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Abstract

The molecular organization of the human neocortex has been historically studied in the context 

of its histological layers. However, emerging spatial transcriptomic technologies have enabled 

unbiased identification of transcriptionally-defined spatial domains that move beyond classic 

cytoarchitecture. Here we used the Visium spatial gene expression platform to generate a 

data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human 

dorsolateral prefrontal cortex (DLPFC). Integration with paired single nucleus RNA-sequencing 

data revealed distinct cell type compositions and cell-cell interactions across spatial domains. 

Using PsychENCODE and publicly available data, we map the enrichment of cell types and genes 

associated with neuropsychiatric disorders to discrete spatial domains.

Summary:

Generation of a molecular neuroanatomical map of the human prefrontal cortex reveals features 

relevant for psychiatric disease.

The emergence of single cell and spatially-resolved transcriptomics has facilitated the 

generation of integrated molecular anatomical maps across a variety of tissues in both 

rodents and humans (1–4). Data-driven unsupervised approaches to identify spatial domains 

in these large datasets, particularly in the rodent brain, have refined our understanding of 

the spatial organization of tissues beyond classical cytoarchitectural boundaries (2), and 

computational models have helped reveal new insights into cellular diversification during 

development (5). However, efforts to generate spatially-resolved transcriptomics data in the 

human brain at the scale and size necessary to employ these approaches with sufficient 

statistical power, have lagged behind.

We previously characterized the spatial topography of gene expression in the 

human dorsolateral prefrontal cortex (DLPFC), a brain region associated with several 

neurodevelopmental and psychiatric disorders (6–11), by manually annotating the six 

histological layers and white matter of the neocortex in a small cohort of 3 neurotypical 

adult donors (12). Although we identified robust layer-enriched gene expression with this 
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approach, recent computational tools for unsupervised clustering (13–17) and cell to cell 

communication (18) combined with the ability to expand the generation of molecular 

neuroanatomical maps across a larger donor pool has enabled data-driven identification 

of higher resolution spatial domains. Applying these data-driven approaches to larger-

scale studies might facilitate the demarcation of fine cortical sublayers, which currently 

lack molecular annotations. They also could enable identification of non-laminar spatial 

domains associated with anatomical or topographical features in the human brain, including 

vasculature. Here we sought to develop and validate a framework for application of 

unsupervised spatial clustering approaches in human brain tissue across different anterior-

posterior positions of the DLPFC and generate an analytical roadmap that can be extended to 

other brain areas with less well-characterized neuroanatomical architecture in the future.

Recent single nucleus RNA-sequencing (snRNA-seq) analyses are defining transcriptionally 

distinct DLPFC cell types and revealing cell type-specific changes associated with 

neurodevelopmental and neuropsychiatric disorders, such as schizophrenia (SCZ), autism 

spectrum disorder (ASD), major depressive disorder (MDD) and post-traumatic stress 

disorder (PTSD) (19–23). However, snRNA-seq data lack spatial context, which 

when retained during molecular profiling, can provide important insights into cell-cell 

communication and disease pathogenesis. To facilitate this type of analysis, we generated 

large-scale, unsupervised spatial transcriptomic molecular maps of the human DLPFC from 

ten neurotypical brain donors, which we integrated with snRNA-seq data across a variety of 

brain disorders. This spatially-resolved, molecular atlas of gene expression architecture in 

the human brain is provided as an interactive data resource for the scientific community to 

help reveal molecular mechanisms associated with psychiatric illness.

Study Overview

Here we applied single cell and spatial transcriptomic approaches to create a large-scale, 

data-driven spatial map of gene expression at single cell resolution in the adult human 

DLPFC in order to identify spatial domains, define cell-cell communication (CCC) patterns, 

and perform spatial registration of cell types across brain disorders (Fig. 1A–B). Using 

the Visium spatial transcriptomics platform (24), we measured spatial gene expression in 

fresh frozen postmortem human tissue blocks from 10 neurotypical adult donors (Table S1) 

in three positions spanning the rostral-caudal axis of the DLPFC (anterior [Ant], middle 

[Mid] and posterior [Post]) for a total of 30 tissue sections [n=10 per position] (Fig. 1A). 

In parallel, we performed snRNA-seq (10x Genomics 3’ gene expression) on a subset of the 

same DLPFC samples (n=1–2 blocks per donor) to generate matched snRNA-seq and spatial 

transcriptomic data for 19 tissue blocks (Fig. 1A–C). To preserve Layer (L)1, blocks were 

microdissected across sulci in the plane perpendicular to the pia that extended to the gray-

white matter junction. The morphology of each tissue block was assessed with RNAscope 

multiplex single molecule fluorescent in situ hybridization (smFISH) using regional and 

laminar marker genes to ensure dissection consistency (Fig. 1D). Sample orientation was 

confirmed by expression of genes enriched in the gray matter (SNAP25), white matter 

(WM; [MBP]), and L5 (PCP4; Fig. 1C, Fig S2, Fig S3, Fig S4). For Visium, 4,866 (4.1%) 

spots with low library size were excluded (Fig S5), resulting in a total of 113,927 spots 

across 30 tissue blocks and 10 donors. Downstream analyses at the gene-level (Fig S6) and 

Huuki-Myers et al. Page 3

Science. Author manuscript; available in PMC 2024 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spot-level (Fig S7) were not impacted by tissue artifacts, including wrinkles, shears, and 

folds (see Methods: Evaluating the impact of histology artifacts on Visium H&E data). For 

snRNA-seq, 54,394 nuclei across 19 tissue blocks from 10 donors passed quality control and 

were included in the study (Fig. 1C). Using these integrated datasets, we performed several 

analyses including unsupervised clustering, spot deconvolution, CCC analyses, and spatial 

registration of PsychENCODE single cell datasets (Fig. 1B).

