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RNA structural switches are key regulators of gene expression in bacteria, 
but their characterization in Metazoa remains limited. Here, we present 
SwitchSeeker, a comprehensive computational and experimental approach 
for systematic identification of functional RNA structural switches. We 
applied SwitchSeeker to the human transcriptome and identified 245 
putative RNA switches. To validate our approach, we characterized a 
previously unknown RNA switch in the 3ʹ untranslated region of the RORC 
(RAR-related orphan receptor C) transcript. In vivo dimethyl sulfate 
(DMS) mutational profiling with sequencing (DMS-MaPseq), coupled with 
cryogenic electron microscopy, confirmed its existence as two alternative 
structural conformations. Furthermore, we used genome-scale CRISPR 
screens to identify trans factors that regulate gene expression through this 
RNA structural switch. We found that nonsense-mediated messenger RNA 
decay acts on this element in a conformation-specific manner. SwitchSeeker 
provides an unbiased, experimentally driven method for discovering RNA 
structural switches that shape the eukaryotic gene expression landscape.

Gene expression is regulated at the RNA level in all kingdoms of life. 
Some of the oldest groups of RNA-based regulatory mechanisms are 
ribozymes (catalytically active RNA molecules) and RNA structural 
switches (elements that adopt two mutually exclusive conforma-
tions, each leading to different gene-regulatory outcomes)1–3. In 
bacteria, a subset of RNA switches, termed riboswitches, control 
gene expression by binding small molecule ligands that induce 
RNA conformational changes4,5. The discovery of RNA switches in 

eukaryotes, however, has been more challenging. While a number 
of thiamine pyrophosphate-sensing riboswitches have been identi-
fied in plants and fungi6, only two human RNA switches are known: 
the protein-dependent RNA switch in vascular endothelial growth 
factor-A (VEGFA), and m6A modification-based switches7,8. There-
fore, the overall impact of RNA switches on gene expression in higher 
eukaryotes remains unclear, despite their ubiquity in other domains 
of life. Here, we introduce SwitchSeeker, a systematic computational 
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to ensure its ability to distinguish RNA switches from nonswitching 
but highly structured RNAs. This analysis showed that SwitchFinder 
could distinguish true riboswitches from shuffled controls much more 
effectively than it could do so with ribosomal RNAs, and that it per-
formed even better on eukaryotic and synthetic riboswitches than it 
did on bacterial riboswitches (Fig. 1d). Altogether, these benchmarking 
results gave us high confidence that SwitchFinder could nominate new 
eukaryotic RNA switches that would expand our understanding of RNA 
structural switching in gene regulation.

Discovery of RNA switches with regulatory function in the 
human transcriptome
Messenger RNA secondary structure in the cell is highly dynamic21–23 
and compartment dependent24; therefore, we reasoned that the 
SwitchFinder predictions may be greatly improved with experimental 
measurements of RNA secondary structure from living cells. To coun-
teract the limitations of in silico RNA folding predictions in complex 
eukaryotic transcriptomes25, we enhanced SwitchFinder by allowing 
the incorporation of in vivo RNA secondary structure probing data 
to refine the model’s energy terms, resulting in an iterative cycle of 
computational prediction and experimental validation that we name 
SwitchSeeker. First, we applied the SwitchFinder model using naive in 
silico folding to the entirety of the 3ʹUTRs of the human transcriptome, 
and chose the 3,750 top candidate switches (of length ≤186 nucleotides) 
as putative switch elements. To identify the RNA switches that are both 
functional and structurally bi-stable in the cell, we independently per-
formed two high-throughput in vivo screens: a ‘structure screen’ that 
differentiates RNAs that exist as an ensemble of two mutually exclusive 
conformations from those that exist only in a single conformation, 
and a ‘functional screen’ that measures the effect of candidate RNA 
switches on the expression of a reporter gene.

For the structure screen, we performed an in vivo DMS-MaPseq 
assay on HEK293 cells expressing a library of the 3,750 candidate RNA 
switches in a reporter gene context to identify bi-stable RNA struc-
tures in the initial pool of 3,750 candidate switches (Extended Data 
Fig. 2b,c)26,27. The accessibility of a single nucleotide in the DMS-MaPseq 
data is measured as a population average of multiple RNA molecules 
that represent different minima in the Gibbs free energy landscape. 
If one conformation dominates the landscape, it dominates the 
DMS-MaPseq reactivity profile; however, if multiple conformations 
coexist, they all contribute to the reactivity profile28,29. SwitchSeeker 
exploits this distinction in nucleotide accessibility to find RNA switches 
that coexist in a balanced state between two conformations in vivo.

For the functional screen, we implemented a massively parallel 
reporter assay (MPRA)30 to functionally interrogate RNA switches in 
HEK293 cells. We cloned the library of 3,750 candidate RNA switch 
sequences or cognate scrambled control sequences into a dual 
enhanced green fluorescent protein (eGFP)–mCherry fluorescent 
reporter, directly downstream of the eGFP open reading frame (ORF; 
Extended Data Fig. 2d). This enabled us to use eGFP fluorescence to 
measure the effect of candidate RNA switches on gene expression while 
using the unaffected mCherry fluorescence as an endogenous control. 
We transduced HEK293 cells with this synthetic library and sequenced 
DNA and RNA derived from eight bins of cells sorted by flow cytometry 
according to their eGFP : mCherry expression ratio (Extended Data 
Fig. 2e, see Methods). Of the candidate RNA switches tested, 536 (14%) 
caused significant downregulation of eGFP relative to their scrambled 
control, and 538 (14%) showed a significant upregulation (Fig. 2b). 
While our study focused on characterizing the RNA switches that act 
in the context of 3ʹUTRs, the SwitchSeeker framework can be readily 
applied to the study of other types of RNA switches with the use of 
appropriate reporter constructs.

In the second iteration of SwitchSeeker, guided by in vivo RNA 
structure data, we refined our predictions, eliminating false positives 
and focusing on switches with consistent structural configurations 

and experimental framework for unbiased discovery of RNA structural 
switches in any transcriptome.

While several RNA switch detection software packages have been 
developed, most identify new switch sequences based on their homol-
ogy to one of the 40 known RNA switch families9. The small minority 
of tools enabling de novo prediction of RNA switches lack experimen-
tal verification of RNA structure and function10,11. Therefore, there 
is an unmet need for scalable methods of detecting eukaryotic RNA 
switches and assessing the extent to which they carry out regulatory 
functions in gene expression control. The approach we introduce 
here relies on integrating multiple computational and experimental 
methods: RNA switches are first predicted in silico, then structurally 
and functionally characterized in vivo, which in turn informs the next 
iteration of in silico predictions. First, we developed a computational 
model called SwitchFinder for de novo RNA switch detection, and 
showed that it identifies RNA switches from novel families with higher 
accuracy than existing models. Combining SwitchFinder with a set of 
high-throughput experimental techniques, we set up an end-to-end 
iterative predict-and-validate platform that we term SwitchSeeker. We 
applied SwitchSeeker to the human transcriptome to identify putative 
RNA switches, which we then characterized structurally and function-
ally using massively parallel assays in vivo. By iteratively improving 
the SwitchFinder predictions with experimental data, we ultimately 
report 245 high-confidence and functional RNA structural switches.

Finally, we selected the top scoring switch, located in the 3ʹ 
untranslated region (3ʹUTR) of the RORC (RAR-related orphan recep-
tor C) transcript, for further analysis. We used dimethyl sulfate (DMS) 
mutational profiling with sequencing (DMS-MaPseq) structural prob-
ing and single-particle cryogenic electron microscopy (cryo-EM) to 
confirm that the predicted switch populates alternate molecular con-
formations. We then performed genome-scale CRISPR-interference 
(CRISPRi) screens, which showed that one of the two conformations 
reduces RORC gene expression through activation of the noncanonical 
nonsense-mediated decay (NMD) pathway. Taken together, our frame-
work provides new insights into the role of RNA structural switches in 
shaping the human transcriptome, and outlines a broader approach 
for future comprehensive characterization of RNA switches regulating 
eukaryotic gene expression across cell types and organisms.

Results
Systematic annotation of human RNA structural switches
We define RNA structural switches as regulatory RNA elements that 
affect the expression of the host RNA molecule through conformational 
shifts. To discover new eukaryotic RNA switch families, we devised an 
approach called SwitchFinder that, unlike most existing methods12–17, 
does not depend on known sequence motifs. Instead, SwitchFinder uses 
the RNA sequence to generate an ensemble of secondary structures and 
their corresponding energy landscape using a Boltzmann equilibrium 
probability distribution18. It prioritizes the sequences that show RNA 
switch-like features, such as having two local minima in close proxim-
ity with a relatively small barrier in between (Fig. 1a and Extended Data 
Fig. 1a,b). This approach ensures that RNA switches are identified in a 
generalizable and family-agnostic way, which we validated by demon-
strating its high performance on held-out Rfam families (Fig. 1b and 
Extended Data Fig. 1c). We compared the performance of SwitchFinder 
to SwiSpot, the state-of-the-art method for family-agnostic riboswitch 
prediction10, and observed a performance improvement of 44% on 
average across all RNA switch families except cyclic di-GMP-II (Fig. 1c). 
By relying on biophysical features of the folding energy landscape, 
SwitchFinder captures a wider variety of RNA switches compared with 
the existing methods.

To confirm that SwitchFinder is not overly tailored to bacterial 
riboswitches, we tested it on eukaryotic and synthetic riboswitches, 
including those sensing theophylline19 and specific RNA-binding 
proteins20. Additionally, we applied SwitchFinder to ribosomal RNAs 
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in vivo. Comparing outcomes of this iteration with the first iteration, 
we found a significant increase in the proportion of regulatory active 
switches (P = 1 × 10−6, Extended Data Fig. 2f), validating the enhanced 
accuracy through in vivo data integration. This process prioritized 
1,454 putative RNA switches that occupy two alternative conforma-
tional minima and are regulatory active in vivo.

