrangements and inferring
tissue stress from static snapshots of tissue configuration.

II. RESULTS

A. The confluent jamming transition is not unique

To investigate the mechanical behavior of dense epithe-
lial tissues under substantial deformation, we employed a
Voronoi-based Vertex model [8, 18]. The cell centers {rrri}
and their geometric configurations are derived from Voronoi
tessellation. The biomechanical interactions are captured
through a dimensionless mechanical energy functional [19]
expressed as:

ε =
N

∑
i=1

[
κA(ai −1)2 +(pi − p0)

2] , (1)
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FIG. 1. (a) Discrepancy between shear start-up and steady-shear regime. Top: The shear modulus of the un-sheared tissue (γ = 0). The shear
modulus is obtained using linear-response calculation (see Methods). Bottom: The yield stress σyield obtained from the steady-state shear
regime of quasistatic simulations is shown together with the yield stress obtained from the SGR model, where the only fitting parameter in the
model, the elastic constant of an element was chosen to be k = 0.0386. (b) The probability of finding the system in solid state as a function
of p0. Inset: Distribution of tissue stress at different p0. (c) Stress-strain curve example showing different yielding types: a fluid state yields
to another fluid states a → b, a solid state yields to another solid one c→ d, and a solid state yields to a fluid state e → f. (d) Schematic
of the dynamics of elements in the SGR model: The energy landscape of the material consists of traps with different depth E drawn from a
distribution ρ(E) that characterizes the structural disorder of the material. Yielding events are captured by transitions from one trap to another.
The three types of transition illustrates the transitions observed in simulation

where ai and pi are the dimensionless area and perimeter of
each cell, κA is the rescaled area elasticity, and p0 is the
preferred cell shape index (see Methods). To probe tissue
response, we applied quasi-static simple-shear deformation
using Lees-Edwards boundary conditions, incrementally in-
creasing strain with the FIRE algorithm to minimize energy
(see Methods).

In the unsheared version of the vertex model, it has been
demonstrated that the preferred cell shape index p0 drives a
rigidity transition at p0 = p∗0 ≈ 3.81, where the linear response
shear modulus vanishes [20]. Recent studies have shown that
beyond this transition point, in the liquid phase (p0 > p∗0), the
model can undergo strain-stiffening, indicating a rigidity gain
upon strain application. In our quasi-static shearing proto-
col, we explore beyond the linear response and shear startup
regimes into the large deformation limit. In this regime, the
tissue exhibits plastic flow primarily through cell-cell rear-
rangements, or T1 transitions. Here the mean shear stress cor-
responds to the tissue’s yield stress

σyield = lim
γ̇→0

⟨σxy(γ̇)⟩. (2)

As illustrated in Fig.1a, while the startup shear modulus van-
ishes at the rigidity transition at p0 ≈ 3.81, signaling a solid-

to-fluid transition, the yield stress σyield does not disappear.
Instead, it vanishes at a higher cell shape index, p0 ≈ 4. This
underscores a drastic difference in tissue responses between
the transient shear startup and steady-shear regimes.

Under steady shear and at shape indices higher than the
rigidity transition associated with shear startup (i.e., at p0 >
p∗0), initially fluid-like systems can intermittently exhibit
solid-like behavior before reverting to fluid-like states after
yielding (Fig.1c). In this context, states with finite shear mod-
ulus are considered solid-like (e.g., states c, d, f in Fig.1c),
while states that do not resist shear deformation, indicated by
having zero shear modulus, are fluid-like (e.g., states a, b, e
in Fig.1c). This coexistence therefore shows up as a bimodal
distribution of the shear modulus, p.d. f (G) shown in Fig. 1b,
where the fluid phase is associated with a peak near the nu-
merical noise floor of shear modulus (∼ 10−12) while the solid
phase corresponds to a finite shear modulus.

The shifting behavior in the distributions can be quantified
by the fraction of solid states ρsolid shown in Fig.1b. States
below the rigidity transition p0 = p∗0 ≈ 3.81 therefore are
always in the solid phase, which we term a pure solid. In
the range of p0 ∈ [3.81,4], ρsolid drops below 1 indicating a
solid-fluid coexistence, which we will refer to as marginal.
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For p0 > 4 the tissue remains always in the fluid phase as it
cannot build up stresses in response to shear strain. This is
also consistent with the yield stress vanishing at p0 ≃ 4.0.
The fact that the material response depends on the applica-
tion of shear is reminiscent of shear jamming in granular
materials, where an state below the isotropic (un-sheared)
jamming threshold can be jammed with the application of
shear [21–24]. The coexistence of solid and fluid phases also
has analogs in dense suspensions near shear jamming [25]
and discontinuous shear thickening [9, 26].

B. Predicting the tissue yield stress using a refined Soft Glassy
Rheology model

Given the continuous behavior of yield stress across the
pure solid - marginal state transition, we aimed to develop
a unified model to deepen our qualitative and predictive un-
derstanding the steady-shear regime properties using the Soft
Glassy Rheology (SGR) framework [27, 28]. In the SGR
model, mesoscopic elements, characterized by elastic con-
stant k and local strain l, are confined within energy traps E,
where they accumulate elastic energy as macroscopic strain
increases, approaching a yield point either directly or through
an activated "hop" driven by mechanical fluctuations from
neighboring elements yielding. The material’s dynamics un-
der shear are governed by the probability P(E, l, t) , which
follows the stochastic differential equation [27, 28]:

∂

∂t
P(E, l, t) =−γ̇

∂P
∂l

−Γ0e[E−kl2/2]/xP+Γ(t)ρ(E)δ(l). (3)

Here the first term in Eq. 3 describes the motion of the ele-
ments caused by global shear rate γ̇. The second term captures
activated hopping from a trap of depth E−kl2/2 (correspond-
ing to the distance to yielding). x represents the mechanical
noise in the system akin to temperature. The final term illus-
trates the transition to new states, with (E, l = 0) following
yield, selected from a quenched random distribution ρ(E).