Identification of data-driven spatial domains at different resolutions across 

DLPFC

We selected an unsupervised clustering method for robust identification of laminar spatial 

domains (SpDs) in Visium data by benchmarking three algorithms, graph-based clustering, 

SpaGGN and BayesSpace (13, 15, 25, 26), using our previously published DLPFC Visium 

data (12 sections from 3 donors; (12)). We compared data-driven clustering accuracy against 

manual layer annotations (Fig S9, Fig S10). Among the algorithms tested, BayesSpace most 

accurately identified spatial domains (SpDs) consistent with the histological cortical layers. 

Therefore, we used this clustering algorithm to identify 7 unsupervised SpDs approximating 

the 6 cortical layers and WM. To relate unsupervised SpDs to the classic histological 

layers, we pseudo-bulked spots (by gene, sum the expression for all spots in the same 

SpD in a given sample) within each SpD across individual tissue sections to generate SpD-

specific expression profiles and performed differential expression (DE) analysis to identify 

genes enriched in each SpD. Next, we performed “spatial registration” by correlating the 

enrichment statistics computed on BayesSpace SpDs with those from manually annotated 

cortical layers (12) to approximate the most strongly associated histological layer for a given 

BayesSpace SpD (Fig. 1E). We annotated the association of a specific spatial domain (SpD) 

at cluster resolution k to a classic histological layer using the term SpkDd~L, where L refers 

to the histological layer most strongly associated to domain d following cluster registration 

at resolution k. For example, spatial domain 7 at cluster resolution k=7 (Sp7D7) was mostly 

strongly associated with white matter (Fig. 1E) and is annotated as Sp7D7~WM. We found 

that k=7 was not sufficient to fully separate histological layers, especially superficial L2-

L4, suggesting the presence of higher resolution data-driven SpDs and highlighting the 

challenges of manually annotating spatial domains (12).

We next evaluated how increasing cluster resolution (k) influenced the identification and 

cluster registration of unsupervised SpDs (Fig. 2). As expected, clustering at k=2 reliably 

separated white and gray matter (Fig S11, Fig S12). Next, we evaluated three clustering 

resolutions: a broad resolution k=9, a data-driven fine resolution k=16 (Fig S13, Fig S14), 

and a super-fine resolution k=28. Hereafter, we refer to these SpDs as Sp9D, Sp16D, and 

Sp28D, respectively. Broad clustering most accurately recapitulated the classic histological 

layers with clear separation of Sp9Ds enriched in genes expressed in L1–6 and WM (Fig. 

2A–B, Fig S15). At fine clustering resolution, SpDs were largely laminar with two or more 

Sp16Ds registering to a given histological layer, suggesting the presence of molecularly-

defined sublayers (Fig. 2A–B, Fig S16). At super-fine resolution, many SpDs lacked a 

laminar structure, but spots belonging to Sp28Ds frequently mapped back to a single 

broad or fine resolution spatial domain (Fig S17, Fig S18). To evaluate the unsupervised 
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architecture of cortical layers in the human DLPFC in more depth, we focused on broad and 

fine SpDs based on the robust laminar features of these domains.

Enrichment of differentially expressed genes in unsupervised spatial 

domains

To identify the molecular signatures of SpDs within each clustering resolution, we next 

performed differential expression (DE) analysis with linear mixed-effects modeling using 

the Sp9D- or Sp16D-specific expression profiles. As previously described, we employed 

three different statistical models: ANOVA model, enrichment model, and pairwise model 

(12). As expected, all three models confirmed that unsupervised clustering at broad or fine 

resolution identified biologically meaningful SpDs with significantly DE of genes across 

the laminar architecture of the cortex (5,931 FDR<5% unique enriched genes in at least 

one Sp9D, see Methods: Layer-level data processing and differential expression modeling). 

Although we did identify 512 unique genes that were differentially enriched across the 

anterior-posterior axis of the DLPFC, SpD had a much stronger effect on gene expression 

compared to anatomical position (anterior, middle, posterior, Fig S19).

Analysis of DEGs identified using the enrichment model allowed for characterization 

of previously unrecognized data-driven SpDs, such as Sp9D1 and Sp16D1 (Fig. 2B). At 

both k=9 and k=16, domain 1 is adjacent to histological L1 and enriched for genes 

associated with blood vessels and brain vasculature, such as CLDN5 (p=2.04e-75; Fig. 

2C–D). Due to its thinness, this vascular-rich meninges layer was not manually annotated 

in our previous study (12), demonstrating the utility of unsupervised approaches to 

robustly identify biologically meaningful SpDs. Data-driven clustering at fine resolution also 

revealed molecularly-defined sublayers, including two adjacent laminar spatial subdomains 

(Sp16D14~L1 and Sp16D2~L1; Fig. 2E) enriched in L1 marker genes, including RELN 
(p=6.98e-17, p=3.19e-19 respectively) and AQP4 (p=9.37e-21, p=9.43e-12 respectively). 

Pairwise tests across these L1-related subdomains highlighted differential expression of 

SPARC (enriched in Sp16D14~L1, p=7.61e-14) and HTRA1 (enriched in Sp16D2~L1, 

p=1.26e-07), and principal component analysis (PCA) further confirmed the unique nature 

of these molecularly-defined sublayers (Fig. 2E–G). We also identified multiple SpDs 

associated with histological L4 (Sp16D5-L4 and Sp16D9-L4), L5 (Sp16D4-L5 and Sp16D16-

L5), and L6 (Sp16D7-L6 and Sp16D12-L6; Fig. 2B). Taken together, this analysis validated 

the biological relevance of data-driven SpDs and increased the understanding of the 

molecular neuroanatomy across the laminar architecture of the adult human DLPFC.