Having identified a large set of candidate RNA switches that affect 
gene expression, we aimed to assess the degree to which the two sta-
ble conformations show divergent regulatory function. For this, we 
extended our MPRA to include targeted mutations designed to shift 
the equilibrium between the two conformations of each candidate 
RNA switch. This was achieved by either disrupting or strengthening 
conformation-specific stem loops by introducing either individual 
mutations or reciprocal mutation pairs (Fig. 2c). This additional 
screen enabled us to identify bona fide RNA switches with strong 
conformation-dependent activity. We found 245 RNA switches that dif-
ferentially regulated reporter gene expression when locked in a specific 
structural conformation. An example candidate switch (located in the 
3ʹUTR of TCF7 (transcription factor 7)) is shown in Fig. 2d: the TCF7 RNA 
switch landscape has two local minima, corresponding to two alterna-
tive conformations supported by in vivo DMS-MaPseq data (Fig. 2d, 
bottom). Two mutations in different parts of the switch sequence that 

favor conformation 1 resulted in lower expression of the eGFP reporter 
(top). Conversely, two mutations that favor conformation 2 increased 
eGFP expression. This observation indicates that the two conforma-
tions of the TCF7 RNA switch elicit divergent regulatory functions.

A bi-stable RNA switch in the 3ʹUTR of RORC
To demonstrate the validity of SwitchSeeker’s predictions, we aimed 
to biochemically characterize one of the identified RNA switches. We 
selected the switch that had the most pronounced difference in regu-
latory functions between its two conformations: a 186 nucleotide ele-
ment located in the 3ʹUTR of the RORC mRNA. Based on the predicted 
secondary structures, we designated the three regions involved in the 
base pairing as ‘Box 1’ (61–69 nucleotides), ‘Box 2’ (73–81 nucleotides) 
and ‘Box 3’ (116–123 nucleotides). Our data indicate that Box 1 can form 
base pairs either with Box 2 or with Box 3, resulting in two mutually 
exclusive conformations that each exert distinct effects on gene expres-
sion (Fig. 3a). To confirm that the RORC RNA switch exists as an ensem-
ble of two stable conformations, we designed mutation–rescue pairs 
of sequences that first shift the equilibrium towards one conformation 
(mutation), and then shift it towards the other conformation (rescue) 
(Fig. 3b and Supplementary Data Files), and used in vitro RNA SHAPE 
(selective 2ʹ-hydroxyl acylation analyzed by primer extension)31 to 
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monitor the resultant RNA structures. We found that mutating Box 3 
(117-AC) reduced the reactivity of the Box 2 region (Fig. 3c), support-
ing the idea that Box 1 would switch its contacts from Box 3 to Box 2, 
thereby stabilizing conformation 2. Introducing the rescue mutation 

(65-GT,117-AC) into Box 1 restored the original reactivity profile of the 
element. Complementary experiments using the mutation (77-GA) to 
stabilize conformation 1, and the rescue mutation (63-TC,77-GA) to 
stabilize conformation 2, had a similar outcome. Even though we did 

a

d

b

Sequence abundance

0

0.51

In
di

vi
du

al
 c

an
di

da
te

 R
N

A 
sw

itc
he

s

In
di

vi
du

al
 c

an
di

da
te

 R
N

A 
sw

itc
he

s

In
di

vi
du

al
 c

an
di

da
te

 R
N

A 
sw

itc
he

s

Expression 
(sorted bin)

Expression 
(sorted bin)

Expression 
(sorted bin)

Repressive
elements

Activating
elements

Neutral
elements

1 2 3 4 5 6 7 8

Sorted bin
1 2 3 4 5 6 7 8

Sorted bin
1 2 3 4 5 6 7 8

Sorted bin

0
0.05
0.10
0.15
0.20
0.25

Ab
un

da
nc

e

Conf. 2

Wild
type

Sequence abundance

Expression (sorted bin)

0.09 0.17

c

Candidate
RNA 

switch

Plasmid library

~1,500
putative 
switches

Conf. 2

Conf. 1

Wild
type

Conformation 1

Conformation 2

0
DMS reactivity

1

U

C

A

U
C

G
A

U
U

C
A

AA
C

U
G

C
UC

C

A
A G

U
G

G
U

G
G G

A
A

U
C

AGAU
C

U G
U C U

U
G

A
U

G
U

G U
C

A
U

C U A
A

U
U A A G G G

A
A

UCCCUUG

U

A
C

C

G

UA

U

G

G

G

C U C C U G

C

A

U

C
G

A
U

U
CA

A
A

C
U

G
CU

C

C
A A

G
U

G
G

U G
G

G
A

A
U C A

G
A

U C
U

U

GU
C

U

U
G

A

U

G G G

U

C

A

U
C

U

A

A
U

U

A

A

G

G

G

A
A

U

C

C

C

U

U

G
U

A

C

C
U

U G C C U G

A

U

G

G

400,000 fragments

SwitchFinder:
in silico

DMS-seq structure
probing: in vivo

Mutagenesis analysis: 
in vivo

3,750 fragments

1,454 fragments

245 fragments
Two conformations 

have di�erent 
regulatory 
functions

Bi-stable structure is supported
by in vivo structure probing

Likely to exist as bi-stable structures

Human transcriptome (3’UTRs)

Fig. 2 | MPRA captures the functional difference between the conformations 
of candidate RNA switches. a, Overview of SwitchSeeker, the platform for 
RNA switch identification, applied to the 3ʹUTRs of the human transcriptome. 
b, Examples of regulatory elements identified by the functional screen. Each 
row represents a single candidate RNA switch, each column represents a single 
bin defined by the reporter gene expression (eGFP fluorescence, normalized 
by mCherry fluorescence). Bin 1 corresponds to the cells with the lowest eGFP 
fluorescence, bin 8 corresponds to the highest. The value in each cell is the 
relative abundance of the given RNA switch in the given bin, normalized across 
the eight bins. The three plots show examples of candidate switches with 
repressive, neutral and activating effects on gene expression. The plots below 
show cumulative sequence abundances across all of the candidate switches in 
each group. c, The set-up of the massively parallel mutagenesis analysis. For each 
candidate RNA switch, we design four mutated sequence variants. Two of them 

lock the switch into conformation 1, and the other two lock it into conformation 
2. A sequence library is then generated (Extended Data Fig. 2d), in which each 
candidate RNA switch is represented by the four mutated sequence variants, 
along with the reference sequence. d, Example of a high-confidence candidate 
RNA switch identified using the massively parallel mutagenesis analysis. Bottom: 
Two alternative conformations as predicted by SwitchSeeker. The RNA secondary 
structure probing data collected with the Structure Screen is shown in color. The 
Gibbs free energy difference between the two predicted conformations is 2.4 kcal 
per mol. Top: The effect of the candidate RNA switch locked in one or another 
conformation on reporter gene expression. Each row corresponds to a single 
sequence variation that locks the RNA switch into one of the two conformations. 
Each column represents a single bin defined by the reporter gene expression.  
The value in each cell is the relative abundance of the given RNA switch in the 
given bin, normalized across the eight bins.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | September 2024 | 1634–1645 1638

Article https://doi.org/10.1038/s41592-024-02335-1

Conf. 1 Conf. 2

Mutate

Wild type

Rescue

Box 1 Box 3Box 2

Conf. 1

Conf. 2

0 5 10 15 20 25 30 35 40 45 50 55 60

SwitchFinder score

Switching
regions

Box 1 Box 2

0 1

RORC switch

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

a b

c

A G U C C A C

U

G

A

U

C
UUGGGU

CUGGGGUG
AUC

C
A

A
A

U A
C

C A C C C C A G C
U C C A G

C U
G

U
C

U
U

C
U

A
C C

A C U
A G

A
A

G
A

C
C C

A
A

G
A

G A
A

G
C A

G
AA

G
UC

G

C
U

CGC
A

C

U
G

G
U

C
AGU

CG
G

A
A

G
G

C
A

A
G

A

U

C

A

G A U C C

A G

U

C
C

A C
U

G

A

U C U

U

G

G

G
U

C

U

G

G

G

G

U

G
A

U

C
C

A A
A

U

A
C

C

A

C

C

C

C

A

G
C

U

C

C

A

G C U G

U

C

U

U

C

U

A
C

C A
C

U

A

G

A

A

G

A

C C C A A G

A

G
A

A
G

C
A

G A
A

G

U
C

G
C

U

C G C A C

U

G

G

U

C
A

G
U

C
G

G
A

A

G
G

C
A

A
G

A

U

C

A

G A U C C

D
M

S 
re

ac
tiv

ity

1

0

Box 1 Box 2 Box 3
RORC switch

1.15 1.20 1.25 1.30 1.35
Box 2 DMS signal

1.400

1.425

1.450

1.475

1.500

1.525

Bo
x 

3 
D

M
S 

si
gn

al

LNCaP

LS174T

HepG2
MCF-7

ZR-75-1

293T

R = –0.75Reference reporter

0.8 0.9 1.0 1.1
Box 2 DMS signal

0.60

0.65

0.70

0.75

0.80

0.85

Bo
x 

3 
D

M
S 

si
gn

al

LS174T

LNCaP

ZR-75-1
HepG2

MCF-7

R = –0.81

Endogenous locus

Box 1 Box 2 Box 3
RORC switch

Conformation 1 Conformation 2

SH
AP

E
re

ac
tiv

ity

e f

d

Box 1 Box 3Box 2
0
1
2
3
4
5

C
um

ul
at

iv
e

re
ac

tiv
ity

Reference
65-GT,117-AC (conf. 1)
117-AC (conf. 2)

