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quantms: a cloud-based pipeline for 
quantitative proteomics enables the 
reanalysis of public proteomics data

Chengxin Dai1,2,10, Julianus Pfeuffer3,10, Hong Wang1, Ping Zheng1, Lukas Käll    4, 
Timo Sachsenberg    5,6, Vadim Demichev    7, Mingze Bai1,2, 
Oliver Kohlbacher    5,6,8 & Yasset Perez-Riverol    9 

The volume of public proteomics data is rapidly increasing, causing a 
computational challenge for large-scale reanalysis. Here, we introduce 
quantms (https://quant,ms.org/), an open-source cloud-based pipeline for 
massively parallel proteomics data analysis. We used quantms to reanalyze 
83 public ProteomeXchange datasets, comprising 29,354 instrument 
files from 13,132 human samples, to quantify 16,599 proteins based on 
1.03 million unique peptides. quantms is based on standard file formats 
improving the reproducibility, submission and dissemination of the data to 
ProteomeXchange.

In recent years, the field of proteomics has seen unprecedented growth 
in publicly available datasets, with a trend toward studies that ana-
lyze a more substantial number of samples. As of December 2023, the 
number of public datasets stored in the PRIDE database1 exceeded 
25,000, including a remarkable increase in large datasets containing 
more than 100 instrument files, from 100 in 2014 to 4,435 submis-
sions in 2024. In parallel, a range of transformative improvements in 
proteomic data processing software has enabled a deeper and more 
precise look into the proteome. Reprocessing old data with such new 
tools, therefore, yields additional biological and biomedical insights2,3. 
However, the increased size of individual datasets presents a signifi-
cant computational bottleneck, making it challenging to reanalyze 
large experiments on conventional workstations. The automated 
analysis of publicly accessible quantitative proteomics data is further 
limited by the lack of metadata that characterizes the phenotypes, 
the samples and the instrument operation. Although some of these 
challenges are tackled in earlier studies4–6, many research groups still 
cannot perform automated large-scale quantitative analysis in the 

cloud and on distributed architectures. To address this challenge, the 
field requires scalable bioinformatics solutions that leverage sample 
metadata to automatically quantify peptides and proteins, perform 
absolute or differential-expression analysis and provide extensive 
quality control output.

Here we introduce quantms (https://quantms.org), an open-source 
cloud-based pipeline for massively parallel proteomic data reanalysis. 
It supports three major types of experiment—data-dependent acqui-
sition label-free (DDA-LFQ), isobaric tandem mass tag (TMT)-based 
(DDA-plex) and data-independent acquisition (DIA-LFQ)—and is highly 
flexible and modular to accommodate the diversity of quantitative 
proteomics approaches. To enable traceable and reproducible analysis, 
quantms is entirely based on standardized open file formats and repro-
ducible execution environments, adhering strictly to FAIR (findability, 
accessibility, interoperability and reusability) principles7. The pipeline 
is fully documented following nf-core guidelines8.

A quantms analysis starts with the instrument files in the standard 
mass spectrometer format (mzML) and the protein sequence database 
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processed data to infer proteins, estimate protein false-discovery 
rates (FDRs) using the pickedFDR13, and quantify proteins. All sub-
workflows export the final results into the mzTab standard format 
facilitating the submission of the results to ProteomeXchange (Fig. 1d). 
All these analyses run automatically, fully reproducibly, and without 
manual intervention. quantms is integrated with MSstats14 and a Python 
tool (pmultiqc, https://github.com/bigbio/pmultiqc) enabling the 
differential-expression analysis and the generation of quality control 
reports (Fig. 1e). quantms uses a variety of open-source tools, including 
but not limited to OpenMS15, MSstats14, LuciPHOr2 (ref. 16), SAGE17 and 
DIA-NN18, across various stages of its workflow.

We extensively benchmarked quantms in comparison to Max-
Quant on DDA-LFQ (Supplementary Notes 1 and 2)19 and DDA-plex data-
sets (Supplementary Note 3). MaxQuant has been previously used for 

