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Abstract

Purpose

To assess the reproducibility of radiomic features (RFs) extracted from dynamic contrast-

enhanced computed tomography (DCE-CT) scans of patients diagnosed with hepatocellular

carcinoma (HCC) with regards to inter-observer variability and acquisition timing after con-

trast injection. The predictive ability of reproducible RFs for differentiating between the

degrees of HCC differentiation is also investigated.

Methods

We analyzed a set of DCE-CT scans of 39 patients diagnosed with HCC. Two radiologists

independently segmented the scans, and RFs were extracted from each sequence of the

DCE-CT scans. The same lesion was segmented across the DCE-CT sequences of each

patient’s scan. From each lesion, 127 commonly used RFs were extracted. The reproduc-

ibility of RFs was assessed with regard to (i) inter-observer variability, by evaluating the

reproducibility of RFs between the two radiologists; and (ii) timing of acquisition following

contrast injection (inter- and intra-imaging phase). The reproducibility of RFs was assessed

using the concordance correlation coefficient (CCC), with a cut-off value of 0.90. Reproduc-

ible RFs were used for building XGBoost classification models for the differentiation of HCC

differentiation.

Results

Inter-observer analyses across the different contrast-enhancement phases showed that the

number of reproducible RFs was 29 (22.8%), 52 (40.9%), and 36 (28.3%) for the non-con-

trast enhanced, late arterial, and portal venous phases, respectively. Intra- and inter-

sequence analyses revealed that the number of reproducible RFs ranged between 1 (0.8%)
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and 47 (37%), inversely related with time interval between the sequences. XGBoost algo-

rithms built using reproducible RFs in each phase were found to be high predictive ability of

the degree of HCC tumor differentiation.

Conclusions

The reproducibility of many RFs was significantly impacted by inter-observer variability, and

a larger number of RFs were impacted by the difference in the time of acquisition after con-

trast injection. Our findings highlight the need for quality assessment to ensure that scans

are analyzed in the same physiologic imaging phase in quantitative imaging studies, or that

phase-wide reproducible RFs are selected. Overall, the study emphasizes the importance

of reproducibility and quality control when using RFs as biomarkers for clinical applications.

Introduction

Radiomics is an emerging translational field that aims to extract and analyze data from medical

images, using quantitative image features known as radiomic features (RFs), to support evi-

dence-based clinical decision-making [1–3]. Machine learning models built from RFs have a

wide range of clinical applications, including predicting cancer prognosis and predicting aortic

dissection [4, 5]. However, for these models to have greater legitimacy in clinical practice, the

RFs from which they are built must be reproducible under a wide variety of factors related to

image acquisition and processing [6–9]. For instance, a feature that is meaningful in one data-

set may not be in another due to its sensitivity to acquisition settings (e.g., scanner manufac-

turer, scanning technique, and reconstruction parameters). As a result, the reproducibility of

RFs has been extensively studied using human cohorts of a variety of pathologies and phantom

data as well [10–18].

Despite this, limited studies have examined the reproducibility of RFs across and within dif-

ferent CT contrast-enhancement phases, mainly due to the lack of dynamic contrast-enhanced

computed tomography (DCE-CT) images for this purpose. DCE-CT is typically used in the

diagnosis and characterization of primary liver lesions, such as hepatocellular carcinoma [19–

21]. DCE-CT scans are taken at different time points as the contrast travels through various

organs and clinically be classified into three contrast enhancement phases (arterial, portal

venous, and delayed phase) based on the LI-RADS 2018 criteria [22]. Because of the sensitivity

of RFs, the accuracy and validity of models built using these features extracted from CT images

acquired in different phases can be impacted [23–25]. There exists a need to study their repro-

ducibility across and within all the contrast enhancement phases. However, there is a scarcity

of literature on this topic, particularly in the imaging of liver lesions. Since Hepatocellular Cell

Carcinoma (HCC) lesions show different characteristics in different imaging phases [26], bio-

logically meaningful RFs could potentially have unique measurement values across the differ-

ent phases [15, 27, 28]. However, to date, no study has evaluated the reproducibility of RFs

within time windows in each contrast enhancement phase.