Box 3RNA sequence

Fig. 3 | A fragment of RORC 3ʹUTR forms an ensemble of two alternative 
structures. a, Arc representation of the two alternative conformations of the 
RORC RNA switch as predicted by SwitchSeeker. The two conformations are 
shown in blue and red, respectively. Left: The schematic representations of the 
two conformations, as used throughout the article. b, The set-up of mutation–
rescue experiments. The switching regions are color coded as in a. A-U and C-G 
base pairing is shown with compatible shapes (triangle and half-circle). The two 
conformations of the switch reside in the equilibrium state. Mutation of the Box 
3 region disrupts the base pairing between the Box 1 and the Box 3 regions. This 
causes a shift of the equilibrium towards conformation 2. Rescue mutation of the 
Box 1 switching region restores the base pairing between Box 1 and Box 3, but at 
the same time it disrupts the base pairing between Box 1 and Box 2. Therefore, 
the equilibrium shifts towards conformation 1. c, In vitro SHAPE reactivity of 
the RORC RNA switch sequence in vitro. Left: SHAPE reactivity profiles for the 
reference sequence (in gray) and for the mutation–rescue pair of sequences 
(blue, 65-GT,117-AC; red, 117-AC). Shown is the average for three replicates with 

the respective error bars (s.d.). The SHAPE reactivity changes in the nonmutated 
regions are highlighted with bold arrows. Right: Barplots of cumulative 
SHAPE reactivity in the switching regions. d, Secondary structures of the two 
conformations of RORC RNA switch predicted by the RNAstructure algorithm56 
guided by the DMS reactivity data. The base pairing of Box 1 with either Box 3 
(conformation 1) or Box 2 (conformation 2) is highlighted by a red frame. The 
two clusters were identified using the DRACO unsupervised deconvolution 
algorithm28. e, Accessibility of the Box 2 (x axis) and Box 3 (y axis) regions of the 
RORC element across cell lines, as measured with DMS-MaPseq (normalized 
reactivity, see Methods). The cell lines were engineered to express a GFP reporter 
containing the RORC switch sequence in the 3ʹUTR, and the accessibility of the 
reporter mRNA was measured with DMS-MaPseq. Linear regression is shown with 
an orange line. f, Accessibility of the Box 2 (x axis) and Box 3 (y axis) regions of the 
RORC element in the endogenous RORC mRNA, as measured with DMS-MaPseq 
(normalized reactivity, see Methods).
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not observe a substantial decrease in reactivity of Box 3 upon the 77-GA 
mutation, the rescue significantly increased its reactivity (Extended 
Data Fig. 3a,b). These findings support the role of the three highlighted 
regions in forming an ensemble of states in which Box 2 and Box 3 com-
pete for base pairing to Box 1.

To extend our in vitro observations to living cells, we performed 
high-coverage DMS-MaPseq of the RORC switch in vivo in the reporter 
context (Extended Data Fig. 3c). Using a DMS concentration suffi-
cient to cause multiple modifications to the same RNA molecule, we 
implemented the DRACO computational approach28, which identified 
two distinct clusters in both biological replicates, representing the 
two conformations, at relative proportions of 27% to 73% (Fig. 3d and 
Extended Data Fig. 3e). The profiles of these clusters were distinct 
(P = 0.18 and P = 0.72 in replicates 1 and 2, respectively) but showed 
high correlation within each cluster across replicates (Extended Data 
Fig. 3d). To ascertain whether sequence mutations similarly influence 
the conformational equilibrium in vivo, we conducted DMS-MaPseq on 
the two rescue mutant sequences (Extended Data Fig. 3f). This analysis 
corroborated our SHAPE findings: the (63-TC,77-GA) mutation stabi-
lized conformation 2, while the (65-GT,117-AC) mutation favored con-
formation 1. The alignment of in vitro SHAPE and in vivo DMS-MaPseq 
results reinforces the notion that the RORC switch consistently exhibits 
its conformational dynamics across both experimental settings.

To determine whether the RORC element functions as a dynamic 
RNA switch or simply represents a static equilibrium of two conforma-
tions, we investigated whether the proportions of its alternative con-
formations change inside cells. To this end, we introduced a reporter 
containing the RORC sequence into five cell lines representing diverse 
genetic backgrounds: LNCaP (prostate), MCF-7 (breast), HepG2 (liver), 
ZR-75-1 (breast), 293T (kidney) and LS174T (colon). Using DMS-MaPseq, 
we assessed the conformational dynamics of the RORC switch in these 
cell lines. Our findings confirm not only that the relative proportions 
of the two conformations vary among these cell lines but they also 
demonstrate a strong anticorrelation in the accessibility of Boxes 2 and 
3 (R = −0.75) (Fig. 3e). This anticorrelation supports the hypothesis of 
their competitive base pairing with Box 1, further suggesting dynamic 
switching behavior.

To extend our analysis from the reporter to the endogenous con-
text, we performed DMS-MaPseq targeting the endogenous RORC 
mRNA across the same five cell lines. This approach yielded similar 
observations: a strong anticorrelation in accessibility (R = −0.81, 
Fig. 3f) and variability in the relative proportions of the two confor-
mations. Importantly, the conformational ratios across cell lines were 
highly correlated between the reporter and endogenous contexts 
(R = 0.93, Extended Data Fig. 3g), demonstrating the high relevance 
of the reporter screening approach to understanding the behavior of 
RNA switches in the context of their endogenous mRNA. These data 
strongly support the hypothesis that the RORC element functions as 
an RNA switch, adopting two alternative conformations, the balance 
of which is influenced by the cellular landscape.

Finally, we used single-particle cryo-EM to investigate the tertiary 
structures of the two RORC RNA switch conformations that we identi-
fied using SHAPE and DMS-MaPseq. Micrographs of the reference RORC 
RNA switch contain a mixture of compact and extended particles, with 
features suggestive of RNA secondary structure (Fig. 4a and Extended 
Data Fig. 4a–c), including elongated tertiary features consistent with 
A-form helices, as well as bends and junctions consistent with complex 
RNA folding (Extended Data Fig. 4d–f). Strikingly, particles of the 
conformation 1 mutant (77-GA) appear more extended, while those 
of the conformation 2 mutant (117-AC) are mostly compact (Fig. 4a). 
Cryo-EM image processing shows that reference RORC RNA can be 
classified into three structural classes (Classes A, B, and C), with the 
Class B structure absent in the (77-GA) mutant and Class A absent in 
the (117-AC) mutant (Fig. 4b). This analysis suggests that Class A can 
be assigned to the more extended conformation 1, and Class B to the 

compact conformation 2 (Fig. 4b). We propose that Class C, which is 
present in all three datasets, represents a folding intermediate lack-
ing the tertiary interactions made by either Boxes 2 or 3. Although the 
extreme flexibility of the RNA limits the resolution of the reconstruc-
tions to approximately 10 Å (Extended Data Fig. 5g–i), it is sufficient 
for discrimination of these different RNA folds. These results confirm 
that the RORC RNA switch indeed adopts distinct tertiary structures 
in solution and that the designed mutations heavily bias toward one 
conformation or the other.

Alternative conformations of the RORC RNA switch play 
divergent roles in gene regulation
Having validated that the RORC RNA switch can adopt two stable 
conformations, we next explored the distinct regulatory activities of 
each conformation. We engineered HEK293 cell lines to express eGFP 
reporters carrying RORC switch variants in the 3ʹUTR and assessed 
eGFP expression changes using flow cytometry. To specifically lock 
the switch in each conformation, we implemented two parallel strat-
egies: for conformation 1, one strategy involved mutating Box 2 to 
prevent its pairing with Box 1 (mutant ‘73-CCCTATGA’), and another 
introduced mutations into both Boxes 1 and 3 to disrupt their interac-
tion with Box 2 (mutant ‘61-TATATAA,116-TTATATA’). Remarkably, both 
strategies, despite modifying different parts of the sequence, induced 
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Fig. 4 | Cryo-EM of RORC 3ʹ mRNA is consistent with dynamic exchange in 
a shallow energy landscape. a, Cryo-EM of wild-type RORC mRNA, 77-GA 
mutant and 117-AC mutant, as representative examples of qualitatively different 
compact and extended RNA-like particles. Different morphologies are indicated 
by numbered labels. Source micrographs were phase-flipped, Gaussian filtered 
and contrast inverted for display (see Extended Data Fig. 5). Scale bars, 50 nm. 
b, Three structural classes of the refolded RORC 3ʹ mRNA element as determined 
on cryo-EM processing, with RNA-like features (top). Further cryo-EM imaging 
and 3D classification of the 77-GA mutant (middle) and 117-AC mutant (bottom) 
indicate that Class A is present in wild-type and 77-GA samples but absent 
from the 117-AC sample, and Class B is conversely present in wild-type and 
117-AC samples but absent from the 77-GA mutant. Class C is common to all 
three samples. We thus assign Class A as the conformation 1 state, and Class B 
as the conformation 2 state. We propose Class 3 to represent a partly folded 
intermediate that is not disrupted in the mutated constructs.
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Fig. 5 | The two alternative conformations of the RORC RNA switch have 
opposing effects on target gene expression. a–c, Box plots of the relative 
expression of the reporter construct across different RNA conformations and 
sequences in HEK293 cells (a), reciprocal mutations (b) and primary Th17 cells 
(c). Relative expression is quantified as the ratio of eGFP to mCherry fluorescence 
for individual cells, as measured by flow cytometry (n = 10,000 cells). The 
boxes shows the quartiles of the dataset, with the central line indicating the 
median value; the whiskers extend from the 10th to the 90th percentile. The 
colors denote specific RNA conformations or sequences: conformation 1 
in blue, conformation 2 in red, reference sequence in gray, and a scrambled 
sequence in yellow. The diagrams below the box plots show the balance of 
the two conformations in the RNA populations, with existing conformations 
marked by a ‘+’ sign. Statistical significance was determined with a two-sided 
independent t-test. a, The mutations left to right: 73-CCCTATGA; 61-TATATAA,116-
TTATATA; reference; 116-CCCTAAG; 62-GCACAGT,73-ACTGTGC. P values left 
to right: 1.1e−10, 2.6e−22, 1.6e−06, 0.00025. b, Effect of the shift in equilibrium 
between two conformations of the RORC switch on reporter gene expression 
for reciprocal mutations. The mutation–rescue experiments were performed 
as shown in Fig. 3b. The mutations left to right: reference; 65-GT,117-AC; 117-AC; 
66-AC; 66-AC,74-GT; 77-GA; 63-TC,77-GA. P values left to right: 7.1e−117, 3.6e−50, 