In the SGR model, the choice of ρ(E)’s functional form
critically influences material behavior [28]. Direct measure-
ment of energy barrier distributions is challenging, leading
prior studies to adopt generic or ad hoc assumptions for ρ(E),
such as exponential distributions [29–31]. In this work, we
introduce a novel approach based on distinct mesoscopic tis-
sue phases observed: (1) fluid elements with zero yielding en-
ergy (E = 0) and (2) solid elements with finite yielding energy
(E > 0). Consequently, we propose a refined ρ(E):

ρ(E) = f0δ(E)+(1− f0)
Eκ−1e−E/x0

Γ(κ)xκ
0

. (4)

Here, f0 denotes the probability of an element transitioning
to a state with E = 0, and 1− f0 corresponds to transitions
into states with energy sampled from a k-gamma distribution,
parameterized by mean x0 and shape factor κ. This is based
on the previous observation that the energy barriers to the T1
transition follow a k-gamma distribution [20, 32] with κ ≈ 2.

Together, Eqs. 3 and 4 describe three potential transitions in
the energy landscape, depicted in Fig. 1d: (1) fluid to fluid a
→ b, (2) solid to solid c→ d, and (3) solid to fluid e → f.

We next examine the steady state behavior of Eq. 3 in the
quasi-static limit (γ̇ → 0), with details shown in the Appendix.
The behavior is governed by three parameters: the dimen-
sionless ratio of mechanical noise to mean yielding energy
χ = x/x0, the probability f0 of transitioning to a fluid state,
and the elastic constant k of solid elements.

An important aspect of the SGR model is that the fluctu-
ations that drive element rearrangements come from the me-
chanical noise due to other surrounding rearrangement events
in the system. These fluctuations are analogous to the energies
released during yielding events observed in our simulations.
To correlate this mechanical noise with our empirical data, we
introduce the following relationship:

χ =
x
x0

∝
⟨∆E⟩
⟨E⟩

. (5)

Here, ⟨∆E⟩ represents the average energy dissipated dur-
ing yielding events, while ⟨E⟩ denotes the average energy of
cells in their solid state. Next, by analyzing the steady-state
solution of Eq. 3, we determine the probability that an ele-
ment is in the solid phase as a function of f0 (details in SI,
Eq. S.12). This corresponds precisely to ρsolid in our simu-
lations (Fig. 1b). Finally, we treat the elastic constant k of
the elements as a constant, independent of the shape index p0.
Given that both

〈
∆E

〉
/
〈
E
〉

and ρsolid depend on p0, the yield
stress predicted by the SGR model (detailed in the SI) effec-
tively varies only with p0. This approach contrasts with previ-
ous studies that employed the SGR model [29–31, 33], where
χ= x/x0 was often used as a fitting parameter. In our research,
we derive χ directly from simulation data, enhancing the pre-
dictive accuracy of our theoretical results and distinguishing
our use of the SGR model as predictive rather than merely de-
scriptive. In Fig. 1a, we plot the SGR-predicted yield stress
as a function of p0. This demonstrates that the SGR model
accurately predicts the yield stress vanishing point and its de-
pendence on the cell shape index σyield(p0).

The dual-state SGR model identifies two primary mech-
anisms responsible for the yield stress transition: (1) As p0
increases, states with zero yielding energy barriers become
more prevalent, leading to frequent yielding under defor-
mation. This behavior is depicted by transitions such as a
→ b and e → f in Fig. 1d; (2) Concurrently, mechanical
noise from stress redistributions approaches the scale of
the yielding energy barriers, enhancing the likelihood of
solid-solid transitions through activated processes induced by
neighboring rearrangements, as illustrated by c → d and e →
f.

C. Dynamics of tissue plasticity

So far, we know that for a system in the coexistence phase
to transitions from solid to fluid, a collective rearrangement
event is required to significantly remodel the configuration.
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FIG. 2. Spatiotemporal map of plastic events in tissue. (a) Space-time map of plastics rearrangement in the form of T1 transition during an
avalanche. Cells that participated in T1 transitions are labeled in red. The example avalanche was selected from a system at p0 = 3.72. (b)
Number of accumulative plastic rearrangement and tissue shear stress as the avalanche progresses.

However, the mechanism that govern the occurrences of these
events and the evolution of the system during the events is
still not fully understood. To explore the yielding behavior
of biological tissues, it is essential to describe the dynamics
of plastic events during avalanches. In this study, we exam-
ine the plasticity dynamics by investigating the spatiotempo-
ral evolution of the plastic rearrangements created by other
rearrangements during an avalanche[34, 35]. Fig.2a displays
a space-time plot of the occurrences of T1 transitions during
an avalanche, with the cells labeled in red indicating partici-
pation in the T1 transitions.

As depicted in Fig.2a, an avalanche involving numerous
plastic rearrangements could originate from a single T1 tran-
sition, which we refer to as the initial trigger. Starting from
the initial trigger, the stress redistribution from each event can
also stimulate surrounding cells to become unstable and un-
dergo T1 transitions. These vulnerable cells have been re-
ferred to as soft spots [36, 37] or STZs [38, 39]. This cascade
of cellular rearrangements can therefore lead to an avalanche,
which continues until the population of soft spots are suffi-
ciently depleted. In Fig.2b, we show the number of accumu-
lated T1 transitions and the tissue shear stress during a typical
avalanche. The stress relaxation due to an avalanche there-
fore is the origin of the discontinuous yielding of stress dur-
ing quasistatic shear. In Fig.2a, the location of rearrangments
over time suggests that there is a preferred direction for the
avalanche to propagate. In order to quantify this and to es-
tablish a causal relationship in time, we define a two-point,
two-time correlation function:

φ(r,∆t) = ⟨P(r0, t0)P(r0 + r, t0 +∆t⟩, (6)

where P(r, t) is a binary field, representing the occurrence of a
T1 transition (1 if a T1 transition at occurs at r and time t and
0 otherwise). ⟨...⟩ represents spatial and ensemble averaging.
With this definition, φ is therefore the conditional probability
of observing a T1 transition at location r0+r and time t0+∆t,
given that a transition has already occurred at (r0, t0).