In this study, we present a unique dataset of DCE-CT scans from HCC patients. Our aims

are: (i) to investigate the effects of differences in lesion segmentation on the reproducibility of

RFs, and (ii) to assess the reproducibility of RFs within and across contrast enhancement

phases, namely the non-contrast enhanced (NCE), late arterial (L-AP), and portal venous

phases (PVP). Ultimately, the goal is to guide robust analysis of RFs extracted from contrast

enhanced CTs.
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Materials and methods

Patient data

Completely de-identified DCE-CT scans of 68 patients who underwent liver lesion assessment

were retrospectively collected at a single medical center, with the institutional review board

approval. The inclusion criteria were: (i) Pathologically proven HCC; (ii) Absence of artifacts

in the scans. Patients with pathologic diagnoses other than HCC (n = 17), patients with scans

containing artifacts (n = 9), and those with missing sequences (n = 3) were excluded. This

resulted in a total of 39 patients included for analysis in this study (Fig 1). All Scans were

acquired prior to the start of treatment. The study was conducted in accordance with the Dec-

laration of Helsinki and was approved by the Institutional Review Board of Sun Yat-Sen Uni-

versity Cancer Center (SYSUCC) (protocol code 510060, approved on November 9th, 2022).

Informed consent was waived by the Institutional Review Board of SYSUCC. The data was

accessed for research purposes on the 11th of January 2023.

Imaging data, segmentation, and RFs extraction

The DCE-CT scans were acquired using a TOSHIBA Aquilion scanner. Each sequence scan

included four slices, with time intervals between consecutive DCE sequences of 1–2 seconds.

Scanning of the patients commenced immediately after contrast injection. The number of

DCE-CT sequences per patient ranged between 36 and 42 sequences. The acquisition and

reconstruction parameters for the included DCE-CT scans are presented in Table 1.

The volumes of interest (VOIs) of HCCs were independently segmented by two radiologists

(QW and PG, with four and five years of experience in abdominal imaging, respectively) using

Fig 1. A flowchart of the patients’ inclusion process.

https://doi.org/10.1371/journal.pone.0310486.g001

Table 1. Acquisition and reconstruction parameters of the imaging data.

Vendors Model X-Ray tube

Current (mA)

Exposure time

(ms)

kVP Reconstruction kernel Slice thickness (mm) Pixel spacing

(mm2)

Toshiba Aquilion 50–250 500–4000 120 FC02 2, 5, 8 0.56x0.56–1.0x1.0

FC04

FL03

https://doi.org/10.1371/journal.pone.0310486.t001
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an integrated tumor segmentation tool customized from the open-source Weasis platform

[29]. Each radiologist segmented the VOIs on the sequence where the tumor was most visible.

The segmentations were then automatically propagated to the remaining sequences, and fur-

ther reviewed by each radiologist to ensure correct and consistent lesion segmentation across

all sequences. RFs were extracted from the VOIs using an in-house software. A set 127 RFs was

extracted from each lesion, derived from different feature classes, including ‘First Order Statis-

tics’, ‘Sigmoid Feature’, ‘Discrete Wavelet Transform’, ‘Edge Frequency’, ‘Fractal Dimension’,

‘GTDM’, ‘Gabor’, ‘LAW filter’, ‘LOG feature’, ‘Run Length’, ‘Spatial correlation’, ‘GLCM’, to

characterize image patterns as comprehensively as possible. More details about feature class

definitions as well as implementation details can be found in our previous work [10]. No

image resampling was performed, and RFs were extracted by setting the bin width to 25

Hounsfield units. The extracted RFs are provided in S1 File.