5.9e−260. c, Effect of shift in the equilibrium between two conformations of the 
RORC switch on reporter gene expression in primary Th17 T cells. Human CD4+ T 
cells were infected with lentiviral constructs carrying one of the three sequences 
in the reporter gene’s 3ʹUTR, and subsequently differentiated into Th17 cells. 
The mutations left to right: scrambled RORC RNA switch; 77-GA; reference. 
P values left to right: 1.7e−124, 2.6e−24. d,e, Scatterplots of the relationship 
between the relative conformation ratio of the RORC element, as measured 
with DMS-MaPseq in reporter-expressing cell lines, and stability of the reporter 
mRNA (n = 3 replicates) (d) and the endogenous RORC mRNA (n = 2 replicates) 
(e), as measured by RT-qPCR following the α-amanitin treatment. The reporter 
contains the eGFP ORF, followed by the 3ʹUTR containing the RORC RNA switch 
sequence. Horizontal lines represent the mean of mRNA stability. Correlation 
of mean stability and the relative conformational ratio was measured using the 
Pearson correlation coefficient. f, Effect of ASOs on endogenous RORC mRNA 
expression, as measured by RT-qPCR. The targeting ASOs are complementary to 
Box 2 of the RNA switch; the control ASOs have the same nucleotide composition 
as the targeting ones but do not target the RORC RNA switch sequence. P values 
were determined using the two-sided independent t-test, comparing the RORC-
targeting and control ASOs, independent of the ASO chemistry. n = 2 replicates. 
LNA, locked nucleic acids.
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similar eGFP expression changes for each conformation: both mutants 
that stabilized conformation 1 increased reporter gene expression 
(Fig. 5a), while analogous strategies applied to stabilize conformation 
2 decreased expression. We then investigated whether the modulation 
in gene expression was primarily influenced by the RNA’s secondary 
structure rather than its sequence composition. Using cell lines stably 
expressing mutants from our earlier rescue–mutation experiments 
(Fig. 3b), we evaluated the impact on eGFP expression. Across three 
tested mutation–rescue pairs, the mutants favoring conformation 2 
consistently showed reduced eGFP expression compared with those 
favoring conformation 1 (Fig. 5b). These findings from the recipro-
cal mutation–rescue experiments underscore the pivotal role of RNA 
secondary structure in the specific regulatory functions of the RORC 
RNA switch.

The RORC gene encodes the nuclear receptor ROR-γ that plays 
a crucial role in T-helper (Th)17 cell differentiation, a key process in 
the immune response, which is also implicated in autoimmune dis-
eases32,33. To explore the functional impact of the RORC RNA switch in 
Th17 cells, we introduced into primary human CD4+ T cells a reporter 
construct carrying the RORC RNA switch sequence in the eGFP 3ʹUTR. 
We then differentiated these cells into Th17 cells (Extended Data Fig. 6,  
ref. 34). Incorporating the native RORC RNA switch markedly reduced 
eGFP expression compared with a control with a scrambled sequence 
(Fig. 5c). Additionally, altering the switch’s conformation with a 77-GA 
mutation (towards conformation 1) weakened this repression, confirm-
ing the activity of the RORC RNA switch in Th17 cells.

Having demonstrated the distinct regulatory effects of the RORC 
RNA switch’s two conformations, we next asked whether their relative 
proportions in different cell types would result in differential regulation 
of the RORC transcript. To assess this, we compared the stability of the 
reporter mRNA containing the RORC switch between cell lines follow-
ing inhibition of RNA polymerase II with α-amanitin. We discovered 
a strong correlation between the conformational ratio and reporter 
mRNA stability, indicating that higher proportions of conformation 1 
resulted in higher stability, whereas higher proportions of conforma-
tion 2 resulted in lower stability (R = 0.85, P = 0.03, Fig. 5d). We extended 
this analysis to the endogenous RORC mRNA, where we observed a 
similar strong correlation (R = 0.96, P = 0.004, Fig. 5e).

Next, we investigated whether, instead of sequence mutations, 
trans-acting agents such as antisense oligonucleotides (ASOs) com-
plementary to parts of the RNA switch sequence could shift the equi-
librium between the two conformations and thereby influence gene 
expression35. We designed two ASOs to target the Box 2 region, aiming 
to shift the equilibrium towards conformation 1, which we would expect 
to increase the levels of RORC mRNA expression. We transfected three 
cell lines, representing different conformational ratios (LNCaP, MCF-7 
and LS174T), with these ASOs carrying either 2ʹ-O-(2-methoxyethyl) 
(2-MOE) oligoribonucleotides or locked nucleic acids. In both cases, 
ASO treatment led to a significant increase in RORC mRNA levels com-
pared with nontargeting control ASO (Fig. 5f). Notably, this effect was 
more pronounced in cell lines with a higher proportion of conforma-
tion 2 (LNCaP, P = 0.006; MCF-7, P = 0.005) compared with those with 
a lower proportion (LS174T, P = 0.71). Together, these data further 
underscore the link between structural conformation and resultant 
gene expression, solidifying the role of the RORC element as a regula-
tory switch in its native gene context.

Genome-scale genetic screens reveal molecular mechanisms 
underlying the RORC RNA switch
To investigate how the RORC RNA switch influences gene expression 
at the molecular level, we performed genome-wide CRISPRi screens in 
Jurkat T cells expressing one of two eGFP reporter constructs: one with 
the native RORC switch and another with the 77-GA mutation that favors 
conformation 1 (Extended Data Fig. 7a). These screens were intended 
to identify gene products, the depletion of which altered RORC RNA 

switch-mediated control of reporter gene expression, indicating their 
functional connection to the RNA switch mechanism36. We focused on 
identifying two gene groups: those essential for repression induced by 
the RORC switch (as indicated by an increase in reporter gene expres-
sion), and those affecting the conformational dynamics of the switch 
(as indicated by a change in the ratio of reporter expression between 
the native switch and the 77-GA mutant).

To identify factors influencing the RORC RNA switch’s repressive 
function, we analyzed the abundance of single-guide RNAs in cells 
with high versus low reporter gene expression in both screens. This 
analysis highlighted the NMD pathway, with top hits including core 
NMD factors such as SMG8, UPF1, UPF2 and UPF3B (Fig. 6a). Pathways 
associated with general gene expression, including ribosome biogen-
esis and endoplasmic reticulum stress, were also notable (Extended 
Data Fig. 7b). To pinpoint factors affecting the divergent activities 
of the switch’s two conformations, we compared the distribution of 
sgRNAs across the high and low reporter expression bins between cells 
expressing the native switch and the 77-GA mutant. This comparison 
reinforced the central role of the NMD pathway (Fig. 6b), given that 
the knockdown of NMD components lessened the reporter expres-
sion difference between the native and mutant switch. Surprisingly, 
while knockdowns of SURF complex (that is, SMG1–UPF1-eRF1–eRF3; 
the complex that initiates NMD on stalled ribosomes37) components 
produced strong effects, the exon–junction complex (EJC) components 
did not produce significant changes in either screen, suggesting that 
the RORC RNA switch operates via a noncanonical EJC-independent 
NMD pathway38,39. Moreover, our findings suggest that the NMD path-
way acts preferentially on conformation 2 of the RORC RNA switch, as 
evidenced by the stronger increase in expression of the 77-GA mutant 
compared with the native RORC sequence.

To confirm these results, we applied CRISPRi to individually knock 
down NMD factors in cells expressing the reference switch, the 77-GA 
mutant, or a scrambled sequence. Knockdowns of SURF complex mem-
bers, but not EJC components, significantly affected the switch’s repres-
sive function, confirming our genome-wide screen results (Fig. 6c,d). 
Furthermore, reducing SURF complex expression also diminished 
the expression difference between the reference and 77-GA mutant, 
primarily by increasing reporter expression in the mutant (Extended 
Data Fig. 7d). This evidence indicates that NMD predominantly acts on 
conformation 2 of the RORC RNA switch.

Given its affinity for structured RNAs40, we reasoned that UPF1 
might bind the two RORC RNA switch conformations with differ-
ent affinities. To test this, we mixed together the reference and the 
Box 2 mutant (77-GA) reporter lines at a 1:1 ratio and measured UPF1 
binding using CLIP-qPCR (cross-linking and immunoprecipitation 
followed by qPCR). The reference RORC UTR sequence (containing a 
mixture of conformations 1 and 2) had significantly stronger binding 
to UPF1 than its 77-GA mutant that could form only conformation 1 
(Fig. 6e). Similarly, we observed a strong preference for UPF1 to bind 
to a mutant 116-CCCTAAG that favors conformation 2 than to the 
77-GA mutant, and this effect was even more pronounced than the 
difference between reference and 77-GA (logarithm of fold change of 
1.12 versus 0.41). Together, these results underscore the preference 
of UPF1 to bind to conformation 2 of the RORC switch (Extended 
Data Fig. 7e).