In Fig.3a, we illustrate the evolution of the field φ as ∆t
increases. The field φ behaves like a wave that propagates
away from the causal rearrangement and prefers to propagate
in the x-direction, coinciding with the direction of the external
shear force. The evolution of the field φ reflects the interplay
between the stress redistribution from a plastic rearrangement
and the population of soft spots which could rearrange under
the effect of the strain field.

We first focus on the angular dependence of φ, which shows
an anisotropic four-fold pattern. This anisotropy is consistent
with the stress redistribution field due to a rearrangement in an
elastic medium as predicted by elastoplastic models [17, 40].
However, it differs from the isotropic probability field ob-
served in ductile, soft disk systems [41]. This contradiction
likely arises from the difference in shape anisotropy between
soft disks and cells in our system. While soft disk systems ex-
hibit minimal particle shape anisotropy, cells in our system
can sustain large deformations and have highly anisotropic
shapes. Consequently, deviatoric strain triggers rearrange-
ments in soft disk systems, whereas simple shear strain is re-
sponsible for triggering rearrangements in our system.

To better understand how the rearrangement probability
field propagates, we looked at φx = φ(x,y=0)

∑x φ(x,y=0) and φy =
φ(x=0,y)

∑y φ(x=0,y) separately. φx, as observed in Fig.3b, is a bimodal
distribution that evolves in time such that the distance between
the two peaks dpeaks increases as time goes. The diffusing
bimodal distribution suggests that the propagation is a com-
bination of convection and diffusion, and the drift velocity
could be captured by the rate at which the peaks’ separation
increases. Conversely, φy is a bell-like shape distribution that
gets broader as time progresses (Fig.3c), indicating that the
propagation in the y-direction is similar to a purely diffusion
process with the diffusivity can be captured by the evolution of
the FWHM. Fig.3d shows that dpeaks increases faster than the
FWHM-φy. Since the rearrangement probability field is the
result of the shear stress redistribution and the population of
soft spots, the propagating mechanism of the field also should
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FIG. 3. Propagation of plastic events. (a) Evolution of the probability field φ at p0 = 3.72. Bright regions indicate a high probability of finding
another rearrangement in the region relative to the causal rearrangement. (b) Spatial distribution of the correlation field φx as a function of
the relative horizontal position ∆x. The distribution has a diffusing bimodal shape, indicating a convection process alongside diffusion. (c)
Spatial distribution of the correlation field φy as a function of the relative vertical position ∆y. The distribution is bell-shaped, with the width
of the bell increasing as time progresses, indicating a pure diffusion process. (d) The separation of the peaks in φx and the Full Width at Half
Maximum (FWHM) of φy as functions of the time lag ∆t.

agree with the propagation of the stress redistribution.
The phenomenon that the shear stress redistribution tends

to propagate in the direction of shear has also been observed
in particle-based systems governed by inverse-power-law
pairwise potentials [35]. Remarkably, this behavior bears
a striking resemblance to the propagation of elastic waves.
In the theory of elasticity, longitudinal waves, characterized
by displacement in the direction of propagation, outpace
transverse waves [42]. Moreover, longitudinal elastic
waves involve changes in local density[42], akin to the
x-propagating excitation wave’s modulation of local density
via T1 transitions. Conversely, transverse elastic waves
do not induce density changes, resembling the infrequent
involvement of T1 transitions in y-propagating excitation
waves. Notably, the mechanism driving stress redistribution
to preferentially propagate in the shear direction appears
universal, independent of p0. However, since p0 governs
the elastic response in our system, with higher values
corresponding to a less elastic state, there is a negative cor-
relation between the stress redistribution wave’s speed and p0.

D. Statistics of tissue avalanches

In addition to the universal propagation mechanism, we
wondered if the statistics of tissue yielding events also exhibit
universality. In Fig.4a, both the average yielding size S̄, de-

noting the total number of T1 transitions after a yielding event,
and the average stress drop, representing the amount of stress
relaxed by the event, exhibit the same dependence on p0. In
the solid regime, while the stress decreases with increasing
p0, the average yielding size shows minimal variation. This
trend of S̄ versus p0 is akin to that observed in Fig.1b for the
proportion of the solid state.

However, in the marginal phase, there are different types of
yielding events as discussed previously (Fig.1c). In the yield-
ing events that occur while the system is fluid-like, illustrated
by the a → b transition in Fig.1C (Type I), the tissue lacks
rigidity and therefore is unable to transmit stress to initiate a
cascade of rearrangements. Conversely, yielding events fol-
lowing a solid state, illustrated by c → d and e → f transitions
(Type II), tend to be cascading as the rigid tissue is capable
of propagating the stress redistribution. It is this latter type
that we refer to as tissue avalanches from now on. Since the
avalanches growing mechanism is universal, we expect their
statistics to also be independent of p0.

Excluding yielding events of type I from the analysis and
specifically analyzing only the avalanches, we indeed find
that the average avalanche size Ss does not vary significantly
with p0 (Fig.4a inset), suggesting universal avalanches statis-
tics. To rigorously assess this universality, we examine the
distribution of avalanche sizes across various p0 values (see
Fig.4b). Strikingly, we observe a consistent power-law dis-
tribution, reminiscent of the Gutenberg–Richter (GR) law ob-
served in earthquakes [43, 44], with an exponent τ = −1.36,
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which agrees with the analogous exponent observed in over-
damped elastoplastic models under shear [45, 46] and in ver-
tex model on spherical surface[47]. This shared characteristic
suggests a parallel between biological and seismic avalanches
and supports the argument that the vertex model and epithelial
tissues belong to the universality class of plastic amorphous
systems.