Analysis of inter-observer variability

Two radiologists (QW and PG) independently assigned one of the labels (NCE, L-AP, or PVP)

to each of the DCE sequences and segmented the HCC lesions (Fig 2). The labels were based

on the LI-RADS Version 2018 criteria for defining dynamic CT phases, as well as other com-

monly used clinical criteria [22, 30]. Disagreements over the labels were reviewed and dis-

cussed with a third radiologist (YC, with six years of experience), and a consensus was reached

on all labels. The similarity in the segmentations between the two radiologists was assessed

using Dice Similarity Coefficient (DSC) [31]. The agreement in feature values extracted from

all the sequences between the radiologists’ segmentations was assessed as one of the primary

endpoints.

Analysis of effects of phase variability

To assess the agreement in RF values within different phases for each radiologist indepen-

dently, a different approach was used. The number of sequences within each phase needed to

be the same for all the patients. Therefore, the fewest number of sequences available per phase

across all patients was identified and set as the number of sequences to be included. Several

patients had only two NCE sequences, therefore only the first two NCE sequences were

included for all the patients. For the L-AP phase, seven sequences were selected for each

patient: the first two, the middle three, and the last two sequences. Similarly, seven PVP

Fig 2. Example of segmentations in two different sequences per phase; (A) NCE; (B) L-AP; (C) PVP.

https://doi.org/10.1371/journal.pone.0310486.g002
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sequences were included for each patient: the first two, the middle three, and the last two

sequences. Pairwise comparisons were performed across all 16 selected sequences. The concor-

dance correlation coefficient (CCC) with a cutoff of 0.90 was used to identify the within-phase

reproducible RFs. Following the identification of reproducible RFs, features that were found to

be highly correlated were removed. High correlation was defined as Spearman’s R> 0.90.

When two RFs were found to be highly correlated, the one with the higher average correlation

with the remaining RFs was removed. The study workflow is depicted in Fig 3.

Statistical analyses

All statistical analyses were performed using R language on RStudio version 2022.02.0 [32, 33].

To assess the agreement in RF values between the two radiologists, the CCC was used [34].

Pairwise comparisons were made across the included scans. RF values extracted from all seg-

mented lesions by the two radiologists were compared once using all the data, and once within

each contrast enhancement phase. RFs with CCC values equal to or higher than 0.90 were con-

sidered reproducible [35].

To assess the correlations between the reproducible RFs and the degree of histologic differ-

entiation of the HCC lesions, Wilcoxon rank-sum test to assess differences in values across

groups of well to moderately differentiated tumors and moderately to poorly differentiated

tumors was used. The significance level was set at 0.05.

Machine learning was used to develop classification models using the reproducible RFs. For

this analysis, the data were first split into 29 (74%) training and 10 (26%) testing sets. The out-

comes in the training set were balanced using the synthetic minority oversampling technique

(SMOTE). Following that, if the number of the reproducible features was less than 3, all were

used for building the final model. If the number of reproducible RFs exceeded 3, recursive fea-

ture elimination with treebag functions and 5-fold cross-validation was used to select the most

important RFs, with a maximum of 3. XGBoost algorithm was used to develop the classifica-

tion model. The model was validated on the test set, and the AUC, sensitivity, specificity, nega-

tive predictive value (NPV), and positive predictive value (PPV) were used to assess the

models’ performance.

Results

Patient data

The patients included (N = 39) had a median (IQR) age of 57 (43, 66) years, and 35 (89.7%)

were male. Of the 39 patients, 37 (94.9%) had chronic Hepatitis B infection, and 7 (17.9%)

reported consuming a minimum of 100 ml per day for longer than 30 years. According to

pathology assessment, 3 (7.7%) patients had well-differentiated HCC, 4 (10.3%) had well to

moderately differentiated HCC, 16 (41.0%) had moderately differentiated HCC, 12 (30.8%)

had moderately to poorly differentiated HCC, and 4 (10.3%) had poorly differentiated HCC.

The tumors had an average volume (± standard deviation) of 18537.6 (±16548.5) mm3. The

average largest tumor diameter was 33.7 (±13.1) mm. All tumors were best visualized and first

segmented on the L-AP sequences.

Inter-observer variability

The assessment of segmentation similarity between the radiologists showed a DSC of 0.79.