(Fig. 1a). The workflow uses the sample and data relationship format 
(SDRF)9, to ensure the execution of workflow modules with all rel-
evant internal parameters, including the sample variables under study 
and mass spectrometry-related parameters. The quantms pipeline 
branches into three subworkflows for DDA-LFQ, DDA-plex (Fig. 1b), 
and DIA experiments (Fig. 1c). Unlike conventional desktop tools such 
as MaxQuant, pFind10, MSFragger11 or ProteomeDiscover, quantms 
automatically distributes computation using the nextflow workflow 
engine12 on one or more computers, depending on the number of 
instrument files and samples. To parallelize the steps that can be per-
formed independently, the workflow streams each instrument file 
as annotated in the SDRF tab-delimited file to individual nodes of 
the computing infrastructure, such as a cloud or high-performance 
computing (HPC) cluster. In the final step, quantms aggregates 
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Fig. 1 | quantms data analysis workflow and components. a, ProteomeXchange 
dataset input formats for quantms for reanalysis, including the SDRF, the 
instrument files and the FASTA protein sequence. b, DDA workflow includes 
three major steps: (1) peptide identification (using multiple search engines 
and percolator for boosting the number of identifications), (2) FDR control at 
PSM and peptide level and (3) protein quantification for both TMT and label-
free approaches. c, DIA workflow including the parallelization of the peptide 
identification and quantification step using the DIA-NN tool. d, Standard 

file formats and other supported output files from the data analysis enable 
automatic submissions to ProteomeXchange. e, Additional components of 
quantms workflow include pmultiqc for quality control reports and MSstats 
integration for differential-expression analysis of the main three approaches 
TMT, LFQ-DDA and DIA. The significance is calculated by a linear mixed-effects 
model in MSstats, and P values are adjusted by the Benjamini–Hochberg method. 
QC, quality control.
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public data reanalysis as a popular tool for intensity-based quantitation 
by ProteomicsDB20, MassIVE.quant5 and ExpressionAtlas reanalyses1. 
In summary, quantms can quantify a higher number of proteins com-
pared with MaxQuant for all datasets with the same accuracy (lower 
coefficients of variation); however, for low concentrations, quantms 
underestimated the true fold changes (Supplementary Note 2 and 
Supplementary Fig. 3). In terms of scalability and performance, major 
differences are observed between MaxQuant and quantms. When the 
number of instrument files and samples grows (over 1,000 ms runs) 
quantms can perform 40 times faster than MaxQuant (Supplementary 
Note 4). quantms benefits for the parallelization and distribution of 
MS runs in some of the processing steps (peptide search, percolator, 
multiple search engine merge), decreasing the time to process big 
submissions. In addition, we benchmarked the DIA workflow using 
the dataset PXD026600 (Supplementary Note 5) and found quantms 
can accurately quantify spike-in ubiquitin–proteasome system (UPS) 
proteins on different concentrations.

In addition to benchmarking multiple datasets from the three 
main workflows (DDA-plex, DDA-LFQ, DIA-LFQ), we reanalyzed five 
public single-cell datasets from ProteomeXchange (Supplementary 
Note 6). While the single-cell datasets in PRIDE Archive account only 
for 0.38% of public proteomics data (99 datasets); the numbers con-
tinue to increase. In the PXD016921 dataset, quantms increased by 6% 
the number of quantified proteins compared with original results and 
achieved lower false-discovery identifications compared to MaxQuant. 
The same was observed in PXD024043 (Supplementary Note 6 and 
Supplementary Tables 6 and 7). The principal component analysis 
applied in PXD023904 shows distinct groups for classes 4 and 6, which 
is consistent with the original research (Supplementary Note 6 and 
Supplementary Fig. 21b).