Identification of molecularly and spatially distinct neuronal populations 

across cortical layers

To add single cell resolution to our molecular maps, we performed snRNA-seq on a subset 

of the same tissue blocks used for Visium (Fig. 1). Following assessment of quality control 

metrics (Fig S20, Fig S21), we performed batch correction (Fig S22, Fig S23, Fig S24) 

and data-driven clustering to generate 29 fine-resolution clusters across 7 broad cell types 

represented throughout the anterior-posterior DLPFC axis (Fig. 3A, Fig S25). Further, we 
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spatially registered all clusters to the histological layers using manually annotated Visium 

data from previous work (12) (Fig. 3B). Given that molecularly-defined excitatory neuron 

populations in the cortex have distinct laminar identities (27), we systematically assigned 

a histological layer to excitatory neuron clusters (Table S2), resulting in the identification 

of 13 layer-resolution clusters with distinct marker genes (Fig. 3B–D, Fig S26). At both 

fine-resolution and layer-resolution, our clusters strongly correlated with those derived from 

the reference-based mapping tool, Azimuth (https://azimuth.hubmapconsortium.org) (28, 

29) (Fig S27).

To gain further insight into the relationship between our snRNA-seq clusters and Visium 

unsupervised SpDs, we performed spatial registration of fine resolution snRNA-seq clusters 

with Visium SpDs at k=9 and k=16 (Fig. 3B). We refined the spatial positioning of our 

29 fine resolution snRNA-seq clusters and validated the laminar associations of broad and 

fine unsupervised SpDs. For example, we showed that snRNA-seq excitatory neuron clusters 

Excit_06 and Excit_08, which spatially registered to histological L6, were also highly 

correlated with Visium Sp9D7, a domain enriched for L6-associated genes (Fig. 2B). These 

snRNA-seq clusters were also highly correlated with a single spatial domain (Sp16D7), 

thereby further refining their anatomical position to upper L6. Inhibitory GABAergic 

populations were also assigned to specific spatial locations. For example, Inhib_05 uniquely 

registered to histological L2, which was confirmed with strong correlations to Sp9D3 and 

Sp16D8 showing enrichment for L2-associated genes (Fig. 2B). We also showed registration 

of snRNA-seq endothelial cell populations to vascular spatial domains (Sp9D1 and Sp16D1) 

enriched in HBA1 and CLDN5. Whereas endothelial cells showed the strongest correlation 

with vascular-associated SpDs and glial cells showed the strongest correlation with L1 

and WM-associated SpDs (Fig. 2B), these cell types are indeed distributed across the 

cortical layers necessitating higher resolution spatial mapping approaches, such as spot 

deconvolution.

Defining cell type composition of unsupervised spatial domains using spot 

deconvolution

Given that individual Visium spots in the human DLPFC contain an average of 3 cells 

per spot (12), we used our paired snRNA-seq data to perform cellular deconvolution 

of Visium spots to better understand the cell type composition of unsupervised SpDs. 

First, we benchmarked 3 spot-level deconvolution algorithms, SPOTlight, Tangram, and 

Cell2location (14, 30, 31), using a gold standard reference dataset acquired with the Visium 

Spatial Proteogenomics (Visium-SPG) assay. Visium-SPG replaces H&E histology with 

immunofluorescence staining, enabling us to label and quantify 4 broad cell types across 

the DLPFC, including NeuN (neurons), OLIG2 (oligodendrocytes), GFAP (astrocytes), and 

TMEM119 (microglia) (Fig. 4A, Fig S28). After verifying marker genes for each snRNA-

seq cluster (Fig S29) and confirming the utility of these genes for spot deconvolution (Fig. 

4B, Fig S30, Fig S31, Fig S32), we applied SPOTlight, Tangram, and Cell2location to our 

Visium-SPG data and calculated the predicted cell type counts per spot at broad and fine 

resolution (Fig. 4B, Fig S33).
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To quantify algorithm performance, we took 2 complementary approaches: 1) evaluating 

the localization of laminar cell types to their expected cortical layer (Fig. 4C, Fig S34, Fig 

S35) and 2) comparing predicted cell type counts to those obtained from immunofluorescent 

images using a classification and regression tree (CART) strategy to categorize nuclei into 

the 4 immunolabeled cell types (Fig. 4D, Fig S36, Fig S37, Fig S38, Fig S39). Using the 

first approach, we found that Tangram and Cell2location performed best across all cell 

types, but SPOTlight failed to accurately map excitatory neuron subtypes to the correct layer 

(Fig. 4B). Using the second approach, we found that the predicted counts from Tangram 
and Cell2location also had the highest correlation to CART-calculated counts (Fig. 4D) and 

Tangram showed the most consistent performance at both broad and layer level resolution 

across all cell types and samples (Fig. 4E). Finally, we applied Tangram and Cell2location 
to our H&E Visium dataset to predict the cellular composition of SpDs across the anterior-

posterior axis of the DLPFC (Fig. 4F–G, Fig S40, Fig S41) and found that Tangram and 

Cell2location showed differences in the predicted cell counts per spot (Fig. 4F) whereas, 

for both tools, the predicted cellular composition of SpDs was consistent across samples at 

both broad (k=9) and fine (k=16) resolution regardless of DLPFC position (anterior, middle, 

posterior).

Spatial mapping of ligand-receptor (LR) interactions associated with 

schizophrenia (SCZ)

To add clinical relevance to this integrated DLPFC dataset, we next sought to identify 

interacting cell types and spatially map ligand receptor (LR) interactions associated with 

neuropsychiatric disorders. We focused on genetic risk for schizophrenia (SCZ) because 

receptors occur more frequently in SCZ risk genes than would be expected of a brain-

expressed gene list of this size (p<0.0001, Fig S42A). First, we identified interacting cell 

types using cell-cell communication (CCC) analysis (18), which uses a data-driven approach 

to predict crosstalk between sender and receiver cells based on known LR interactions 

(Fig. 5A, Table S3). In parallel, using the OpenTargets and Omnipath databases (32, 33), 

we identified 834 LR pairs (Table S4) associated with genetic risk for SCZ. Of these, 90 

interactions overlapped with those identified in CCC analysis where at least one of the 

interactors was associated with SCZ risk (Table S5).