Among the extracted features, 29 (22.8%) RFs were concordant across the NCE sequences; 52

(40.9%) RFs were concordant across the L-AP sequences; and 36 (28.3%) RFs were concordant

across the portal venous phase sequences (Table 2).
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Fig 3. Study workflow.

https://doi.org/10.1371/journal.pone.0310486.g003
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Table 2. List of non-correlated reproducible RFs within the different phases between the radiologists.

NCE L-AP PVP

GLCM Contrast GLCM Contrast GLCM Sum Squares

GLCM Sum Squares LoG Z Uniformity GLCM Contrast

GTDM Strength GLCM Correlation LoG Z Uniformity

Intensity 75percent GLCM Sum Squares GLCM ASM

Intensity Median Gabor Min Z RSRLGL Emphasis

Intensity Energy Intensity 25percent Gabor Min Z

Intensity 25percent Intensity Root mean square GLCM Correlation

RSRLGL Emphasis Intensity Mean RHGLR Emphasis

Intensity Root mean square Intensity Median RGL Uniformity

Intensity Mean Intensity Energy RSR Emphasis

RGL Uniformity Intensity 75percent Sigmoid Amplitude Mean

Intensity PeakPosition Sigmoid Offset Mean Gabor Median Z

RHGLR Emphasis GLCM ASM Gabor Min Z Boundary

RSR Emphasis Intensity Maximum Intensity 75percent

Sigmoid Amplitude Mean Intensity PeakPosition Intensity Energy

GLCM Correlation Gabor sum Z Gabor Mean Z Boundary

Gabor Max Z RSRLGL Emphasis Intensity Median

Intensity Uniformity RHGLR Emphasis Intensity Mean

GLCM ASM GLCM Sum Entropy Gabor Median Z Boundary

Intensity Mean absolute deviation GLCM Entropy Intensity Root mean square

DWF Z LLL Gabor Mean Z Boundary GTDM Strength

Intensity Variance Laws 3 Z NoBoundary Intensity 25percent

DWF Z LL Gabor Median Z Boundary Intensity PeakPosition

Spatial Correlation GLCM Cluster Tendency Gabor Max Z

DWF Z L Gabor Mean Z GTDM Complexity

LoG Z Uniformity GLCM IDM Gabor sum Z

Intensity Std Sigmoid Amplitude Mean Gabor Mean Z

Gabor Min Z Sigmoid Amplitude Std Intensity Uniformity

Intensity Entropy Sigmoid Offset Mean GLCM Diff Entropy

Sigmoid Offset Std Intensity Entropy

Spatial Correlation Intensity Mean absolute deviation

RSRHGL Emphasis Emphasis

Intensity Entropy DWF Z LLL

Intensity Mean absolute deviation Intensity Std

Sigmoid Amplitude Mean DWF Z LL

RLRHGL Emphasis Laws 6 Z Boundary

Intensity Uniformity RLRHGL Emphasis

Intensity Std

Intensity Variance

GLCM Diff Entropy

RLGLR Emphasis

GLCM MCC

DWF Z LLL

RLR Emphasis

GLCM IMC2

GLCM Homogeneity

DWF Z LL

(Continued)
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Effects of phase variability

Inter-phase variability. For Radiologist 1, the number of reproducible RFs varied across

the pairwise comparisons, ranging from 2 (1.6%) to 44 (34.6%), with a median of 16 (12.6%)

reproducible RFs (Fig 4).

For Radiologist 2, the number of reproducible RFs varied across the pairwise, ranging from

1 (0.8%) to 47 (37%), with a median of 14 (11%) reproducible RFs (Fig 5).

Intra-phase reproducible features. For Radiologist 1, the number of reproducible RFs in

the NCE sequence comparisons was 7 (5.5%). For the L-AP and PVP sequences, 9 (7.1%), and

15 (11.8%) were found to be reproducible, respectively (Table 3).