We reasoned that conformation-specific NMD would deplete 
mRNA molecules with conformation 1, thereby resulting in a relative 
increase in the proportion of conformation 2. To test this, we used 
NMDI14, a molecule that disrupts SMG7–UPF1 interactions, to inhibit 
NMD41. Assessing the accessibility of Boxes 2 and 3 in endogenous 
RORC mRNA using DMS-MaPseq, we found a significant decrease in the 
accessibility of Box 2 upon NMD inhibition (P = 0.03, Fig. 6f), indica-
tive of a shift towards conformation 2, possibly due to slower decay 
and accumulation of mRNAs in this conformation. Hence, inhibiting 
NMD led to a shift in the relative proportions of the two conformations.
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Fig. 6 | Genome-wide CRISPRi screen identifies SURF complex as acting 
downstream of the RORC RNA switch. a, Top: Expression change: high versus low: 
comparison of sgRNA representation between the bottom and the top quantiles 
of reporter gene expression (across both reference and 77-GA mutant cell lines), 
represented as a volcano plot. Genes, annotated as part of the NMD pathway by 
gene ontology (GO), are colored in red. The core components of the canonical NMD 
pathway are colored in purple and labeled. All other genes are colored in green. 
Bottom: Gene set enrichment analysis (GSEA) plot for the NMD pathway for the 
above comparison. −logP: negative logarithm of P value. b, Differences between 
conformations: wild type versus the 77-GA mutant. Comparison of ratios between 
top and bottom expression quantiles for the two cell lines. Higher values on the 
x axis indicate that sgRNAs targeting this gene have a stronger effect on reporter 
gene expression in the reference cell line compared with the 77-GA mutant cell line. 
Top: ‘ratio of ratios’ comparison57 represented as a volcano plot. Genes are colored 
as in a. Bottom: GSEA plot for the NMD pathway for the above comparison. −logP: 
negative logarithm of P value. c,d, The effect of knockdown of SURF (c) and EJC 
(d) member proteins on the RORC RNA switch reporter gene expression, relative 
to a scrambled sequence. The individual genes were knocked down using the 
CRISPRi system in both the reference and the scrambled cell lines, then the change 
of reporter gene expression was measured using flow cytometry (n = 2 replicates). 
The bar plots show the ratio of the expression of the scrambled sequence to that 

of the wild-type sequence of the RORC RNA switch. P values were calculated using 
the two-sided Student’s t-test. e, Bar plots of the fractions of reads carrying the 
wild-type RORC switch sequence or B77-GA mutant variant in the UPF1 cross-linking 
and immunoprecipitation (CLIP) library. Left: input RNA libraries, extracted from 
the wild-type and 77-GA mutant-expressing Jurkat cells, mixed at a 1:1 ratio. Right: 
libraries after anti-UPF1 immunoprecipitation (IP). The fractions are normalized 
by the variant fractions in the input libraries. The P value was calculated using the 
translation efficiency ratio test58. FC, fold change. n = 2 replicates. f, The effect of 
NMDI14 on the accessibility of the Box 2 and the Box 3 regions of the RORC element, 
as measured by DMS-MaPseq. Changes in individual nucleotide accessibility are 
shown on the inner plot. Statistical significance was determined using a two-sided 
independent t-test. g, The effect of UPF1 knockdown on endogenous RORC mRNA 
expression, as measured by RT-qPCR (control, n = 4 replicates; UPF1 knockdown, 
n = 6 replicates). siCTRL, non-targeting dicer-substrate small interfering RNA; 
siUPF1, UPF1-targeting dicer-substrate small interfering RNA. P values were 
calculated using the two-sided Student’s t-test. h,i, Effect of the proteasome 
inhibitors carfilzomib (h) and bortezomib (i) on the RNA switch-mediated 
expression change (n = 4 replicates). Data are given as the mean ± s.d. Statistical 
significance was determined using dose–response modeling followed by ANOVA,  
to compare the fitted models to assess differences in the effect of the inhibitors on 
the RNA switch-mediated expression.
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Having demonstrated the conformation-specific effect of NMD 
on the RORC switch in the reporter context, we sought to extend our 
analysis to the endogenous RORC mRNA. We knocked down UPF1 in 
various cell lines and assessed the levels of endogenous RORC mRNA 
using quantitative polymerase chain reaction with reverse transcrip-
tion. UPF1 knockdown in various cell lines led to a substantial increase 
in RORC mRNA expression, notably more pronounced in cell lines 
with a higher prevalence of conformation 2 (LNCaP, P = 0.005; MCF-7,  
P = 0.02) compared with those with a lower prevalence (LS174T, 
P = 0.09) (Fig. 6g). This result emphasizes the role of UPF1 in regulat-
ing endogenous RORC mRNA stability in a conformation-dependent 
manner.

Considering the NMD pathway’s role in directing proteins trans-
lated from aberrant mRNA to proteasomal degradation42, we reasoned 
that the RORC RNA switch might similarly target its gene product. To 
test this, we treated reporter cells with the proteasome inhibitors carfil-
zomib and bortezomib, each acting through different mechanisms. 
Proteasome inhibition resulted in a significantly greater increase in 
eGFP expression in cells expressing the RORC switch compared with the 
control (Fig. 6h,i), indicating that NMD-induced proteasomal degrada-
tion of the switch-containing gene product contributes to the observed 
effect on gene expression.

We propose that UPF1 preferentially recognizes switch conforma-
tion 2 over conformation 1, and that the recruitment of the SURF com-
plex by UPF1 consequently leads to decreased gene expression through 
proteasome-mediated degradation of translation products and mRNA 
decay, preventing repeated rounds of translation (Fig. 7b). Moreover, 
sequence mutations that influence the conformational equilibrium not 
only alter the RNA’s energy landscape but also modulate SURF recruit-
ment and RNA stability, reflecting the nuanced control of gene repres-
sion by the switch. The mechanisms underlying the switching between 
conformations, however, remain an area for further investigation.

Collectively, we show that the RORC RNA switch influences gene 
expression through conformation-specific engagement of NMD fac-
tors that lead to control of mRNA and protein stability. Importantly, 
the RORC switch is only one example out of 245 functionally validated 
human RNA switches identified in this work, emphasizing the power 
of our SwitchSeeker approach to illuminate new areas of eukaryotic 
RNA biology.

Discussion
Historically, RNA switches were identified primarily through biochemical 
experimentation, measuring direct ligand interactions43,44, and com-
parative genomics to identify conserved noncoding regions that act as 
cis-regulatory elements in bacteria45,46. These methods, however, present 
challenges in eukaryotic contexts due to the dynamic nature of mRNA 
structures and the complexity of eukaryotic gene regulation22,24. Addi-
tionally, the vast genomic landscape and low sequence conservation in 
eukaryotes complicate the direct application of these approaches47–49. 
While numerous tools and algorithms exist for riboswitch prediction 
(reviewed in refs. 50,51), few of those focus on de novo discovery that 
is family-agnostic. The exceptions include SwiSpot10, which focuses 
on identifying the putative switching sequence, and the conditional 
probability-based method52. None of these algorithms has been shown 
to predict functional RNA switches from novel families in eukaryotic 
genomes. Addressing these challenges, SwitchSeeker integrates bio-
chemistry, systems biology and functional genomics to create a com-
prehensive platform for RNA switch discovery and characterization 
in eukaryotes. By covering the entire discovery process, from de novo 
predictions to the annotation of mechanisms, SwitchSeeker overcomes 
the limitations of existing methods. Looking forward, its capability to 
scale across complete transcriptomes sets the stage for a thorough char-
acterization of RNA switches across diverse cell types and organisms, 
enhancing our understanding of their roles across the tree of life.

Advancements in genomic technologies such as RNA secondary 
structure probing (DMS-seq, SHAPE-seq) and single-particle cryo-EM 
have been instrumental in our systematic exploration of RNA switches, 
enabling us to delve into the diverse conformations of RNA molecules 
and their three-dimensional structures despite challenges such as 
size and flexibility28,29,53. This has opened up opportunities to study 
the functional differences between alternative RNA conformations 
and their role in gene expression control. Our DMS-MaPseq and 
cryo-EM data suggest that the RORC 3ʹ mRNA element inhabits a shal-
low energy landscape with two rugged minima linked to two major 
molecular conformations (Fig. 7a), thereby validating the SwitchSeeker 
approach to identifying RNA molecules with bi-stable energy land-
scapes. Genome-wide CRISPRi screens identified the EJC-independent 
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Fig. 7 | The proposed mechanism of RORC RNA switch functioning. 
 a, Schematic diagram of a shallow energy landscape for the RORC 3ʹ mRNA 
element. Shallow global minima characterizing the conformation 1 (cryo-EM 
Class A) and conformation 2 (cryo-EM Class B) structures themselves comprise 
multiple local minima in which various secondary structure elements fold 
or unfold while preserving overall tertiary structure and biological activity. 
These local minima are illustrated by secondary structure models for various 
DRACO cluster members. The two global minima are separated by a kinetic 
barrier that represents a partially folded intermediate (cryo-EM Class 3). The 
two dashed lines indicate alterations to the global landscape exhibited by the 
mutant sequences, blue for the 77-GA mutant and red for the 117-AC mutant. 
These altered landscapes eliminate one of the global minima without disrupting 
the intermediate. b, Proposed mechanism of the RORC RNA switch. The RNA 
switch exists in an ensemble of two states. One of them is recognized by the SURF 
complex; such recognition triggers mRNA degradation (likely to be mediated by 
SMG5) and protein degradation (mediated by the proteasome), thus affecting 
gene expression.
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NMD pathway as a key mediator of the gene regulatory mechanism of 
the RORC switch. Together, our studies of the RORC switch not only 
uncover new regulatory biology but also provide a blueprint on how 
the SwitchSeeker pipeline can enable rapid functional and mechanistic 
characterization of new RNA switches.