To demonstrate quantms performance and scalability, we analyzed 
118 human datasets, 35 differential-expression and 83 intensity-based 
absolute quantification (IBAQ) datasets (Supplementary Note 7 and 
Supplementary Table 8) based on specific dataset selection, peptide 
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ProteomeXchange. a, Distribution of quantified proteins by ProteomeXchange 
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identification, quantification and quality control rules (Supplemen-
tary Note 8 and Supplementary Table 9). quantms obtained more 
differentially expressed proteins compared to the original analysis in 
PXD030881, and these reported by only quantms were also detected as 
differentially expressed genes in two independent transcriptome stud-
ies (Supplementary Note 7 and Supplementary Fig. 22). The absolute 
(IBAQ) quantification datasets include 83 public human datasets, 13,132 
samples and 29,354 instrument files (https://quantms.org/datasets). 
Among these datasets, we reanalyzed multiple large-scale human 
studies including PXD000561, PXD000865, PXD010154, PXD016999 
and PXD030304. For all the DDA studies, two search engines were used 
(Comet and MSGF+), stringent FDR at 1% was applied at peptide spec-
trum match (PSM) and protein level at the dataset level, and at least two 
unique peptides were needed to quantify a protein. In 44 projects out 
of 65 (projects in which we were able to find and compare the original 
number of quantified proteins), quantms successfully quantified more 
proteins than the original analysis, and the median number of proteins 
quantified by only quantms was 611 (Supplementary Note 7 and Sup-
plementary Table 8). Figure 2a shows the number of unique peptides 
for the 16,599 quantified. Figure 2b shows that the LFQ-DDA approach 
consumes more memory and central processing unit (CPU) resources 
than the DIA-LFQ and TMT workflows, with the DIA workflow demon-
strating lower memory usage and CPU processing time despite analyz-
ing more files. From this number, 16,270 corresponds were quantified 
in experiments from normal tissues, and 11,374 in cell lines experiments. 
It is worth highlighting that 4,993 proteins were quantified in human 
plasma experiments, an increase of approximately 14% compared to 
the PeptideAtlas Plasma identification build (Supplementary Note 7  
and Supplementary Table 10). The IBAQ values computed with the 
quantms are highly correlated for all tissues with the proteomicDB10 
(Fig. 2c). Moreover, the present study yielded more than 479 proteins 
not previously quantified in ProteomicsDB or PaxDB21 (Fig. 2d), such 
as Q86SP6. We have successfully quantified Q86SP6 in multiple data-
sets across 16 tissues including the brain, heart, kidney, lung, stom-
ach, testis, adrenal gland, liver, colon, pancreas, ovary, esophagus, 
spleen, placenta, gallbladder, skin, prostate (https://quantms.org/
baseline/tissues?protein=Q86SP6). Cross-checking with the UniProt 
database, this protein only has evidence at the transcript level and 
the corresponding gene, as annotated in UniProt (GPR149, Q86SP6), 
is expressed in 19 tissues including testis and brain, as reported by the 
Bgee database (https://www.bgee.org/gene/ENSG00000174948). 
All samples were analyzed on a high-performance computer clus-
ter (EMBL-EBI Cluster), requiring an average of 9 hours per dataset  
and about 1.5 minutes per instrument run on average (Supplementary 
Note 7 and Supplementary Table 8).

We released a combined build of all proteins quantified using 
IBAQ values, in addition to the independent results reanalyzed with 
quantms for absolute IBAQ-based and differential-expression results. 
We first selected the 83 datasets from IBAQ-based reanalyses and per-
formed a heuristic global protein-adjusted FDR procedure to assess 
the accumulation of false positives when merging different datasets. 
While all the protein inference procedures we used produce protein 
level q values, not all of them report explicit decoy proteins with asso-
ciated scores. We introduced stand-in decoy protein entries for each 
protein list to counter this, reflecting each individual procedure’s 
ability to report q values accurately. The procedure injects stand-in 
decoys so that the ratio of decoy to target proteins corresponds to 
the target protein’s q values. After this operation, we merge the lists of 
proteins, now with stand-in decoy proteins, and sort the resulting list 
according to each protein’s nominal q values. In cases where there is 
more than one observation of a protein, only the protein with the low-
est q value was kept. We subsequently re-estimated each target protein 
q value as the ratio of decoy to target proteins scoring as well or better 
than the protein. Note that this method of injecting stand-in decoys 
does not improve or worsen the accuracy of the q values reported by 

each individual procedure; it merely reflects their existing ability to 
report q values.

Finally, we applied a strict protein-adjusted FDR threshold of less 
than 0.01 to filter the integration results. From the original quantified 
proteins with IBAQ (16,336 tissues, 11,403 cell lines and 5,048 in plasma), 
the number of proteins that pass the 1% adjusted FDR is 16,270 in tissues, 
11,374 cell lines and 4,993 in plasma. A resource has been developed 
to quickly retrieve the IBAQ-based expression profile of the proteins 
quantified with quantms (Supplementary Note 8, https://quantms.
org/baseline).

The quantms.org data constitute a resource to retrieve protein 
expression profiles from multiple tissues, diseases and cell lines. For 
every peptide and protein expression value, sample ontology-based 
annotations are provided. We anticipate these annotated data will 
prompt the creation of other resources that integrate protein expres-
sion profiles with other omics types and the development of new algo-
rithms (for example artificial intelligence-based tools) that use the 
data to predict protein coexpression networks or tissue specificity 
expression. The quantms repository will continue releasing reanalyses 
of public proteomics datasets including protein variation and post-
translational modification reanalysis.