Furthermore, we find that the same power law applies to
the distribution of average stress drops during avalanches
when scaled by the average (Fig.4b inset). This collapse
after rescaling implies that the stress relaxation mechanism
via avalanches is independent of the shape index p0, and p0
only affects the average stress relaxed by governing tissue
overall stiffness. Moreover, the similarity in the stress drop
distribution and avalanches size distribution indicates that
each plastic rearrangement, on average, releases a similar
amount of stress that depends only on p0. The convergence
of these distributions suggests that the growth of avalanches
remains unaffected by changes in p0, providing additional
evidence for the universal propagation mechanism discussed
earlier.

E. Predicting tissue avalanches based on static structural
information

While the first cells to undergo a T1 transition triggers the
avalanche, in order for the avalanche to grow, it is necessary
to have soft spots in the system that are susceptible to undergo
T1s. In the framework of the elastoplastic model, it has been
established that the distance to yield x, which represents the
additional stress required to trigger a yielding event, follows
a power-law distribution, p(x) ∝ xθ [48–50]. The exponent θ

has been suggested as a measure of the system’s instability,
with a higher value indicating a more stable state.

In the vertex-based model family, it has been proposed that
the distance to yield, x, exhibits a linear relationship with

the length of cell edges, and that the distribution of edge
lengths should follow the same power-law behavior as ρ(x)
[17]. While this argument establishes a connection between
system configuration and instability, the efficacy of using the
distribution of short edges to describe instability remains un-
certain.

To address this ambiguity, we investigate this concept
within our Voronoi model and observed an intriguing corre-
lation between the exponent θ and system instability (see S.I
and Fig.S1). However, θ is not a reliable metric because it
is derived from a power-law fit that heavily depends on the
range of fitting [17]. In practice, the cumulative distribution
function (c.d.f) of L exhibits power-law behavior only within
a specific range, which varies from sample to sample. There-
fore, we propose using c.d.f(L∗) as the parameter of instability
to avoid the uncertainties and biases associated with fitting.
To systematically determine a critical edge length L∗, we ana-
lyzed the evolution of the edge length distribution, c.d.f(L), at
various L values and compared it with the evolution of tissue
shear stress σxy(Fig.5a). We observed a critical L∗ at which
c.d.f(L∗), denoted by C∗ from now, exhibited an exceptionally
strong correlation with the stress σxy, with a correlation coef-
ficient exceeding 0.9 (Fig.5a). Interestingly, we found that
L∗ = 0.43 (in units of the average cell diameter) remains con-
sistent across different p0 values.

Given the high correlation between C∗ and σ, and the fact
that cell edge lengths can be directly extracted from imaging,
C∗ could serve as a non-invasive metric to infer tissue-level
stress. Plotting C∗ against σxy for p0 in the plastic regime
reveals a clear exponential relationship, as shown in Fig.5b.
However, due to the limited range of C∗, it is challenging
to distinguish between an exponential and a power-law re-
lationship. Therefore, we tested both the exponential model
(σxy ∝ eαC) and the power-law model (σxy ∝ Cβ). Both mod-
els demonstrated a good representation of tissue shear stress
(Fig.S4 a, b), with the exponential model exhibiting a slightly
lower mean-squared error (MSE) compared to the power-law
model (Fig.S4e).
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FIG. 5. Predicting avalanches. (a)An example of the evolution of tissue shear stress σxy and C∗ as strain increases. b) Scatter plot of shear
stress and C∗ at different p0 in the solid regime. c) c.d.f(S) at different C∗ level at p0 = 3.79. d) Probability of having avalanches of size
greater than 25 at different C∗

Using C∗ as the parameter of instability, with higher C∗ cor-
responding to a more unstable state, we observed a relation-
ship between instability and avalanche size. By selecting only
the failure states, we computed C∗ for these states and then
grouped the avalanche sizes based on C∗ at the point of failure
(Fig.5c). At low C∗, if the tissue yields, the size of the yield-
ing event is likely to be small, indicated by a rapid increase
to 1 in the cumulative distribution function (c.d.f.) of S. As
C∗ increases, the likelihood of larger yield events grows. The
probability of observing an avalanche of size 25 or greater is
summarized in Fig.5d.

While C∗ can provide predictions about avalanche size, it
cannot determine when an avalanche will occur. Therefore,
we require another tool to forecast yielding events. In amor-
phous solids, the locations of plastic rearrangements during
an avalanche largely depend on the material’s structural con-
figuration, with areas more likely to experience plastic events
called soft spots. Various frameworks have been proposed to
link structure and plasticity, such as the Shear Transformation
Zone theory [37–39, 51, 52] and lattice-based models. The
most promising theoretical approach for predicting the loca-
tions of soft spots involves identifying these areas based on
soft vibrational modes [36, 53, 54]. As a system approaches a
plastic rearrangement, at least one normal mode is supposed to
approach zero frequency [36]. However, the vibrational mode
analysis is not applicable to the vertex-based model family
due to the cuspiness of the energy landscape [20, 32]. In such
systems, the energy cusp at a plastic event prevents the corre-
sponding low-frequency mode from vanishing as it would in

systems with smooth, analytic energy landscape. As shown
in Fig.S2, in our system, no low-frequency mode approaches
zero frequency except at the onset of the plastic event. Hence,
an alternative approach is necessary.