For Radiologist 2, the number of reproducible RFs in the NCE sequences comparison was

12 (9.4%). For L-AP, and PVP sequences, 5 (3.9%), and 10 (7.9%), RFs were found to be repro-

ducible across all comparisons, respectively (Table 4).

Clinical correlations

Descriptive statistics. The association between the reproducible RFs and the degree of

histologic differentiation of HCC was assessed for each reproducible RF within each phase per

radiologist.

The descriptive statistics of reproducible RFs, and Wilcoxon’s p value for radiologists 1 and

2 are presented in Tables 5 and 6, respectively.

Classification models: NCE. XGBoost algorithms to classify the degree of HCC lesion dif-

ferentiation were built using the reproducible RFs. For radiologist 1, the selected RFs were:

“GLCM Sum Squares”, “GLCM Cluster Tendency”, and “Laws 1 Z Boundary”. For radiologist

2, the selected features were: “Intensity 75percent”, “Spatial Correlation”, and “GLCM Cluster

Tendency”. The models’ performance is presented in Fig 6.

Classification models: L-AP. For radiologist 1, the selected RFs were: “Gabor Max Z”,

and “Gabor sum Z”. For radiologists 2, the selected RFs were: “LoG Z Entropy”, “LoG Z Uni-

formity”, and “LoG Z MGI”. The performance of the models is presented in Fig 7.

Table 2. (Continued)

NCE L-AP PVP

RPL Uniformity

DWF Z L

GLCM Max Prob

RGL Uniformity

GLCM IMC1

GLCM Diff Variance

RSR Emphasis

Gabor Median Z

Laws 4 Z NoBoundary

GLCM Cluster Tendency

RSRLGL: Run Short Run Low Gray Level; RGL: Run Gray Level; RSR: Run Short Run; RSRLGL: Run Short Run Low

Gray Level; RLRHGL: Run Long Run High Gray Level; RHGLR: Run High Gray Level Run; RLRLGL: Run Long Run

Low Gray Level; RLGLR: Run Low Gray Level Run; RPL: Run Primitive Length; RLR: Run Long Run; RSR: Run

Short Run; RGL: Run Gray Level.

https://doi.org/10.1371/journal.pone.0310486.t002
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Classification models: PVP. For radiologist 1, the selected RFs were: “DWF Z L”, “DWF

Z LL”, and “LoG Z Uniformity”. For radiologists 2, the included RFs were: “Gabor Median Z”,

“Gabor sum Z”, and “Gabor Mean Z”. The performance of the models is presented in Fig 8.

Discussion

In this study, using our HCC DCE-CT dataset, we assessed the effects of interobserver (inter-

segmentation) variability on the reproducibility of RFs, as well as the agreement in RF values

within each of the three clinically used imaging phases. Uniquely, we analyzed DCE-CT scans,

which provide sequential CT images with specific time intervals (in a range of seconds). Thus,

we were able to analyze the reproducibility of RFs within the window of different contrast

enhancement phases, which was not previously investigated. As expected, our results showed

that the differences in RF values attributed to the variations in imaging timing/sequences were

more profound compared to the interobserver effects. At least a quarter of the extracted RFs

were reproducible between the two radiologists across different phases, while the number of

reproducible RFs for the same radiologist varied between 1% and 37% depending on the pairs

of DCE-CT sequences compared. The removal of the highly correlated RFs further signifi-

cantly reduced the number of reproducible RFs. Henceforth, the segmentation and timing var-

iabilities are important factors that significantly affect the reproducibility of RFs. These

findings align with previous studies that assessed the effects of inter-observer variability and

clinically used imaging phases on the reproducibility of RFs [13, 15, 36–40].

The findings of this study are consistent with previous research that, in a more limited man-

ner, investigated the effects of contrast enhancement on the reproducibility of RFs [27, 40, 41].