RNA structure is known to influence gene expression in health and 
disease35, as shown by our recent identification of specific RNA struc-
tures that influence splicing in metastatic cancers54. However, dynamic 
RNA structures such as RNA switches are a relatively unexplored aspect 
of gene expression control in eukaryotes. Our observations indicate a 
prevalence of RNA switches in the human transcriptome, suggesting 
that RNA conformation-dependent gene regulation is a widespread 
phenomenon. In our study we chose stringent criteria for selecting 
RNA switches, requiring them to be bi-stable in vivo, meaning that they 
populate two mutually exclusive structural conformations. However, 
it is important to note that not all RNA switches may conform to this 
binary model; some, such as the HIV-1 TAR RNA, have transient but 
functional conformations55, and others might present multistability, 
adding layers to regulatory control. Modifications to the SwitchSeeker 
platform will be necessary to explore these distinct classes of RNA 
structural elements.

While SwitchSeeker offers a robust framework for identifying 
functional RNA structural switches, there are several caveats and 
limitations to consider. First, identifying RNA switches that operate 
under specific cellular conditions requires structure probing assays 
to be conducted in those exact conditions, which can be challenging 
and resource intensive. Additionally, SwitchSeeker does not identify 
ligands for RNA switches; this necessitates complementary approaches 
to uncover the specific molecules interacting with these RNA elements. 
Future technological advancements could significantly enhance the 
tool’s efficacy. Currently, the absence of high-quality RNA structure 
datasets across full transcriptomes limits the comprehensive applica-
tion of SwitchSeeker. The development of such datasets would enable 
more efficient and accurate RNA switch identification. Moreover, 
integrating additional functional assays, such as those targeting RNA 
switches that influence splicing, could broaden the scope and impact 
of SwitchSeeker.

The known examples of human RNA switch mechanisms include 
mutually exclusive binding of RNA-binding proteins by two differ-
ent RNA conformations8 and m6A modification-based switching7. In 
this study, we introduce a novel switch mechanism that operates via 
the NMD pathway, suggesting a vast potential for diverse metabolic 
pathways in RNA switch functionality. SwitchSeeker’s utility lies in its 
ability to identify and elucidate these mechanisms in high throughput, 
irrespective of their specific pathways. The modulation of gene expres-
sion through shifts in RNA conformation, as achieved with ASOs in this 
study, opens new possibilities for targeting RNA switches in future 
therapeutics. SwitchSeeker is available for use and adaptation, and we 
hope that it will pave the way for many new discoveries in RNA-based 
regulation in eukaryotes.
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Methods
SwitchFinder: detailed description of the algorithm
Conflicting base pairs identification. Conflicting base pairs were 
detected using a modification of the MIBP algorithm developed by  
L. Lin and W. McKerrow59. First, a large number of folds (default 
N = 1,000) is sampled from the Boltzmann distribution. If structure 
probing data (such as DMS-seq or SHAPE-seq) is provided, the Boltz-
mann distribution modeling software (part of the RNAstructure pack-
age56) incorporates the data as a pseudofree energy change term. Then, 
the base pairs are filtered: the base pairs that are present in almost all of 
the folds or are absent from almost all of the folds are removed from the 
further analysis. Then, mutual information for each pair of base pairs 
is estimated. To do so, each base pair is represented as a binary vector 
of length N, where N is the number of folds considered; in this binary 
vector, a given fold is represented as 1 if this base pair is present there, 
or as 0 if it is not. Mutual information between each two base pairs is 
calculated as in ref. 60. This results in an M × M table of mutual infor-
mation values, where M is the number of base pairs considered. Then, 
the sum of each row of the square table is calculated. In the resulting 
vector K of length M, each base pair is represented by a sum of mutual 
information values across all of the other base pairs. Then, only the 
base pairs for which the sum of mutual information values passes 
the threshold of U × MAX(K) are considered, where U is a parameter 
(default value 0.5). We call the base pairs that pass this threshold the 
‘conflicting base pairs’.

Conflicting stems identifications. Once the conflicting base pairs are 
identified, they are assembled into conflicting stems, or series of con-
flicting base pairs that directly follow each other and therefore could 
potentially form a stem-like RNA structure. More specifically, the base 
pairs (a, b) and (c, d) form a stem if either (a == c − 1) and (b == d + 1), or 
(a == c + 1) and (b == d − 1). The stem is defined as a pair of intervals ((u, v),  
(x, y)), where v − u == y − x. Then, the conflicting stems are filtered by 
length: only the stems that are longer than a certain threshold value 
(default value: 3) are considered. Among these stems, the stems that 
directly conflict with each other are identified. Two stems ((u1, v1), (x1, y1))  
and ((u2, v2), (x2, y2)) conflict with each other if there is an overlap longer 
than a threshold value between either (u1, v1) and (u2, v2), or (u1, v1) and 
(x2, y2), or (x1, y1) and (u2, v2), or (x1, y1) and (x2, y2). The default threshold 
value is 3. The pairs of conflicting stems are sorted by the average value 
of their K values (sums of mutual information). The highest scoring pair 
of conflicting stems is considered the winning prediction, representing 
the major switch between two of the local minima present in the energy 
folding landscape of the given sequence. If no pairs of conflicting stems 
pass the threshold, SwitchFinder reports that no potential switch is 
identified for the given sequence.

Identifying the two conflicting structures. Given the prediction of the 
two conflicting stems, the folds that represent the two local minima of 
the energy folding landscape are predicted. Importantly, SwitchFinder 
focuses on optimizing the prediction accuracy, as opposed to the 
commonly used approach of energy minimization61. The MaxExpect 
program from the RNAstructure package56 is used; the base pairings 
of each of the conflicting stems are provided as folding constraints (in 
Connectivity Table format). Furthermore, the two predicted structures 
are referred to as conformations 1 and 2.

Activation barrier estimation. The RNApathfinder software62 is used 
to estimate the activation energy needed for a transition between the 
conformations 1 and 2.

Classifier for prediction of RNA switches. The curated representative 
alignments for each of the 50 known riboswitch families were down-
loaded from the Rfam database9. Each sequence is complemented by 
its shuffled counterpart (while preserving dinucleotide frequencies63). 

For all of the sequences, the two conflicting conformations, their fold-
ing energies and their activation energies are predicted as above. To 
estimate the performance of SwitchFinder for a given riboswitch family, 
all of the sequences from this family are placed into the test set, while all 
of the sequences from the other families are placed into the training set. 
Then, a linear regression model is trained on the training set, in which 
the response variable is binary and indicates whether the sequence is 
a real riboswitch or is a shuffled counterpart, and the predictor vari-
ables are the average folding energy of the two conformations and the 
activation energy of the transition between them. The trained linear 
regression model is then run on the test set, and its performance is 
estimated using the receiver operating characteristic curve.

Prediction of RNA switches in human transcriptome. The coordi-
nates of 3ʹUTRs of the human transcriptome were downloaded from 
UCSC Table Browser64, table tb_wgEncodeGencodeBasicV28lift37. 
The sequences of 3ʹUTRs were cut into overlapping fragments of 
186 nucleotides in length (with overlaps of 93 nucleotides). For all of 
the sequences, the two conflicting conformations, their folding ener-
gies and their activation energies were predicted as above. A linear 
regression model was trained as described above on all 50 known 
riboswitch families. The model was applied to the 3ʹUTR fragments 
from the human genome, and the fragments were sorted according to 
the model prediction scores. The top 3,750 predictions were selected 
for further investigation.

Incorporation of in vivo probing data. In vivo probing data, such as 
DMS-MaPseq, is used to apply pseudoenergy restraints when sam-
pling folds from the Boltzmann distribution (that is, using the –SHAPE 
parameter in RNAstructure package commands56). To test the hypoth-
esis of whether the in vivo probing data support the presence of two 
conflicting conformations in a given sequence, the following workflow 
was used. First, the two conflicting folds were predicted with Switch-
Finder using in silico folding only. Then, SwitchFinder was run on the 
same sequence with the inclusion of in vivo probing data. If the same 
two conflicting folds were predicted among the top conflicting folds, 
the probing data were considered supportive of the presence of the 
two predicted conformations.

Mutation generation. To shift the RNA conformation ensemble 
towards one or another state, mutations of two types were introduced.

(1)    ‘Strengthen a stem’ mutations: given two conflicting stems  
((u1, v1), (x1, y1)) and ((u2, v2), (x2, y2)), one of the stems (for exam-
ple, the first one) was changed in a way that would preserve its 
base pairing but deny the possibility of forming the second 
stem. To do so, the nucleotides in the interval (u1, v1) were 
replaced with all possible sequences of equal length, and the 
nucleotides (x1, y1) were replaced with the reverse complement 
sequence. Then, the newly generated sequences were filtered 
by two predetermined criteria: (i) the second stem cannot 
form more than a fraction of its original base pairs (default 
value 0.6), and (ii) the modified first stem cannot form long 
paired stems with any region of the existing sequence (default 
threshold length 4). The sequences that passed both criteria 
were ranked by the introduced change in the sequence nucleo-
tide composition; the mutations that changed the nucleotide 
composition the least were chosen for further analysis. Each 
mutated sequence was additionally analyzed by SwitchFinder 
to ensure that the Boltzmann distribution is heavily shifted 
towards the desired conformation.