In our model, the deformation of edges immediately fol-
lowing shear strain is deterministic. Through simple geome-
try, we deduce the existence of a range of orientations wherein
edges are prone to shortening upon shearing, rendering them
more vulnerable. In the vertex model, under the condition
γ̇ ≪ 1, the change in edge length δl due to shear is approx-
imated as δl ≈ γ̇l sin(2φ), where l and φ represent the edge
length and orientation, respectively. Consequently, in the ver-
tex model, the most vulnerable orientation is 3π

4 . If an edge
is sufficiently weak (or short) and happens to align with this
susceptible orientation, it may yield under the influence of
shearing, potentially triggering further rearrangements in its
vicinity. We refer to these susceptible edges as triggers. Since
triggers are local elements, their presence is not captured by
the cumulative distribution function of edge lengths, c.d.f(L),
thereby explaining why C∗ alone cannot predict imminent sys-
tem failure. In summary, the presence of a trigger is the nec-
essary condition, while a high C∗ in the current state is the
sufficient condition for a large avalanche in a tissue mono-
layer.
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III. DISCUSSION

We studied the response of tissue monolayers to external
quasi-static shear stress in the long-term steady-shear regime.
For a tissue monolayer initially in a fluid state, it behaves like
a yield-stress material in the shear buildup regime but even-
tually enters a marginalphase in the long-term steady shear
regime. Incorporating the coexistence phase into to the SGR
model, we elucidated the discrepancy between the rigidity
transition and the yield stress transition observed in the Vertex
model under simple shear.

Besides the yield stress, tissue plasticity is also reflected
in avalanches of plastic rearrangement. By studying the dy-
namics of tissue avalanches, we observed a universal prop-
agation mechanism of plastic events that is independent of
the shape index p0 and has two preferred directions, with
the direction of the external shear being the one with faster
propagation. The rearrangement probability φ studied here is
closely related to, but not identical with, the stress redistribu-
tion predicted by elastoplastic models [17, 40] or the strain
field due to rearrangement [41]. Instead, φ captured the inter-
play between stress redistribution and spatial distribution of
weak spots. Since most edges that participated in T1 transi-
tion in our system orient at −π/4 with respect to the horizontal
(Fig.S3), the positive shear stress is expected to symmetrically
redistribute along the horizontal and vertical directions [17].
Although φ does propagate mainly in the horizontal and verti-
cal directions, it does not possess the vertical-horizontal sym-
metry seen in stress redistribution or in the strain field. This
difference arises from highly heterogeneity and anisotropic in
the spatial distribution of weak spots.

The universality of tissue avalanches is not only reflected
in the propagation of plastic events but also captured by a
power-law distribution of avalanche sizes, with an exponent
τ = −1.36, strengthening the argument that epithelial tissues
behave like plastic amorphous materials. We also propose
a metric to not only predict tissue avalanches but also infer
tissue stress in highly anisotropic systems based on an in-
stantaneous static snapshot. In finite size system, the cut off
avalanches size Sc depends on the system size N as Sc ∝ Nd f /d ,
where d f is avalanches fractal dimension and d is the dimen-
sion of the system [49]. Future possible work can be per-
formed with different system size to obtain the avalanches
fractal dimension d f and further understand the finite size ef-
fect on avalanches.

We also propose a metric to not only infer tissue stress
based on an instantaneous static snapshot but also predict tis-
sue avalanches. Quantification of tissue-level force and stress
is necessary to understand the physics of many biological
processes. However, direct measurement of stress in vivo is
considerably challenging[55–57]. Compared to other non-
invasive method to estimate tissue stress such as Bayesian
Force Inference [58] and Variational Method for Image-Based
Inference [59], our approach using C∗ offers a simple and
fast method to estimate tissue stress. The cost for this con-
venience is that our approach cannot provide a spatial distri-
bution of stress. The strong agreement between σxy and C∗ is
noteworthy, especially since C∗ does not incorporate informa-

tion about edge orientation, which directly affects stress. In
an isotropic system, edge length alone is insufficient to infer
stress. However, in a system undergoing large deformation
and thus highly anisotropic, the influence of edge orientation
diminishes, making edge length alone sufficient for stress in-
ference. The impact of shape anisotropy is evident during the
buildup phase or when the system is in a fluid state. In these
scenarios, edges may have negligible tension, making edge
tension independent of edge length. Consequently, it is possi-
ble that systems with similar C∗ values could exhibit signifi-
cantly different stress levels.

The impact of triggers on avalanches goes beyond sim-
ply initiating them; we observed a significant dependence of
avalanche size on the trigger location. By manually shrinking
vanishing edges at various locations within the same configu-
ration, we noted that the size of the resulting avalanches varied
markedly. This indicates that the location of the initial excita-
tion has a profound influence on the final size of the avalanche.
A promising future research direction could involve develop-
ing a theoretical framework that moves beyond the mean field
approach to more accurately capture the spatial heterogeneity
in the tissue.
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MATERIALS AND METHOD

Simulation Model

To numerically study the behavior of dense epithelial tis-
sues under large deformation, we use a Voronoi-based ver-
sion [18] of the Vertex Model [60], where the degrees of free-
dom are the set of cell centers denoted as {rrri} and the geo-
metric configurations of cells are derived from their respec-
tive Voronoi tessellation. The biomechanics governing inter-
actions both within and between cells can be effectively rep-
resented at a coarse-grained level [19, 61], expressed in terms
of a mechanical energy functional associated with cell shapes,
given by:

E =
N

∑
i=1

[
KA(Ai −A0)

2 +KP(Pi −P0)
2] , (7)

where Ai and Pi represent the area and perimeter of the i-th
cell, respectively. The parameters KA and KP denote the area
and perimeter moduli, respectively. The values A0 and P0 cor-
respond to the preferred area and perimeter values, with A0
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specifically set to the average area per cell Ā. Without the loss
of generality, we choose KPA0 as the energy unit and

√
A0 as

the length unit. This leads to the dimensionless form of the
energy

ε =
N

∑
i=1

κA(ai −1)2 +(pi − p0)
2, (8)

where κA = KAA0/KP represents the rescaled area elasticity,
governing the cell area stiffness relative to the perimeter stiff-
ness and p0 = P0/