We chose to prioritize 18 inter- and intra-cellular interactions where both counterparts 

showed disease association, including 9 interactions involving the protein tyrosine kinase, 

FYN (Fig. 5A, Fig S42). A consensus LR pair was identified between these complementary 

data-driven and clinical risk-driven approaches: the membrane-bound ligand ephrin A5 

(EFNA5) and its receptor ephrin type-A receptor 5 (EPHA5). As part of this signaling 

cascade, we also evaluated the intracellular interaction between EFNA5 and FYN, which 

was one of the 18 SCZ-associated LR pairs (Fig. 5A).

The Ephrin/Eph signaling system is critical for neuronal wiring during brain development 

and neural plasticity and synaptic homeostasis in adulthood (34). To better understand the 

role of this SCZ-associated signaling pathway in the adult DLPFC, we next characterized the 

cell types mediating this interaction using our snRNA-seq data. We identified enrichment 
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of EFNA5, EPHA5, and FYN in excitatory neuron populations (Fig. 5C), which are 

the dominant sender and receiver cells for this LR interaction (Fig. 5B). Particularly, 

Excit_L5/6 neurons most specifically expressed the ligand EFNA5 (Specificity Measure, 
SPM = 0.6847) and its intracellular partner FYN (SPM = 0.5345), whereas Excit_L6 

neurons most specifically expressed the receptor EPHA5 (SPM = 0.6508, Fig S42B). 

Furthermore, Excit_L5 and L6 neurons showed the highest co-expression of FYN and 

EFNA5, co-expressing in 87.25% of this population (Fig. 5D).

Since EFNA5-EPHA5 is a contact-dependent interaction (34), we used the Visium data 

to spatially map sites of likely EFNA5 and EPHA5 crosstalk. Across data-driven SpDs, 

the highest proportion of spots co-expressing EFNA5 and EPHA5 localized to Sp9D7~L6 

(median (interquartile range) = 0.0196 (0.0137), p=4.0e-09, Fig. 5E–F) compared to 

other Sp9Ds (Sp9D1 = 0 (0), Sp9D2 = 0 (0), Sp9D3 = 0.0052 (0.0078), Sp9D4 = 0.014 

(0.0142), Sp9D5 = 0.0091 (0.0102), Sp9D6 = 0 (0.0016), Sp9D8 = 0.0077 (0.0123), Sp9D8 

= 0.0016 (0.0104)). Consistent with snRNA-seq specificity analysis (Fig S42B–C), spots 

co-expressing EFNA5 and EPHA5 showed a higher predicted proportion of Excit_L5/6 

neurons and Excit_L6 neurons compared to spots lacking co-expression (Fig. 5H, Fig 

S43). Although Excit_L5 is the dominant cell2location predicted cell type among all spots 

(Fig S41, Fig S43B), it is even higher among these co-expression spots (median predicted 

proportion = 0.211) than among other spots (Fig S43A–B). Spatial network analyses further 

supported that co-localization of EFNA5 and EPHA5 occurs frequently in spots containing 

Excit_L6 neurons - with strongest co-localization relationships between Excit_L6/Excit_L5 

neurons, Excit_L6/Excit_L4 neurons and Excit_L6/oligodendrocytes (Fig. 5I, Fig S42D). 

Spatial mapping of EFNA5 and FYN interactions also showed significant co-expression of 

these genes in Sp9D7~L6 (p=0.0046, Fig S42F–G) with frequent co-localization between 

Excit_L5/L6 and Excit_4 neurons (Fig S42H–I). In summary, we demonstrate the utility 

of this integrated single cell and spatial transcriptomic data for identifying and mapping 

disease-associated interactions in spatially localized cell types across the human DLPFC.

Spatial registration of cell populations across neuropsychiatric disorders

To leverage the large amount of snRNA-seq data collected across the PsychENCODE 

consortium (PEC) (35, 36), we spatially registered eight DLPFC snRNA-seq datasets 

generated in the context of several brain disorders (Autism Spectrum Disorder [ASD], 

SCZ, bipolar disorder, and Williams Syndrome) to both the histological layers and 

unsupervised SpDs annotated in Visium data (Fig. 6A, Fig S44). Across the consortium, 

in neurotypical controls, we found that excitatory neuron subtypes with a laminar annotation 

spatially register to the relevant histological layers and converge on the same unsupervised 

SpDs. As expected, most inhibitory populations registered to multiple histological layers 

and unsupervised SpDs, with the exception of Pvalb and VLMC subtypes, which 

mapped to Sp9D8~L4 and Sp9D1~L1, respectively. Finally, glial populations also showed 

expected spatial registration with astrocytes strongly mapping to L1-associated SpDs, 

oligodendrocytes and OPCs strongly mapping to the WM, and endothelial, pericyte (PC), 

and smooth muscle cells (SMC) mapping to the newly characterized vascular domain 

Sp9D1.
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Next, we spatially registered snRNA-seq data from 30,147 nuclei derived from the human 

prefrontal cortex (Brodmann areas unspecified) from control donors in a study of ASD 

(Fig. 6B) (20). As expected, glial populations and laminar excitatory cell types mapped 

to the relevant SpDs (L2/3 neurons mapped to Sp9D3~L2 and Sp9D5~L3). We were also 

able to provide laminar assignments to some cell populations, such as mapping NRGN 

neuronal subtypes to Sp9D5~L3 and Sp9D8~L4. For each cell type, we next used clinical 

gene set enrichment analyses to assess the SpD enrichment of cell type-specific DEGs 

between individuals with ASD compared to neurotypical controls (Fig. 6C). Across many 

cell types, we observed multiple Sp9Ds enriched for ASD DEGs. Sp9D3~L2 showed 

significant enrichment of genes differentially expressed in L2/3 nuclei between individuals 

with ASD and neurotypical controls (p=2.60e-11), highlighting that these L2/3 DEGs are 

core Sp9D3~L2 marker genes. We also identified spatial enrichments for DEGs expressed 

in inhibitory neuron and neurogranin populations, including Sp9D4~L5 for SV2C inhibitory 

neurons and Sp9D7~L6 for Neu_NRGN_I neurons. Finally, to demonstrate how this large-

scale dataset can be used to provide spatial information about genes associated with 

neuropsychiatric disease, we performed gene set enrichment analysis of bulk RNA-seq 

DEGs identified in a companion PEC study of PTSD and MDD (PEC study 6) (23). 