(2)    ‘Weaken a stem’ mutations: given two conflicting stems ((u1, v1),  
(x1, y1)) and ((u2, v2), (x2, y2)), one of the stems (for example, the 
second one) was changed in such a way that this stem would 
not be able to form base pairing, while the base pairing of the 
other stem (in this example, the first stem) would be preserved. 
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To do so, the nucleotides in either of the intervals (u2, v2) or 
(x2, y2) were replaced with all possible sequences of equal length. 
The newly generated sequences were filtered by three prede-
termined criteria: (i) the first stem stays unchanged, (ii) the 
second stem cannot form more than a fraction of its original 
base pairs (default value 0.6), and (iii) the modified part of the 
sequence cannot form long paired stems with any region of the 
existing sequence (default threshold length 4). The sequences 
that passed all of the criteria were ranked by the introduced 
change in the sequence nucleotide composition: the mutations 
that changed the nucleotide composition the least were chosen 
for further analysis. Each mutated sequence was additionally 
analyzed using SwitchFinder to ensure that the Boltzmann dis-
tribution is heavily shifted towards the desired conformation.

Cell culture
All cells were cultured in a 37 °C 5% CO2 humidified incubator. The 
HEK293 cells (purchased from ATCC, cat. no. CRL-3216) were cultured in 
DMEM high-glucose medium supplemented with 10% FBS, l-glutamine 
(4 mM), sodium pyruvate (1 mM), penicillin (100 units ml−1), strep-
tomycin (100 μg ml−1) and amphotericin B (1 μg ml−1) (Gibco). The 
Jurkat cell line (purchased from ATCC, cat. no. TIB-152) was cultured 
in RPMI-1640 medium supplemented with 10% FBS, glucose (2 g l−1), 
l-glutamine (2 mM), 25 mM HEPES, penicillin (100 units ml−1), strep-
tomycin (100 μg ml−1) and amphotericin B (1 μg ml−1) (Gibco). All cell 
lines were routinely screened for mycoplasma with a PCR-based assay.

Cryo-electron microscopy
Sample preparation and data collection. A total of 3.5 μl target mRNA 
at an approximate concentration of 1.5 mg ml−1 was applied to gold, 
300 mesh transmission electron microscopy grids with a holey carbon 
substrate of 1.2 μm and 1.3 μm spacing (Quantifoil). The grids were 
blotted with no. 4 filter papers (Whatman) and plunge frozen in liquid 
ethane using a Mark IV Vitrobot (Thermo Fisher), with blot times of 
4–6 s, blot force of −2, at a temperature of 8 °C and 100% humidity. All 
grids were glow discharged in an easiGlo (Pelco) with rarefied air for 
30 s at 15 mA, no more than 1 h prior to preparation. Duplicate wild-type 
and mutant RNA specimens were imaged under different conditions 
on several microscopes as per Data File S8; all were equipped with K3 
direct electron detector (DED) cameras (Gatan), and all data collection 
was performed using SerialEM65. Detailed data collection parameters 
are listed in Data File S8.

Image processing. Dose-weighted and motion-corrected sums were 
generated from raw DED movies during data collection using Univer-
sity of California, San Francisco (UCSF) MotionCor266. Images from 
super-resolution datasets were downsampled to the physical pixel size 
before further processing. Estimation of the contrast transfer function 
(CTF) was performed in CTFFIND467, followed by neural net-based 
particle picking in EMAN268. Two-dimensional (2D) classification, ab 
initio three-dimensional (3D) classification, and gold-standard refine-
ment were done in cryoSPARC69. CTFs were then re-estimated in cry-
oSPARC and particles repicked using low-resolution (20 Å) templates 
generated from chosen 3D classes. Extended datasets were pooled 
when appropriate, and particle processing was repeated through 
gold-standard refinement as before. All structure figures were created 
using UCSF ChimeraX (ref. 70). Further details are given in Data File S7 
and Extended Data Fig. 5.

Reporter vector design and library cloning
First, mCherry-P2A-Puro fusion was cloned into the BTV arbovirus 
backbone (Addgene, cat. no. 84771). Then, the vector was digested 
with MluI-HF and PacI restriction enzymes (NEB), with the addition of 
Shrimp Alkaline Phosphatase (NEB). The digested vector was purified 
with the Zymo DNA Clean and Concentrator-5 kit.

DNA oligonucleotide libraries (one for functional screen and 
one for massively parallel mutagenesis analysis) consisting of 7,500 
sequences in total were synthesized by Agilent. The second strand 
was synthesized using Klenow Fragment (3ʹ → 5ʹ exo-) (NEB). The 
double-stranded DNA library was digested with MluI-HF and PacI 
restriction enzymes (NEB) and run on a 6% TBE (Tris base, boric acid, 
EDTA) polyacrylamide gel. The band of the corresponding size was 
cut out and the gel was dissolved in the DNA extraction buffer (10 mM 
Tris, pH 8, 300 mM NaCl, 1 mM EDTA). The DNA was precipitated with 
isopropanol. The digested DNA library and the digested vector were 
ligated with T4 DNA ligase (NEB). The ligation reaction was precipitated 
with isopropanol and transformed into MegaX DH10B T1R electro-
competent cells (Thermo Fisher). The library was purified with Zymo-
PURE II Plasmid Maxiprep Kit (Zymo). The representation of individual 
sequences in the library was verified by sequencing the resulting library 
on an MiSeq instrument (Illumina).

Massively parallel reporter assay
The DNA library was co-transfected with pCMV-dR8.91 and pMD2.G 
plasmids using TransIT-Lenti (Mirus) into HEK293 cells, following the 
manufacturer’s protocol. Virus was collected 48 h after transfection 
and passed through a 0.45 μm filter. HEK293 cells were then trans-
duced overnight with the filtered virus in the presence of 8 μg ml−1 
polybrene (Millipore); the amount of virus used was optimized to 
ensure an infection rate of ~20%, as determined by flow cytometry 
The infected cells were selected with 2 μg ml−1 puromycin (Gibco). 
Cells were collected at 90–95% confluency for sorting and analysis 
on a BD FACSaria II sorter. The distribution of mCherry : GFP ratios 
was calculated. For sorting a library into subpopulations, we gated 
the population into eight bins each containing 12.5% of the total 
number of cells. A total of 1.2 million cells were collected for each 
bin to ensure sufficient representation of sequence in the popula-
tion in two replicates each. For each subpopulation, we extracted 
genomic DNA and total RNA with the Quick-DNA/RNA Miniprep kit. 
gDNA was amplified by PCR with Phusion polymerase (NEB) using the 
primers CAAGCAGAAGACGGCATACGAGAT–i7– GTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCACTGCTAGCTAGATGACTAAACGCG 
and AATGATACGGCGACCACCGAGATCTACAC–i5– ACACTCTTTC-
CCTACACGACGCTCTTCCGATCTGTGGTCTGGATCCACCGGTCC. 
Different i7 indexes were used for eight different bins, and differ-
ent i5 indexes were used for the two replicates. RNA was reverse 
transcribed with Maxima H Minus Reverse Transcriptase (Thermo 
Fisher) using primer CTCTTTCCCTACACGACGCTCTTCCGATCT-
NNNNNNNNNNNTGGTCTGGATCCACCGGTCCGG. The com-
plementary DNA was amplified with Q5 polymerase (NEB) using 
primers CAAGCAGAAGACGGCATACGAGAT–i7–GTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCCTGCTAGCTAGATGACTAAACGC and 
CAAGCAGAAGACGGCATACGAGAT–i5–GTGACTGGAGTTCAGACGT-
GTGCTCTTCCGATCTTACCCGTCATTGGCTGTCCA. Different i7 
indexes were used for eight different bins, and different i5 indexes 
were used for the two replicates. The amplified DNA libraries were 
size purified with the Select-a-Size DNA Clean and Concentrator 
MagBead Kit (Zymo). Deep sequencing was performed using the 
HiSeq4000 platform (Illumina) at the UCSF Center for Advanced 
Technologies.

The adapter sequences were removed using cutadapt71. For RNA 
libraries, the unique molecular identifier (UMI) was then removed 
from the reads and appended to read names using UMI tools72. The 
reads were matched to the fragments using the bwa mem command. 
The reads were counted using featureCounts73. The read counts were 
normalized using median of ratios normalization74. The one-way 
chi-squared test was used to estimate how different its distribution 
across the sorting bins is from the null hypothesis (that is uniform 
distribution). mRNA stability was estimated by comparing the RNA 
and DNA read counts with MPRAnalyze75.
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Massively parallel mutagenesis analysis
Library design and measurement. For each candidate switch, two 
alternative conformations were identified using SwitchFinder. Each 
conformation is defined by a stem structure: ((u1, v1), (x1, y1)) and  
((u2, v2), (x2, y2)), representing two conflicting stems. The Switch-
Finder mutation generation algorithm was used to design four muta-
tions in the candidate switch sequence: A, ‘strengthen a stem’ mutation 
favoring conformation 1: the regions (u1, v1) and (x1, y1) are altered 
while preserving complementarity; B, ‘weaken a stem’ mutation favor-
ing conformation 1: either the region (u2, v2) or (x2, y2) is modified, 
preserving the regions (u1, v1), (x1, y1); C, ‘strengthen a stem’ mutation 
favoring conformation 2: the regions (u2, v2), (x2, y2) are changed 
while maintaining complementarity; and D, ‘weaken a stem’ mutation 
favoring conformation 2: either the region (u1, v1) or (x1, y1) is altered, 
ensuring that the regions (u2, v2), (x2, y2) remain intact.