A prior study investigating the reproducibility of HCC RFs across the imaging phases (arterial

Fig 4. The number of reproducible RFs across the different pairs for radiologist 1.

https://doi.org/10.1371/journal.pone.0310486.g004
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and PVP) reported that 25% of the original RFs extracted with Pyradiomics toolbox were

reproducible [15]. Another published study examining the effects of variations in imaging

phase on the reproducibility and predictive power of renal cell carcinoma RFs across the NCE,

AP, and PVP scans reported a maximum agreement of 22.4% between the NCE and PVP

Fig 5. The number of reproducible RFs across the different pairs for radiologist 2.

https://doi.org/10.1371/journal.pone.0310486.g005

Table 3. Reproducible RFs within each phase for radiologist 1.

NCE L-AP PVP

RPL Uniformity Gabor sum Z DWF Z L

LoG Z Uniformity Gabor Max Z DWF Z LL

LoG Z Entropy Gabor Mean Z DWF Z LLL

Laws 1 Z Boundary Gabor sum Z Boundary Gabor sum Z

Laws 1 Z NoBoundary Gabor Max Z Boundary Gabor Max Z

GLCM Cluster Tendency Gabor Mean Z Boundary Gabor Mean Z

GLCM Sum Squares Gabor Median Z Boundary Gabor Median Z

LoG Z MGI Gabor sum Z Boundary

LoG Z Entropy Gabor Max Z Boundary

Gabor Mean Z Boundary

Gabor Median Z Boundary

LoG Z MGI

LoG Z Entropy

LoG Z Uniformity

RPL Uniformity

https://doi.org/10.1371/journal.pone.0310486.t003
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scans, while the PVP RFs were found to be the least predictive of overall survival in renal cell

carcinoma patients [24]. Based on the findings of these studies, the tumor type and site varia-

tions also impact the effects of contrast enhancement on the reproducibility of RFs, as different

sets of features were reported across studies that investigated different tumor types and sites,

in addition to the differences in type and make of imaging hardware.

Table 4. Reproducible RFs within each phase for radiologist 2.

NCE L-AP PVP

RPL Uniformity Gabor_Median_Z Gabor sum Z

LoG Z Uniformity Gabor_Median_Z_Boundary_ Gabor Mean Z

LoG Z Entropy LoG_Z_MGI Gabor Median Z

Laws 1 Z Boundary LoG_Z_Entropy Gabor sum Z Boundary

GLCM Cluster Tendency LoG_Z_Uniformity Gabor Mean Z Boundary

GLCM Sum Squares Gabor Median Z Boundary

Laws 2 Z Boundary LoG Z MGI

Laws 1 Z NoBoundary LoG Z Entropy

Spatial Correlation LoG Z Uniformity

Laws 2 Z NoBoundary Gabor sum Z

Intensity 75percent

GTDM Complexity

https://doi.org/10.1371/journal.pone.0310486.t004

Table 5. Descriptive statistics of reproducible RFs for radiologist 1.

Well/ well to moderately differentiated Moderately/moderately to poorly

differentiated

Wilcoxon’s P

Feature Reproducible in Mean Std Mean Std

LoG Z Entropy All 0.81084088 0.19784667 0.73873998 0.19999369 0.02

LoG Z Uniformity All 0.78372545 0.06505319 0.80779936 0.06743802 0.007

RPL Uniformity All 5711.28719 3601.99597 7096.44203 5113.26691 0.19

GLCM Cluster Tendency NCE 4.13538221 2.57371024 25.3603648 80.6924916 0.04

GLCM Sum Squares NCE 1.21385 0.68590361 6.51011919 20.2192168 0.06

Laws 1 Z Boundary NCE -5.4428589 30.4929671 75.1900693 238.403838 0.04

Laws 1 Z NoBoundary NCE -0.0012624 29.967227 56.6860394 194.590942 0.21

Gabor Max Z L-AP, PVP 191738.865 89148.508 165261.087 77492.9668 0.02

Gabor Max Z Boundary L-AP, PVP 142946.827 72493.964 124979.013 63201.4264 0.07

Gabor Mean Z L-AP, PVP 102997.378 43414.2068 92292.0788 42779.8162 0.03

Gabor Mean Z Boundary L-AP, PVP 73125.5601 33650.0336 65258.6635 32660.1312 0.06

Gabor Median Z Boundary L-AP, PVP 68511.5623 29154.9881 62058.8812 31611.4923 0.04