For both DLPFC and ventral medial prefrontal cortex (mPFC), we demonstrated that 

vasculature domain Sp9D1~L1 and L1-associated domain Sp9D2~L1 are enriched in DEGs 

associated with both PTSD and MDD. This is consistent with previous studies implicating 

neuroimmune signaling in PTSD (37), and current PEC single cell analyses that implicate 

glial and vascular- cells in both MDD and PTSD (PEC study 6) (23). Together, these spatial 

registration and clinical gene set enrichment analyses add anatomical context to cell type 

identities and provide valuable biological insights into molecular changes associated with 

brain disorders, including ASD, MDD, and PTSD.

Discussion

Here we generated a large-scale, transcriptome-wide, data-driven molecular map across 

the anterior-posterior axis of adult human DLPFC from ten neurotypical control donors. 

This highly integrated single cell and spatial gene expression reference dataset enabled 

identification of unsupervised SpDs, which were characterized in terms of both cellular 

composition and domain-enriched genes, at different resolutions across the DLPFC. We 

provide a landmark molecular neuroanatomical atlas that complements our understanding 

of classic cortical cytoarchitecture through identification and characterization of discrete 

molecularly-defined layers and sublayers. In particular, we annotated a vasculature-rich 

meninges layer and several molecularly distinct subdomains in histological L1, 4, 5 and 6. 

An advantage of Visium over snRNA-seq approaches is the ability to capture transcripts in 

the cell cytoplasm and neuropil, which we speculate may influence identification of higher 

resolution spatial domains, particularly for demarcating laminar transitions and at the gray/

white matter junction (38–40).

In this study, we provide a roadmap for the implementation and biological validation 

of unsupervised spatial clustering approaches in human brain tissue. Whereas manual 

annotation of spatial domains is feasible for a limited number of samples in brain regions 

where neuroanatomical boundaries are well-characterized (12, 22), the application of 
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data-driven clustering methods is critical for future studies that aim to analyze spatial 

gene expression changes across diagnostic cohorts groups to identify changes in spatially-

resolved cell types. Furthermore, unsupervised approaches will be essential for spatial 

profiling in brain regions that lack clear molecular or histological boundaries since they 

allow for identification of unknown or unexpected SpDs as well as SpDs that may be 

technically difficult to manually annotate (for example the meninges). Although here we 

evaluated several of the spatial clustering algorithms, including SpaGCN and BayesSpace 
(13, 15), there are more tools coming online for both spatially variable gene detection, 

including nnSVG (41), and also spatial domain identification, including GraphST and 

PRECAST (16, 17). Large-scale, integrated datasets, including the present study, continue 

to offer developers of computational tools opportunities to develop methods scalable to 

atlas-level data, while also extracting meaningful biological information.

Visium offers transcriptome-wide information at spatial resolution; however, a limitation of 

the platform is that spots often contain multiple cells and cell types. We believe that this 

might be overcome using spot-level deconvolution tools, as discussed here. We rigorously 

benchmarked the utility of these tools against Visium-SPG data in the DLPFC, where we 

manually assigned spots to the histological layers while also immunolabeling 4 broad cell 

populations in the same tissue sections. From these data we predicted the proportion of 

cell types in each spot, allowing us to achieve cellular resolution for our spatio-molecular 

map. We note that although spatial registration correlation approaches can be informative 

for broadly mapping cell types to SpDs, spot deconvolution approaches provide higher 

resolution mapping across the cortical layers. This is especially evident for glial cell 

populations, which show the strongest spatial registration correlations to L1 and WM, but 

are indeed localized to all other SpDs when performing spot deconvolution. This is also true 

for endothelial cells, which are strongly associated with vasculature-enriched Sp9D1~L1, but 

are similarly distributed across the cortex when utilizing spot deconvolution approaches. As 

spot deconvolution tools continue to improve with the emergence of more large-scale single 

cell and spatial transcriptomic datasets, we expect that algorithms will be able to map finer 

resolution and rarer cell types.

While other imaging-based, spatially-resolved transcriptomics platforms, such as Xenium 

and MERFISH (42, 43), directly measure transcripts in individual cells, only a limited 

number of genes can currently be probed. In contrast, the discovery-based approach afforded 

by Visium, as well as its scalability to a large number of samples, allowed for robust 

identification of previously unrecognized spatial marker genes across many donors. These 

Visium-identified genes can be followed up at single cell resolution in smaller cohorts using 

probe-based approaches, such as MERFISH, which was recently applied to the middle and 

superior temporal gyri in the human brain (44). As spatial transcriptomics technologies 

continue to evolve, it will be important to functionally validate these spatial domains and 

consider the biological significance of these molecularly-defined compartments. Indeed, 

previous spatial transcriptomic studies in the mouse brain identified unique astrocyte layers 

that diverge from classic excitatory neuron layers (45), suggesting that the cortex likely 

has a more complex laminar architecture than previously appreciated. Future studies should 

evaluate the conservation of laminar spatial domains between rodent and human brain and 

explore their functional and clinical relevance.
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In terms of clinical relevance, alterations in neural activity patterns within the DLPFC 

are noted in several neurodevelopmental and neuropsychiatric disorders (46–49), and it 

is hypothesized that changes in molecular signaling cascades may contribute to these 

alterations in activity. To gain insight into molecular dysfunction in DLPFC in the context 

of disease, we used our integrated molecular atlas to spatially map cell type-specific LR 

interactions that are associated with genetic risk for SCZ. For example, we highlight the 

interaction between EFNA5 and EPHA5 in excitatory L5/6 and L6 neuron subtypes in 

deep cortical layers, which is consistent with results from the most recently released SCZ 

genome-wide association study (GWAS) that identified enrichment of SCZ risk genes in 

glutamatergic neurons (50). Not only is EFNA5 the locus of a GWAS-identified common 