√
A0 the cell shape index. To investigate

the mechanical response of the tissue, we apply simple-shear
deformation to the simulated tissues utilizing Lees-Edwards
boundary conditions [62]. Initially, strain-free configurations
(γ = 0) are generated with randomly distributed cell centers.
The FIRE algorithm [63] is subsequently employed to mini-
mize the energy functional in accordance with Eq. 8. Strain
is then incrementally applied in steps of ∆γ = 2× 10−3 until
reaching a maximum value of γmax = 6. Alongside the mod-
ification of periodic boundary conditions to account for the
strain, an affine displacement field ∆ri = ∆γ yi x̂ is applied
to the cell centers. Following each increment of strain, the
FIRE algorithm is again utilized to minimize the energy func-
tional (Eq.8) until the residual forces acting on cell centers
fall below 10−14, so that all resultant tissue states are meta-
stable. This procedural approach effectively corresponds to
investigating the system within the athermal quasi-static limit
(γ̇ → 0). The tissues under examination encompass cell popu-
lations N = 400, accompanied by cell shape indices p0 vary-
ing between 3.7 and 4, and a total of 84 random initial samples
were simulated at each set of parameter values.

We calculate the tension, denoted as Ti j, acting along an
edge li j shared by cells i and j using the equation [58, 64, 65]

Ti j =
∂ε

∂li j
= 2[(pi − p0)+(p j − p0)] l̂i j, (9)

where l̂i j represents the unit vector along li j. Furthermore, the
global tissue shear stress σ can be obtained by

σ = σxy ≡
1
N ∑

i< j
T x

i j ly
i j, (10)

where T x
i j denotes the x-component of Ti j and ly

i j stands for
the y-component of li j.

APPENDIX

Computing tissue level mechanical linear response

The tissue level mechanical response was quantified by the
shear modulus G. We computed G using Born-Huang formu-
lation in the limit of infinitesimal affine strain γ [66, 67]:

G =
1

Atotal

(∂2E
∂γ2 −ΞiαH−1

iα jβΞ jβ
)
, (S.1)

where the Roman indexes i, j label cells and Greek indexes
α,β denote Cartesian components. Ξiα is the derivative of the
force on cell ith with respect to the strain γ:

Ξiα =
∂2E

∂riα∂γ
(S.2)

H is the Hessian matrix given by the second derivative of the
tissue energy E with respect to position cells position:

Hiα jβ =
∂2E

∂riα∂r jβ
(S.3)

Steady state solution and asymptotic behavior in dual-state SGR

In the Fokker-Planck equation of motion Eqn. 3, the total
yielding rate Γ(t) is given by [28]:

Γ(t) = Γ0

∫
dE dl P(E, l, t)exp

[
−E − kl2/2

x

]
. (S.4)

Since we are interested in the long-term steady shear, we look
for a steady state solution to Eqn. 3. In steady state, Eqn. 3
becomes an ODE with respect to l:

∂P
∂l

+
Γ0

γ̇
exp

[
−E − kl2/2

x

]
P =

Γ

γ̇
ρ(E)δ(l)

The steady-state solution is [28]:

P(E, l) =
Γ

γ̇
ρ(E)exp(−ze−E/x) (S.5)

Where z(l) is:

z(l) =
Γ0

γ̇

∫ l

0
dl′ekl′2/2x (S.6)

In steady state, the total yielding rate Γ is just a constant
and can be found by normalizing P(E, l), giving the steady
state solution for P(E, l) of the form:

P(E, l) =
ρ(E)exp(−ze−E/x)∫

∞

0 dl Gρ(z)

Where Gρ is:

Gρ(z) =
∫

∞

0
dE ρ(E)exp(−ze−E/x)

Gρ can be separated into two parts. The first part, denoted
by Gδ, comes from the contribution of the zero energy traps
(the Dirac-delta function in ρ(E)). GΓ denotes the second part
coming from the non-zero energy traps (the Gamma function
in ρ(E)):

Gδ(z) =
∫

dE δ(E)exp(−ze−E/x) = exp(−z)

GΓ(z) =
∫

dE
Eκ−1e−E/x0

Γ(κ)xκ
0

exp(−ze−E/x)

Gρ(z) = f0Gδ +(1− f0)GΓ
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The steady-state solution in the long-time limit can be studied
more conveniently using the following auxiliary functions:

I0δ =
∫

dl Gδ

I1δ = kδ

∫
dl lGδ ≈ 0

I0Γ =
∫

dl GΓ

I1Γ = k
∫

dl lGΓ

Since our main focus is the rheological response of the sys-
tem, reflected in the macroscopic stress, we compute the sys-
tem stress by ensemble averaging the local stress [28]:

σ =
〈
kl
〉
=

∫ ∫
dEdl klP(E, l) (S.7)

Using the auxiliary functions and the steady-state solution,
the stress is therefore given by:

σ =
(1− f0)I1Γ

f0I0δ +(1− f0)I0Γ

(S.8)

For an element with zero yielding energy, the strain of the
element is of order γ̇

Γ0
. Therefore, in the low strain-rate limit,

the strain of the element with zero yield energy is typically
small so Gδ can be approximated in this limit as:

Gδ = exp(−lΓ0/γ̇)

In the case of κ = 2 and let χ = x
x0

< 2, using the substitution

u = e−E/x and integration by part, GΓ(z) can be integrated as
follow:

GΓ(z) =
∫ 0

1
χ

2 ln(u)uχ−1 exp(−zu)du

=
χ2(χ−1)!

zχ

∞

∑
n=1

(−z)n

nn!