Gabor sum Z L-AP, PVP 102997.378 43414.2068 92292.0788 42779.8162 0.03

Gabor sum Z Boundary L-AP, PVP 73125.5601 33650.0336 65258.6635 32660.1312 0.06

LoG Z MGI L-AP, PVP -106.45322 45.3658445 -97.463615 43.207301 0.19

DWF Z L PVP 46760.9049 11789.8323 50914.6943 12912.3405 0.03

DWF Z LL PVP 182570.699 47222.3263 199565.35 52601.3594 0.04

DWF Z LLL PVP 696397.637 189172.778 766498.316 215973.343 0.04

Gabor Median Z PVP 98430.8248 42631.8654 91752.466 43439.3522 0.18

LoG Z Entropy All 0.81084088 0.19784667 0.73873998 0.19999369 0.02

LoG Z Uniformity All 0.78372545 0.06505319 0.80779936 0.06743802 0.007

https://doi.org/10.1371/journal.pone.0310486.t005
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Unlike prior studies, our data allowed us to investigate within-phase reproducibility. Our

results demonstrate that even subtle changes in acquisition time can significantly affect the

reproducibility of the extracted RFs. Different phases are acquired to study tumor changes,

such as intensity wash-in/wash-out, and they should be analyzed separately in quantitative

Table 6. Descriptive statistics of reproducible RFs for radiologist 2.

Well/ well to moderately differentiated Moderately/moderately to poorly

differentiated

Wilcoxon’s P

Feature Reproducible in Mean Std Mean Std

LoG Z Entropy All 0.84017141 0.20049751 0.77365664 0.21928965 0.05

LoG Z Uniformity All 0.7740279 0.06662804 0.79548159 0.07492333 0.03

RPL Uniformity NCE 5313.05116 3068.62499 6447.44889 4782.4508 0.63

Laws 1 Z Boundary NCE -1.5328711 32.3471104 93.3039239 284.303348 0.11

GLCM Cluster Tendency NCE 3.68511314 2.09531987 32.0283901 92.7285088 0.04

GLCM Sum Squares NCE 1.08411679 0.59919914 8.18591084 23.2482303 0.05

Laws 2 Z Boundary NCE -0.3968899 5.82649192 4.96820483 20.4548899 0.87

Laws 1 Z NoBoundary NCE 0.01004171 26.1001051 65.1889458 226.154652 0.27

Spatial Correlation NCE 3.9978685 0.00285726 3.99639061 0.01241057 0.23

Laws 2 Z NoBoundary NCE -0.0051824 3.36182758 3.57497103 13.4274582 0.81

Intensity 75percent NCE 46.0714286 9.96504881 37.765625 8.4303725 0.002

GTDM Complexity NCE 22.7597394 17.2464581 99.6954943 183.20409 0.13

Gabor Median Z L-AP, PVP 95078.2523 38553.17 92149.0064 45708.9279 0.21

Gabor Median Z Boundary L-AP, PVP 67950.499 28335.9102 65638.1497 33849.1774 0.21

LoG Z MGI L-AP, PVP -111.50057 45.563221 -104.89081 48.0902486 0.19

Gabor sum Z PVP 110196.985 49865.3778 103158.139 46503.8447 0.31

Gabor Mean Z PVP 110196.985 49865.3778 103158.139 46503.8447 0.31

Gabor sum Z Boundary PVP 78687.0126 38459.4449 72504.6692 34873.3984 0.22

Gabor Mean Z Boundary PVP 78687.0126 38459.4449 72504.6692 34873.3984 0.22

LoG Z Entropy All 0.84017141 0.20049751 0.77365664 0.21928965 0.04

https://doi.org/10.1371/journal.pone.0310486.t006

Fig 6. The performance of NCE classification models; (A) Radiologist 1; (B) Radiologist 2.