quantms not only allows data processing of three different major 
quantification approaches, but also automates the deployment and 
installation of the tools used by the workflow, and converts all the 
output formats to standard file formats improving the reproducibility, 
portability and deposition of the data to PRIDE and ProteomeXchange. 
It also supports direct quantification reprocessing of any publicly 
available dataset in ProteomeXchange, in any cloud or HPC computer 
infrastructure. Finally, quantms is a modular and open-source workflow 
that enables the inclusion and extension of new (sub)workflows and 
pipelines for proteomics data processing. Additional documentation 
about the workflow, the parameters and examples can be found at 
https://quantms.readthedocs.io/en/latest/.
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Methods
DDA peptide identification
All branches of the workflow start with parsing the SDRF and addi-
tional user-specified options to split input files by their acquisition 
and labeling type, and to check and infer necessary parameters. 
For both LFQ and plex workflows, input files are then potentially 
converted into mzML and indexed. The peptide identification step 
for DDA-LFQ and DDA-plex approaches is shared in quantms, and 
three search engines are supported: SAGE, Comet and MSGF+. 
While multiple search engines such as MSFragger11 and pFind10 can 
manage to process large datasets in personal computers; they can-
not be easily integrated into cloud open-source infrastructures. 
However, the novel and fast search engine SAGE17 can be used for 
large-scale experiments where cluster resources are limited. These 
tools can be used separately or in tandem to increase the num-
ber of identifications by 5% on average (Supplementary Note 1).  
The workflow offers a distribution-fitting approach (reminiscent of 
PeptideProphet) and Percolator as methods to calculate a posterior 
(error) probability for each PSM. Then, the ConsensusID tool combines 
the PSMs from multiple search engines into a final score for each PSM. 
After ConsensusID, file-wide PSM-level q values are taken from Percola-
tor or calculated according to OpenMS’ target-decoy strategy based 
on the output probabilities. The workflow performs protein infer-
ence using multiple algorithms two algorithms (Bayesian approach 
or aggregation) and FDR filtering using pickedFDR13, with the same 
underlying algorithms as in the LFQ branch. For posttranslational 
modification studies, the LuciPHOr2 tool16 can be used to compute a 
site-level localization score and the associated false localization rate.

DDA-LFQ protein quantification
Two methods are available for label-free peptide–protein quanti-
fication: spectral counting and intensity-based quantification. We 
developed a tool proteomicsLFQ as part of the OpenMS framework15 to 
perform LFQ-based quantification. For intensity-based quantification, 
proteomicsLFQ uses a hybrid quantification strategy that combines 
targeted extraction of elution profiles based on the precursors of 
identified peptides with an untargeted, averaging model-based feature 
detection approach. Chromatographic retention time alignment lever-
ages the sample fraction annotation from the experimental design file 
to reduce chromatographic shifts between corresponding fractions in 
different instrument files. If match between runs is applied, peptide 
annotations are transferred from identified peptides in one run to 
unidentified features. An optional quantification step aims to fill the 
remaining missing quantitative values by running a targeted extraction 
based on peptide precursors that have been quantified successfully 
in most runs. Quantified peptides and inferred proteins are written to 
standardized mzTab format, MSstats and Triqler output for statistical 
downstream analysis.

DDA-plex protein quantification
quantms quantification of isobaric-labeled peptides and proteins starts 
by reading the DDA peptide identification results into the OpenMS 
tool IsobaricAnalyzer. Using isotope correction matrices, this tool 
extracts and normalizes reporter ion intensities from MS2 and MS3 
spectra. quantms currently supports 4- and 8-plex iTRAQ labeling, as 
well as TMT 6-, 10-, 11-and 16-plex. After protein inference and quanti-
fication, the results are again stored in standardized output formats 
and forwarded to downstream analysis. Three gold-standard datasets 
previously evaluated by TMT quantification tools were used to bench-
mark quantms (Supplementary Note 3). In all benchmarks, quantms 
performs comparably to MaxQuant and the other tools used for quanti-
fication, such as ProteomeDiscover or IsoProt (Supplementary Note 3, 
dataset PXD005486). In addition, we evaluated the dataset PXD007683, 
a two-proteome mixture in known concentrations analyzed using TMT 
and LFQ approaches. For both approaches, quantms quantified more 

proteins than MaxQuant, and both tools separated human and yeast 
proteins equally well (Supplementary Note 3).

DIA protein identification and quantification
For DIA data analysis, quantms parallelizes the DIA-NN tool18, distribut-
ing the multiple steps that DIA-NN performs on a dataset across com-
pute nodes (Fig. 1c). The first step of the pipeline converts the protein 
sequence database (FASTA) into an in silico-predicted spectral library. 
Each instrument file in mzML is then searched against this library (First 
DIA assembly), resulting in a set of precursors identified. A full library 
of identified precursors is then created by merging all the individual 
searches (experimental library). A final fast identification/quantifica-
tion step runs in one single node, where all the MS runs are searched 
against the merged experimental library (Fig. 1d). We evaluated the 
DIA workflow on the dataset PXD026600, an Escherichia coli sample  
with UPS1 proteins spiked in different concentrations (Supplementary 
Note 5). The workflow achieved nearly perfect performance (quanti-
fied all 48 UPS proteins) at four high concentrations. In addition, in 
most concentrations, the workflow achieved a perfect distinction 
between the two classes compared, namely UPS1 proteins (differ-
entially expressed) and E. coli proteins (fixed background), but the 
accuracy naturally drops for lower concentrations, due to fewer iden-
tifications achieved and noisier quantification (Supplementary Note 5).