The series ∑
∞
n=1

(−z)n

nn! converges by alternating series test and
therefore GΓ(z) scales as z−χ. We then obtain the following
scaling relations:

I0δ ≈ γ̇/Γ0 (S.9)
I0Γ ≈C(χ)γ̇χ (S.10)
I1Γ ≈ D(χ)γ̇χ (S.11)

Using, the steady state solution, the proportion of time that
elements spends in the zero yielding energy traps (fluid state)
P can be expressed in terms of f0:

P =
f0I0δ

f0I0δ +(1− f0)I0Γ

(S.12)

Combining Eq. S.8 and Eq. S.12, the yield stress can be cal-
culated as:

σy(x) =
(1− f0)I1Γ

f0I0δ +(1− f0)I0Γ

= (1−P)
I1Γ

I0Γ

= (1−P)σ0

(S.13)

Where σ0 is the yield stress that arises solely from elements in
a solid state, which is finite based on the scaling relation S.10
and S.11.

AN EXPONENT OF INSTABILITY

We extract the instability exponent, θ, from the cumula-
tive distribution function (c.d.f) of edge lengths, denoted as
c.d.f(L), by fitting a power law to c.d.f(L) in the interval
0.05 < L < 0.5. This interval specifically represents the short
edges that are capable of undergoing T1 transitions.

We focused on tissues exclusively in the solid regime
(shape index p0 less than 3.81) and integrated this under-
standing with the dual-state coexistence proportion to extend
the analysis to higher shape indices. For purely solid tis-
sues, as stress builds up, the instability exponent θ gradu-
ally decreases. Conversely, when stress is relieved through
avalanches, θ experiences a sharp increase (S1a), indicating
that a significant number of soft spots are relaxed, making the
system considerably more stable.

Furthermore, the θ exponent is correlated with avalanche
properties, as evidenced by its relationship with the average
avalanche size (S̄) and the probability of avalanche occur-
rence. Systems with a lower θ exponent, indicating greater
instability, tend to experience larger avalanches on average
(Figure S1b) and are more prone to yielding (Figure S1b in-
set).

NORMAL MODES ARE UNABLE TO IDENTIFY THE SOFT
SPOTS IN THE VERTEX-BASED MODEL

In amorphous solids, localization plays a crucial role in un-
derstanding the rheology of the material. An example of lo-
calization is shear transformation zone (STZ) [37–39, 51, 52],
localized regions in which sudden and irreversible rearrange-
ments occur when the material is subjected to shear. These
STZ, also referred to as weak spots, can interact and lead to
avalanches of irreversible plastic events, making the identifi-
cation of these weak spots in disordered systems a crucial and
challenging task. Research has indicated that the local yield
stress could serve as a reliable predictor for these weak spots
[37]. However, locally probing the system is impractical and
does not align with our objective of making predictions based
solely on current and historical snapshots. Another approach
to this task involves analyzing the normal mode of the system
near failure. Studies on systems of harmonic repulsive par-
ticles have demonstrated that low-frequency modes typically
correspond to low energy barriers [68], making them dom-
inant modes during a plastic event [68–70]. Furthermore, in
systems with explicit separation dependence potential (such as
Hertzian and Lennard-Jones potentials), under the quasistatic
limit, the evolution of low-frequency modes follows a distinct
pattern: as the system approaches failure, a gradual decrease
in frequency towards zero is anticipated [36, 70].

To see whether the normal modes of the Hessian could help
to identify failure events, whenever there is a known avalanche
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FIG. S1. A proposed exponent of instability. (a) An example of the evolution of tissue shear stress σxy and θ exponent as strain increases. (b)
Dependence of average avalanche size and the exponent of instability θ. Inset: the probability to yield ρ+ versus θ. (c) The polar distribution
of edges vector in an unstable and stable configuration. Data shown in Figure 3 is extracted from a system with shape index p0 = 3.74 in the
solid regime.

in our simulation, we rerun the simulation starting at this par-
ticular strain but with the strain step decreased by 100 times
and let the system approach to the avalanche again in the more
detailed fashion. The low-frequency modes at the starting
strain were then extracted from the Hessian. To keep track of
the mode while the system evolves, we found the most sim-
ilar mode to these starting low-frequency modes at each step
and used them to represent the starting modes using the over-
lapping function Ω = ei.ej, where ei and ej are eigenvectors of
comparison. The overlap is shown on the right panel of Figure
S2. In contrast to what was observed in other systems, we did
not see a gradual decrease in the low-frequency mode eigen-
values. Instead, it is always a sharp decrease but not zero right
at the onset of avalanches, no matter how detailed we zoom in
on the approaching process. This non-smooth sudden drop

in the eigenvalues at the onset of avalanches arises from the
cuspiness of the energy landscape. Because of the cuspiness,
there is no saddle point when the system approaches a rear-
rangement event and therefore the curvature is always posi-
tive.
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[17] M. Popović, V. Druelle, N. A. Dye, F. Jülicher, and M. Wyart,
Inferring the flow properties of epithelial tissues from their ge-
ometry, New Journal of Physics 23, 033004 (2021).

[18] D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning, Motility-
driven glass and jamming transitions in biological tissues, Phys.
Rev. X 6, 021011 (2016).

[19] D. B. Staple, R. Farhadifar, J. C. Röper, B. Aigouy, S. Eaton,
and F. Jülicher, Mechanics and remodelling of cell packings in
epithelia, The European Physical Journal E 33, 117 (2010).

[20] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, A den-
sityindependent rigidity transition in biological tissues, Nature

Physics 11, 10741079 (2015).
[21] D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer, Jamming

by shear, Nature 480, 355 (2011).
[22] R. P. Behringer and B. Chakraborty, The physics of jamming

for granular materials: a review, Reports on Progress in Physics
82, 012601 (2018).

[23] V. Babu and S. Sastry, Criticality and marginal stability of the
shear jamming transition of frictionless soft spheres, Physical
Review E 105, L042901 (2022).

[24] V. Babu, H. Vinutha, D. Bi, and S. Sastry, Discontinuous rigid-
ity transition associated with shear jamming in granular simu-
lations, Soft Matter 19, 9399 (2023).

[25] P. Shah, S. Arora, and M. M. Driscoll, Coexistence of solid
and liquid phases in shear jammed colloidal drops, Commu-
nications Physics 5, 222 (2022).