SCZ risk variant, but it is also differentially expressed between individuals with SCZ and 

neurotypical controls in specific cell types (21). Spatially mapping disease-relevant LR 

pairs, which are often highly specific and druggable targets, can provide valuable insights 

into pathophysiology and can help prioritize spatially restricted targets for therapeutic 

development. In combination with our interactive web resources, this highly integrated 

single cell and spatial transcriptomic data from neurotypical control DLPFC can be used to 

accelerate research across a variety of brain disorders by allowing researchers to search for 

relevant genes of interest, spatially register clinical gene sets, and explore disease-associated 

cell types for complementary assays, such as in vitro disease models.

Finally, spatial registration of eight DLPFC snRNA-seq datasets collected across the 

PsychENCODE consortium in the context of different neuropsychiatric disorders (35) 

revealed a convergence of excitatory, inhibitory, and non-neuronal cell types in relevant 

spatial domains. We observed increased confidence of inhibitory neuron mapping in our 

current expanded study compared to (12), likely due to the larger donor/sample number 

and data-driven clustering approach, which allowed for identification of finer resolution 

SpDs. Furthermore using ASD as an example (20), we demonstrated the utility of our 

data-driven molecular atlas for localizing cell-type specific DEGs to specific SpDs. For 

example, ASD DEGs in VIP inhibitory neurons were enriched in L3, L5, and L6-associated 

spatial domains, while those in SV2C inhibitory neurons were enriched only in the L5-

associated domain. Together, this analysis provides anatomical context for cell type-specific 

gene expression changes and molecular mechanisms associated with neurodevelopmental 

disorders and psychiatric illness.

In summary, we provide a large-scale, highly integrated single cell and spatial 

transcriptomics resource for understanding the molecular neuroanatomy of the human 

DLPFC. We share web-based tools for the scientific community to interact with these 

datasets for further interrogation of molecular pathways associated with brain disorders.

Materials and methods summary

Detailed materials and methods can be found in the supplementary materials. Three tissue 

blocks from the anterior, middle, and posterior positions along the rostral-caudal axis of 

human DLPFC were microdissected from the post-mortem brains of 10 donors for a 

total of 30 tissue blocks. The 10x Genomics Visium Spatial Gene Expression protocol 

was performed on all blocks (n = 30). The 10x Genomics Visium SPG and 3′ Single 
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Cell Gene Expression protocols were performed on a subset of blocks (n = 4 and 19, 

respectively). Visium and Visium-SPG data was processed with 10x Genomics SpaceRanger 

(51). Dimensionality reduction was performed by using scater (52), and batch correction 

was performed with Harmony (53). Unsupervised clustering was performed on the Visium 

data with BayesSpace (13) defining data-driven SpDs. An optimal number of SpDs was 

determined with fasthplus (54). DEGs between SpDs were found with ANOVA, enrichment, 

and pairwise models with tools from spatialLIBD (55), powered by limma (56). snRNA-

seq data were processed with 10x Genomics CellRanger (57). Reduced dimensions were 

calculated with GLM-PCA (58), and batch correction was performed with Harmony (53). 

Graph-based and hierarchical clustering described in (59) identified cell type populations, 

which were annotated by using established marker genes (59, 60). Spatial registration was 

applied to snRNA-seq and SpDs with tools from spatialLIBD (55). Images from Visium and 

Visium-SPG were processed with VistoSeg (61). Nuclei were segmented with Cellpose (62). 

A decision-tree cell type classifier was built with scikit-learn (63) on the basis of a training 

set classified by an expert. Cell segmentation and classification from Visium-SPG was 

used to benchmark spot deconvolution algorithms Tangram, Cell2Location, and SPOTlight 
(14, 30, 31). Spot deconvolution on the 30 Visium samples was performed with both 

Tangram and Cell2Location. CCC was performed with LIANA (18). The SCZ risk gene list 

was obtained from OpenTargets (32). Spatial registration was performed on the uniformly 

processed PsychENCODE snRNA-seq datasets (35). Enrichment statistics were calculated 

with spatialLIBD for the DEGs in an ASD snRNA-seq dataset (20) and bulk RNAseq PTSD 

and MDD dataset (23).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design to generate paired single nucleus RNA-sequencing (snRNA-seq) and 
spatially-resolved transcriptomic data across DLPFC.
(A) DLPFC tissue blocks were dissected across the rostral-caudal axis from 10 adult 

neurotypical control postmortem human brains, including anterior (Ant), middle (Mid), 

and posterior (Post) positions (n=3 blocks per donor, n=30 blocks total). The same tissue 

blocks were used for snRNA-seq (10x Genomics 3’ gene expression assay, n=1–2 blocks 

per donor, n=19 samples) and spatial transcriptomics (10x Genomics Visium spatial gene 

expression assay, n=3 blocks per donor, n=30 samples). (B) Paired snRNA-seq and Visium 

data were used to identify data-driven spatial domains (SpDs) and cell types, perform spot 

deconvolution, conduct cell-cell communication analyses, and spatially register companion 

PsychENCODE snRNA-seq DLPFC data. (C) t-distributed stochastic neighbor embedding 