Downstream analysis and quality control
MSstats and quantms are fully integrated for differential-expression 
data analysis. The workflow generates input for the MSstats R package, 
and if differential-expression analysis is performed, the MSstats plots 
and output files are automatically produced. MSstats was selected 
after benchmarking MSstats and other R packages with quantms for 
multiple LFQ datasets19. Factor values and/or conditions, and biological 
and technical replicates under study are translated from the original 
SDRF (provided as input format) to MSstats columns. In cases where 
multiple SDRFs are being used to study multiple conditions or factor 
values, the pipeline will reuse steps that have already been executed 
with no changes in parameters, and only execute the step that differs 
due to the SDRF being used (such as the quantification step in proteom-
icsLFQ). Users can automatically perform the differential-expression 
analysis using MSstats (https://quantms.readthedocs.io/en/latest/
msstats.html). The workflow will detect whether the pipeline is LFQ 
(DIA or DDA) or TMT and will use the corresponding MSstats package 
(MSstats or MSstatsTMT) accordingly. The MSstats step will gener-
ate by default a list of plots, including a volcano plot, quality control 
plot and comparison plot (for example, http://ftp.pride.ebi.ac.uk/
pub/databases/pride/resources/proteomes/differential-expression/
PXD004683/msstatstmt/). Configurable parameters for MSstats data 
processing step includes the summary method, the log fold-change 
threshold and so on.

To ensure high-quality data, we developed pmultiqc (https://
github.com/bigbio/pmultiqc), which is part of the quantms tool eco-
system (Fig. 1e and Supplementary Note 9). pmultiqc generates a qual-
ity control report for each analyzed dataset, using the mzTab, SDRF 
and other intermediate files. The report includes different plots that 
display the number of peptides identified per protein, the distribution 
of PSM posterior error probabilities and search engine scores or the 
MS2/MS3 identification rate.

Portability and deployment
All quantms tools are available as versioned BioConda packages and 
BioContainers and the workflow has been developed using the nextflow 
and nf-core8 guidelines enabling compatibility with an ecosystem of 
infrastructures including Amazon Web Services, Google Cloud Plat-
form, Kubernetes and HPC clusters (Supplementary Note 10). Owing 
to its implementation as an nf-core/nextflow workflow, quantms allows 
resuming failing process executions as well as reallocation of resources 

http://www.nature.com/naturemethods
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD005486
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD007683
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD026600
https://quantms.readthedocs.io/en/latest/msstats.html
https://quantms.readthedocs.io/en/latest/msstats.html
http://ftp.pride.ebi.ac.uk/pub/databases/pride/resources/proteomes/differential-expression/PXD004683/msstatstmt/
http://ftp.pride.ebi.ac.uk/pub/databases/pride/resources/proteomes/differential-expression/PXD004683/msstatstmt/
http://ftp.pride.ebi.ac.uk/pub/databases/pride/resources/proteomes/differential-expression/PXD004683/msstatstmt/
https://github.com/bigbio/pmultiqc
https://github.com/bigbio/pmultiqc


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02343-1

(for example, memory and CPU), depending on the demands of the 
tool and workflow monitoring.

Interoperability and ProteomeXchange support
quantms processing steps are based on standard file formats. The input 
formats are SDRF and mzML and the main result files are exported into 
mzTab. To export DIA and DDA results into mzTab, new controlled 
vocabulary terms and external reference files were introduced. In 
addition, the pipeline automatically generates other file formats that 
can be used for downstream analysis, such as MSstats and Triqler 
inputs. Results from quantms can be readily submitted to PRIDE and 
ProteomeXchange as COMPLETE submissions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets reanalyzed in the present study can be searched on the 
quantms web page (https://quantms.org/datasets). In addition, all the 
results can be found in the PRIDE database FTP (http://ftp.pride.ebi.
ac.uk/pub/databases/pride/resources/proteomes/). Source data are 
provided with this paper.

Code availability
All software, algorithms and tools are available on GitHub: quantms at 
https://github.com/bigbio/quantms and pmultiqc at https://github.
com/bigbio/pmultiqc. The full documentation of quantms is available 
at https://quantms.readthedocs.io/en/latest/.
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