[26] J. F. Morris, Shear thickening of concentrated suspensions: Re-
cent developments and relation to other phenomena, Annual
Review of Fluid Mechanics 52, 121 (2020).

[27] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Rheol-
ogy of soft glassy materials, Physical Review Letters 78, 2020
(1997).

[28] P. Sollich, Rheological constitutive equation for a model of soft
glassy materials, Physical Review E 58, 738 (1998).

[29] G. Yin and M. J. Solomon, Soft glassy rheology model applied
to stress relaxation of a thermoreversible colloidal gel, Journal
of Rheology 52, 785 (2008).

[30] D. Bonn, P. Coussot, H. T. Huynh, F. Bertrand, and G. De-
brégeas, Rheology of soft glassy materials, Europhysics Letters
(EPL) 59, 786 (2002).

[31] K. K. Mandadapu, S. Govindjee, and M. R. Mofrad, On the
cytoskeleton and soft glassy rheology, Journal of Biomechanics
41, 1467 (2008).

[32] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, En-
ergy barriers and cell migration in densely packed tissues, Soft
Matter 10, 1885 (2014).

[33] J. R. Samaniuk, E. Hermans, T. Verwijlen, V. Pauchard, and
J. Vermant, Soft-glassy rheology of asphaltenes at liquid inter-
faces, Journal of Dispersion Science and Technology 36, 1444
(2015).

[34] E. Stanifer and M. L. Manning, Avalanche dynamics in sheared
athermal particle packings occurs via localized bursts predicted
by unstable linear response, Soft Matter 18, 2394–2406 (2022).

[35] D. Richard, A. Elgailani, D. Vandembroucq, M. L. Manning,
and C. E. Maloney, Mechanical excitation and marginal trig-
gering during avalanches in sheared amorphous solids, Physical
Review E 107, 034902 (2023).

[36] M. L. Manning and A. J. Liu, Vibrational modes identify soft
spots in a sheared disordered packing, Phys. Rev. Lett. 107,
108302 (2011).

[37] S. Patinet, D. Vandembroucq, and M. L. Falk, Connecting local
yield stresses with plastic activity in amorphous solids, Physical
Review Letters 117, 10.1103/physrevlett.117.045501 (2016).

[38] M. L. Falk and J. S. Langer, Dynamics of viscoplastic deforma-
tion in amorphous solids, Physical Review E 57, 7192 (1998).

[39] M. L. Manning, J. S. Langer, and J. M. Carlson, Strain localiza-
tion in a shear transformation zone model for amorphous solids,
Physical Review E 76, 10.1103/physreve.76.056106 (2007).

[40] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Elastic con-
sequences of a single plastic event: A step towards the micro-
scopic modeling of the flow of yield stress fluids, The European
Physical Journal E 15, 371 (2004).

[41] G. Zhang, S. A. Ridout, and A. J. Liu, Interplay of rearrange-
ments, strain, and local structure during avalanche propagation,
Physical Review X 11, 041019 (2021).

https://doi.org/10.7554/elife.39640
https://doi.org/10.1007/s12195-018-00560-1
https://doi.org/10.1007/s12195-018-00560-1
https://doi.org/10.3389/fcell.2022.933042
https://doi.org/10.1073/pnas.1213301109
https://doi.org/10.1073/pnas.1213301109
https://doi.org/10.7554/eLife.07090
https://doi.org/10.7554/eLife.07090
https://doi.org/https://doi.org/10.1016/j.devcel.2014.02.011
https://doi.org/https://doi.org/10.1016/j.devcel.2017.09.018
https://doi.org/https://doi.org/10.1016/j.devcel.2017.09.018
https://doi.org/10.1088/1367-2630/abcbc7
https://doi.org/10.1140/epje/i2010-10677-0
https://doi.org/10.1038/nphys3471
https://doi.org/10.1038/nphys3471
https://doi.org/10.1103/physrevlett.78.2020
https://doi.org/10.1103/physrevlett.78.2020
https://doi.org/10.1103/physreve.58.738
https://doi.org/10.1122/1.2885738
https://doi.org/10.1122/1.2885738
https://doi.org/10.1209/epl/i2002-00195-4
https://doi.org/10.1209/epl/i2002-00195-4
https://doi.org/10.1016/j.jbiomech.2008.02.014
https://doi.org/10.1016/j.jbiomech.2008.02.014
https://doi.org/10.1039/c3sm52893f
https://doi.org/10.1039/c3sm52893f
https://doi.org/10.1039/d1sm01451j
https://doi.org/10.1103/PhysRevLett.107.108302
https://doi.org/10.1103/PhysRevLett.107.108302
https://doi.org/10.1103/physrevlett.117.045501
https://doi.org/10.1103/physreve.57.7192
https://doi.org/10.1103/physreve.76.056106


14

[42] L. D. Landau, L. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz,
Theory of elasticity: volume 7, Vol. 7 (Elsevier, 1959) pp. 87–
89.

[43] H. Kawamura, T. Hatano, N. Kato, S. Biswas, and B. K.
Chakrabarti, Statistical physics of fracture, friction, and earth-
quakes, Reviews of Modern Physics 84, 839–884 (2012).

[44] B. Gutenberg and C. F. Richter, Frequency of earthquakes in
california, Bulletin of the Seismological society of America 34,
185 (1944).

[45] M. Talamali, V. Petäjä, D. Vandembroucq, and S. Roux,
Avalanches, precursors, and finite-size fluctuations in a meso-
scopic model of amorphous plasticity, Physical Review E 84,
016115 (2011).

[46] K. Karimi, E. E. Ferrero, and J.-L. Barrat, Inertia and universal-
ity of avalanche statistics: The case of slowly deformed amor-
phous solids, Physical Review E 95, 013003 (2017).

[47] A. Amiri, C. Duclut, F. Jülicher, and M. Popović, Random trac-
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