https://doi.org/10.1371/journal.pone.0310486.g006
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image analysis. Yet, these were sometimes analyzed together in the literature. The majority of

the RFs in this experiment had a very narrow window of reproducibility across the DCT

sequences. This confirms the need for both care and caution when investigating RFs acquired

in even slightly different contrast enhancement. This is critical for radiomics analyses since

most imaging cohorts, whether publicly or privately available, are acquired in different

Fig 7. The performance of L-AP classification models; (A) Radiologist 1; (B) Radiologist 2.

https://doi.org/10.1371/journal.pone.0310486.g007

Fig 8. The performance of PVP classification models; (A) Radiologist 1; (B) Radiologist 2.

https://doi.org/10.1371/journal.pone.0310486.g008
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contrast enhancement phases. We strongly recommend the inclusion of a phase determination

step in radiomics studies analyzing contrast-enhanced imaging datasets.

Interestingly, our results showed that the numbers of reproducible RFs within each phase

and across all pairs differed per radiologist. The highest number of reproducible RFs was

observed in the PVP comparisons for both radiologists. While this result could be due to the

different numbers of comparisons available for each phase, it might also relate to the appear-

ance of HCC lesions in different imaging phases. Nevertheless, when considering the agree-

ment between radiologists, the L-AP phase had the highest number of reproducible non-

correlated RFs, which was also the phase where radiologists performed the first segmentation.

It is worth noting that while these RFs have the highest reproducibility, their predictive value

must also be considered when selecting the most suitable phase for HCC radiomic studies.

Our results reiterate the need for proper quality and reproducibility assessments before per-

forming radiomics analyses.

When considering interobserver variability, our analysis revealed a high agreement in RF

values between radiologists in less than a third of the extracted RFs. The number of RFs varied

slightly when each phase was assessed separately, with PVP segmentations showing the highest

number of reproducible RFs. A similar pattern was observed for intra-phase variability; the

highest concordance in RF values was observed across the PVP comparisons.

The evaluation of reproducible RFs within each phase, and for each radiologist, demon-

strated a high discriminative ability between the degrees of HCC differentiation in our dataset.

These RFs, which intuitively describe the texture of the lesions, thus meet both key criteria for

biomarkers: reproducibility and predictivity.

While we carefully designed and executed the statistical analyses in this study, several lim-

itations remain. First, the number of sequences per phase varied among the included

patients, which we addressed by standardizing the number of sequences per patient for imag-

ing phase analyses. The scans were selected based on their position within the phase

sequences. The different number of within-phase comparisons most likely affects the final

number of reproducible RFs per phase. Second, different vendors and imaging parameters

were used to acquire the scans, which impacts the reproducibility of RFs. Although the com-

parisons in this experiment were longitudinal, the rank of patients could be variably affected,

ultimately impacting the calculated CCC values. The lack of data prevented the analysis of

the effects of variations in imaging acquisition and reconstruction parameters on RFs. While

the number of patients included in this study was limited to 39, CCC values are robust in a

sample size as small as 10 patients. In addition, previous studies investigating the reproduc-

ibility of RFs used a similar number of patients [10, 28, 42–46], including studies on HCC

radiomics [47–51]. Lastly, although the reproducible RFs were found to be predictive of the

degree of HCC differentiation, the limited number of patients constrains the generalizability

of this finding. However, this study serves as a pilot, especially since previous radiomics stud-

ies investigating the association between RFs and HCC differentiation have primarily

focused on magnetic resonance imaging features.

In conclusion, our results indicate that the majority of RFs are sensitive to variations in the

time of acquisition following the injection of a contrast agent. Future radiomics studies should

analyze scans acquired in different contrast enhancement phases separately or at least consider

the imaging phase during analysis. Furthermore, interobserver variability significantly affects

the reproducibility of RFs and must be accounted for in multi-observer radiomics studies.

While portal venous phase scans yielded the highest reproducibility within and among radiolo-

gists and could be recommended for multi-institutional HCC radiomics studies, biological

intent must also be considered when designing such a study.
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