(t-SNE) summarizing layer resolution cell types identified by snRNA-seq. (D) Tissue block 

orientation and morphology was confirmed by hematoxylin and eosin (H&E) staining and 

single molecule fluorescent in situ hybridization (smFISH) with RNAscope (SLC17A7 
marking excitatory neurons in pink, MBP marking white matter (WM) in green, RELN 
marking layer (L)1 in yellow, and NR4A2 marking L6 in orange). Scale bar is 2mm. 
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Spotplots depicting log transformed normalized expression (logcounts) of SNAP25, MBP, 

and PCP4 in the Visium data confirm the presence of gray matter, WM, and cortical layers, 

respectively (see also Fig S2–Fig S4). (E) Schematic of unsupervised SpD identification 

and registration using BayesSpace SpDs at k=7. Enrichment t-statistics computed on 

BayesSpace SpDs were correlated with manual histological layer annotations from (12) to 

map SpDs to known histological layers. The heatmap of correlation values summarizes the 

relationship between BayesSpace SpDs and classic histological layers. Higher confidence 

annotations (cor > 0.25, merge ratio = 0.1, see Methods: Spatial registration of Spatial 
Domains) are marked with an “X”.
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Figure 2. Unsupervised clustering at different resolutions identifying spatial domains (SpDs) and 
defining molecular anatomy of DLPFC.
(A) BayesSpace clustering at k=9, 16, and 28 (broad, fine, and super-fine resolution, 

respectively, which we refer to as SpkDd for domain d from SpDs at k resolution) for 

three representative DLPFC tissue sections (Br8667_mid, Br6522_ant, Br6432_ant). (B) 

Heatmap of spatial registration with manually annotated histological layers from (12). 

BayesSpace identifies laminar SpDs at increasing k with the majority of SpkDs correlating 

with one or more histological layer(s). SpDs were assigned layer annotations following 

spatial registration to histological layers. Annotations with high confidence (cor > 0.25, 

merge ratio = 0.1, see Methods: Spatial registration of Spatial Domains) are marked with 

an “X”, and this histological layer association is denoted for a given SpkDd by adding 
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“~L,” where L is the most strongly correlated histological layer (or WM). See also Fig 

S11–Fig S18. (C) Spotplots depicting expression of CLDN5 in vasculature domain 1 at k=9 

resolution (Sp9D1). (D) Boxplot confirming enrichment of CLDN5 in Sp9D1 compared to 

other Sp9Ds across 30 tissue sections. (E) Spotplots of representative section Br6522_ant 

showing identification of molecularly-defined sublayers for histological L1 at k=16 (Sp16D2 

and Sp16D14) and enrichment of HTRA1 and SPARC, respectively. (F) Boxplots quantifying 

enrichment of SPARC and HTRA1 in Sp16D14 and Sp16D2, respectively, across 30 tissue 

sections. (G) PCA plot showing separation of Sp16D2 and Sp16D14 supporting identification 

of molecularly distinct SpDs.
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Figure 3. Spatial registration of fine resolution snRNA-seq clusters defining laminar cell types.
(A) t-distributed stochastic neighbor embedding (t-SNE) plot of 56,447 nuclei across 29 cell 

type-annotated fine resolution hierarchical clusters (hc; related to Fig S25A). (B) Spatial 

registration heatmap showing correlation between snRNA-seq hierarchical clusters (hc) 

and manually annotated histological layers from (12) as well as unsupervised BayesSpace 
clusters at k=9 and 16 (Sp9Ds and Sp16Ds). Hierarchical clusters for excitatory neurons 

(Excit) were assigned layer-level annotations following spatial registration to histological 

layers (cor > 0.25, merge ratio = 0.25, see Methods: snRNA-seq spatial registration). For 

Sp9Ds and Sp16Ds, annotations with good confidence (cor > 0.25, merge ratio = 0.1) are 

marked with “X” and poor confidence are marked with “*”. (C) Summary barplot of cell 

type composition for hc and layer level resolutions (related to Fig S25B & Fig S26) (D) 

Heatmap of the scaled mean pseudo-bulked logcounts for the top 10 marker genes identified 

for each cell type at layer-level resolution.
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Figure 4. Integration of snRNA-seq and Visium data to benchmark spot deconvolution 
algorithms and define cellular composition across spatial domains.
(A) Schematic of the Visium-SPG protocol. (B) For Br6522_Ant_IF, counts for L5 marker 

gene PCP4 are compared to the proportion of Excit_L5 marker genes with nonzero 

expression as well as the counts of Excit_L5 cells as predicted by the 3 evaluated 

deconvolution algorithms. (C) Example of manually annotated layer assignments for 

Br6522_Ant_IF (i), which are used to benchmark predicted cell type composition across 

layers. Using Excit_L5 as an example, predicted Excit_L5 counts for each method are 

averaged across all spots within each annotated layer for each tissue section (ii). These 

data are summarized across layers and tissue sections for the 13 cell types using a bar plot 

(iii). An “X” or “O” is placed on the layer with maximal proportion; an “O” is placed for 
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a “correct” match for the given cell type, and an “X” is placed otherwise. For example, 

Tangram correctly predicts the maximal proportion of Excit_L5 cells in L5 annotated spots, 

leading to the placement of an “O” for Excit_L5. The “O”s are tallied for each method to 

generate a summary score in each facet’s title (for example, 9 of 13 cell types were correctly 

predicted to the expected layer using Tangram). (D) Predicted counts for a given method, 

section, and layer-level cell type are collapsed and compared against the corresponding 

CART predictions by computing the Pearson correlation and RMSE, forming a single point 

in the scatterplot (Supplemental Methods: Evaluating performance of spot-deconvolution 

methods). Each of these values is then averaged to generate a single correlation and RMSE 

value for each method, indicated in the top left inside each plot facet. (E) Section-wide 

counts for each cell type are compared between broad and layer-level resolutions, collapsed 

onto the cell-type resolution used by the CART, where values theoretically should precisely 

match. (F) The predicted proportion of cells in each Sp9D, deconvoluted by Cell2location 
and Tangram, are averaged across all Visium samples (n=30). (G) Cell composition of 

each Visium spot for Br8667_mid, deconvoluted by Cell2location and Tangram, revealing 

differences in cell composition prediction.
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Figure 5. Schizophrenia (SCZ)-associated ligand-receptor (LR) interactions identified by 
integrative analysis of snRNA-seq and Visium data.
(A) The LR interaction between membrane-bound ligand ephrin A5 (EFNA5) and ephrin 

type-A receptor 5 (EPHA5) is a consensus target identified in both data-driven (Table S3) 

and clinical risk-driven LR (Table S4) analyses. Notably, this interaction also requires an 

intracellular interaction between EFNA5 and protein tyrosine kinase (FYN), which was 

also identified among clinical risk targets. (B) Cell-cell communication analysis predicts 

the sender/receiver cross-talk pattern of EFNA5-EPHA5 between layer-level cell types 

visualized in a circular plot. Excit_L5/6 and Excit_L6 neurons account for 24% of the 

cross-talk as senders and 60% as targets compared to other cell types shown in the pie 

charts. (C-D) Downstream analysis of snRNA-seq data characterizes FYN-EFNA5-EPHA5 
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signaling pathway, showing these genes are highly enriched (C) and co-expressed (D) in 

excitatory neuron populations. (E) Across all 30 tissue sections, EFNA5 and EPHA5 are 

co-expressed in a statistically higher proportion of spots in Sp9D7 (median (interquartile 

range) = 0.0196 (0.0137), p = 4.0e-09) compared to other Sp9Ds (Sp9D1 = 0 (0), Sp9D2 

= 0 (0), Sp9D3 = 0.0052 (0.0078), Sp9D4 = 0.0140 (0.0142), Sp9D5 = 0.0091 (0.0102), 

Sp9D6 = 0 (0.0016), Sp9D8 = 0.0077 (0.0123), Sp9D8 = 0.0016 (0.0104)). (F) Spotplot 

of EFNA5 and EPHA5 co-expression in Br8667_mid. (G) Spotplot with spot-level pie 

charts for Br8667_mid showing the top 3 dominant cell types in each Visium spot 

predicted by Cell2location (c2l). (H) Visium spots co-expressing EFNA5 and EPHA5 have 

higher proportions of predicted Excit_L5/6 neurons (p=1.8e-12) and Excit_L6 (p=3.9e-4) 

compared to non-coexpressing spots, consistent with snRNA-seq specificity analyses (Fig 

S42). Few other cell types show this relationship (Fig S43). Complementary analyses of 

EFNA5 and FYN co-expression are shown in Fig S42. (I) Spatial network analysis of all 

30 tissue sections, using top 3 dominant c2l cell types in each spot (exemplified in G 
with Br8667_mid), confirms EFNA5 and EPHA5 co-expression occurs frequently in spots 

containing Excit_L6 neurons. Complementary analyses using top 6 dominant c2l cell types 

as well as Tangram predictions are reported in Fig S42. (J) Schematic of a Visium spot 

depicting EFNA5-EPHA5 interactions between Excit_L5/6 neurons and Excit_L6. The high 

colocalization score in the spatial network analysis in (I) suggests oligodendrocytes also 

likely co-exist with Excit_L6 neurons.
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Figure 6. Spatial enrichment of cell types and genes associated with neurodevelopmental and 
neuropsychiatric disorders.
(A) Dot plot summarizing spatial registration results for eight PsychENCODE (PEC) 

snRNA-seq datasets from human DLPFC. snRNA-seq data was uniformly processed 

through the same pipeline and annotated with common nomenclature based on work from 

Allen Brain Institute (35, 69). Registration was performed for control donors only (see Fig 

S44 for full dataset) across manually annotated histological layers from (12) as well as 

unsupervised BayesSpace clusters at k=9 and k=16 (Sp9Ds and Sp16Ds, respectively). Each 

dot shows the histological layer(s) or SpD(s) where a dataset’s cell type was annotated 

during spatial registration. Solid dots show good confidence in the spatial annotation, 

translucent dots show poor confidence in the annotation. IT, intratelencephalon-projecting; 

ET, extratelencephalon-projecting; CT, corticothalamic-projecting; NP, near-projecting; 

VLMC, vascular lepotomeningeal cell; OPC, oligodendrocyte precursor cell; PC, pericyte; 
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SMC, smooth muscle cell. (B) Spatial registration of cell type populations from control 

samples from (20) against unsupervised BayesSpace clusters at k=9 (Sp9Ds). Higher 

confidence annotations (cor > 0.25, merge ratio = 0.1, Supplemental Methods: Spatial 

registration of PsychENCODE and other external snRNA-seq datasets) are marked with an 

“X”. (C) Enrichment analysis using Fisher’s exact test for Sp9D- enriched statistics versus 

differentially expressed genes (DEGs, FDR < 0.05) in Autism spectrum disorder (ASD) 

for each cell type population. The values are the odds ratios (ORs) for the enrichment 

in significant (FDR < 0.001) blocks of the heatmap, and the color scale indicates −log10(p-

value) for the enrichment test. The top bar plot shows the number of DEGs for each 

cell type. (D) Enrichment analysis using Fisher’s exact test for Sp9D- enriched statistics 

versus differentially expressed genes (DEGs, FDR < 0.05) in Post Traumatic Stress Disorder 

(PTSD) and/or Major Depressive Disorder (MDD) in bulk RNA-seq of DLPFC and medial 

prefrontal cortex (mPFC) (23). Top bar plot shows the number of DEGs for each DE test. 

Left bar plot shows the number of significantly enriched genes for each Sp9D in both 

enrichment analyses.
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