Subsequently, the mutated sequences for selecting candidate 
RNA switches, along with the reference sequence, were pooled into a 
single DNA oligonucleotide library. The impact of each sequence on 
reporter gene expression was evaluated in cells, as outlined in the Mas-
sively Parallel Reporter Assay section. Consequently, each candidate 
RNA switch in the library is represented by its reference sequence, two 
mutated sequences favoring conformation 1 (A and B), and two mutated 
sequences favoring conformation 2 (C and D).

Candidate RNA switch ranking. For each candidate RNA switch, its 
effect on reporter gene expression was assessed in cells, following the 
protocol described in the Massively Parallel Reporter Assay section. 
This resulted in 16 measurements, corresponding to normalized read 
counts in sorting bins 1 (lowest expression) to bin 8 (highest expres-
sion), across two replicates; these arrays of counts are referred to as 
‘bin_counts’. Measurements were obtained for mutants A, B, C, D, and 
the reference sequence. Correlations between the effects of mutations 
designed to favor the same or opposite conformations were com-
puted as follows: correlation_same_1 = Pearsonr(bin_counts(mutant A),  
bin_counts(mutant B)); correlation_same_2 = Pearsonr(bin_
counts(mutant C), bin_counts(mutant D)); correlation_oppo-
site_1 = Pearsonr(bin_counts(mutant A), bin_counts(mutant C)); 
and correlation_opposite_2 = Pearsonr(bin_counts(mutant A), 
bin_counts(mutant D)). The score of each candidate switch was 
then calculated as: score = mean(correlation_same_1, correlation_
same_2) − mean(correlation_opposite_1, correlation_opposite_2).  
Candidate switches were ranked based on this score. Those with a score 
exceeding the mean + 1 s.d. were considered significant.

DMS-MaPseq
DMS-MaPseq was performed as described in ref. 54. In brief, cells were 
incubated in culture with 1.5% DMS (Sigma) at room temperature for 
7 min, the media was removed, and DMS was quenched with 30% BME 
(β-mercaptoethanol). Total RNA from DMS-treated cells and untreated 
cells was then isolated using Trizol (Invitrogen). RNA was reverse tran-
scribed using TGIRT-III reverse transcriptase (InGex) and target-specific 
primers. PCR was then performed to amplify the desired sequences 
and to add Illumina-compatible adapters. The libraries were then 
sequenced on a HiSeq4000 instrument (Illumina).

Pear (v0.9.6) was used to merge the paired reads into a single com-
bined read. The UMI was then removed from the reads and appended 
to read names using UMI tools (v1.0). The reads were then reverse com-
plemented (fastx toolkit) and mapped to the amplicon sequences using 
bwa mem (v0.7). The resulting bam files were then sorted and dedupli-
cated (umi_tools, with method flag set to unique). The alignments were 
then parsed for mutations using the CTK (CLIP Tool Kit) software. The 
mutation frequency at every position was then reported. The signal nor-
malization was performed using boxplot normalization76. The top 10% 
of positions with the highest mutation rates were considered outliers77. 
The clustering of DMS-MaPseq signal was performed with DRACO28.

SHAPE chemical probing of RNAs
Chemical probing and mutate-and-map experiments were carried out 
as described previously78. In brief, 1.2 pmol RNA was denatured at 95 °C 
in 50 mM Na-HEPES, pH 8.0, for 3 min, and folded by cooling to room 
temperature over 20 min, and then adding MgCl2 to a 10 mM concentra-
tion. RNA was aliquoted in 15 μl volumes into a 96-well plate and mixed 
with nuclease-free H2O (control), or chemically modified in the presence 
of 5 mM 1-methyl-7-nitroisatoic anhydride (1M7)79, for 10 min at room 
temperature. Chemical modification was stopped by adding 9.75 μl 
quench and purification mix (1.53 M NaCl, 1.5 μl washed oligo-dT beads, 
Ambion), 6.4 nM FAM-labeled, reverse-transcriptase primer (/56-FAM/
AAAAAAAAAAAAAAAAAAAAGTTGTTCTTGTTGTTTCTTT), and 2.55 M 
Na-MES. RNA in each well was purified by bead immobilization on a 
magnetic rack and two washes with 100 μl 70% ethanol. RNA was then 
resuspended in 2.5 μl nuclease-free water prior to reverse transcription.

RNA was reverse transcribed from annealed fluorescent primer 
in a reaction containing 1× First Strand Buffer (Thermo Fisher), 5 mM 
dithiothreitol, 0.8 mM dNTP mix and 20 U SuperScript III Reverse 
Transcriptase (Thermo Fisher) at 48 °C for 30 min. RNA was hydrolyzed 
in the presence of 200 mM NaOH at 95 °C for 3 min, then placed on ice 
for 3 min and quenched with 1 volume 5 M NaCl, 1 volume 2 M HCl, and 
1 volume 3 M sodium acetate. cDNA was purified on magnetic beads, 
then eluted by incubation for 20 min in 11 μl Formamide-ROX350 mix 
(1,000 μl Hi-Di Formamide (Thermo Fisher) and 8 μl ROX350 ladder 
(Thermo Fisher)). Samples were then transferred to a 96-well plate in 
‘concentrated’ form (4 μl sample + 11 μl ROX mix) and ‘dilute’ form (1 μl 
sample + 14 μl ROX mix) for saturation correction in downstream analy-
sis. Sample plates were sent to Elim Biopharmaceuticals for analysis by 
capillary electrophoresis.

Antisense oligonucleotide infection
ASOs were purchased from Integrated DNA Technologies; the Mor-
pholino ASOs were purchased from Gene Tools LLC (see sequences in 
Data File S9). A total of 95,000 HEK cells were seeded into the wells of 
a 24-well cell culture-treated plate in a total volume of 500 μl. At 24 h 
later, either 1 nmol Morpholino ASO together with 3 μl EndoPorter 
reagent (Gene Tools LLC), or 6 pmol other ASO were added to each well. 
LNCaP, MCF-7 and LS174T cells were infected with ASOs using Lonza 
SE Cell Line 4D-Nucleofector X Kit S (cat. no. V4XC-1032) according 
to the manufacturer’s protocol. At 48 h later, the mCherry and eGFP 
fluorescence was measured on a BD FACSCelesta Cell Analyzer, or 
RNA was isolated for RT-qPCR measurement with the Zymo Quick-
RNA Microprep isolation kit with in-column DNase treatment per the 
manufacturer’s protocol.

CRISPRi screen
Reporter screens were conducted using established flow cytometry 
screen protocols80 (Horlbeck et al., 2016; Sidrauski et al., 2015). Jurkat 
cells with previously verified CRISPRi activity were used (Horlbeck et al., 
2018). The CRISPRi-v2 (5 sgRNA/TSS, Addgene cat. no. 83969) sgRNA 
library was transduced into Jurkat cells at a multiplicity of infection of 
<0.3 (the percentage of blue fluorescent protein (BFP)-positive cells 
was ~30%). For the flow-based CRISPRi screen with the Jurkat cells, the 
sgRNA library virus was transfected at an average of 500-fold coverage 
after transduction (day 0). Puromycin (1 μg ml−1) selection for positively 
transduced cells was performed at 48 h (day 2) and 72 h (day 3) after 
transduction (day 3). On day 11, cells were collected in PBS and sorted 
with the BD FACSAria Fusion cell sorter. Cells were gated into the 25% 
of cells with the highest GFP : mCherry fluorescence intensity ratio, and 
the 25% of cells with the lowest ratio. The screens were performed with 
two conditions: cells with a reference RORC element–GFP reporter and 
a mutated 77-23 RORC element–GFP reporter. Screens were addition-
ally performed in duplicate. After sorting, genomic DNA was collected 
(Macherey-Nagel Midi Prep kit) and amplified using NEB Next Ultra II Q5 
master mix and primers containing TruSeq Indexes for next-generation 
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sequencing. Sample libraries were prepared and sequenced on a HiSeq 
4000. Guides were then quantified with the published ScreenProcess-
ing (https://github.com/mhorlbeck/ScreenProcessing) method and 
phenotypes generated with an in-house processing pipeline, iAnalyzer 
(https://github.com/goodarzilab/iAnalyzer). In brief, iAnalyzer relies 
on fitting a generalized linear model to each gene. Coefficients from 
this generalized linear model were z-score normalized to the negative 
control guides and finally the largest coefficients were analyzed as 
potential hits. For the comparison of gene phenotypes between the 
two cell lines, the DESeq2 ratio of ratios test was used57.

CRISPRi-mediated and small interfering RNA-mediated gene 
knockdown
Jurkat cells expressing the dCas9–KRAB fusion protein were con-
structed by lentiviral delivery of pMH0006 (Addgene, cat. no. 135448) 
and FACS isolation of BFP-positive cells.

Guide RNA sequences for CRISPRi-mediated gene knockdown 
were cloned into pCRISPRia-v2 (Addgene, cat. no. 84832) via BstXI-BlpI 
sites. After transduction with sgRNA lentivirus, Jurkat cells were 
selected with 2 μg ml−1 puromycin (Gibco). The fluorescence of eGFP 
and of mCherry was measured on a BD FACSCelesta Cell Analyzer.

For UPF1 siRNA-mediated knockdown, the TriFECTa DsiRNA Kit 
from Integrated DNA Technologies (cat. no. hs.Ri.UPF1.13) was used. 
LNCaP, MCF-7 and LS174T cells were infected with siRNAs using the 
Lonza SE Cell Line 4D-Nucleofector X Kit S (cat. no. V4XC-1032) accord-
ing to the manufacturer’s protocol. At 48 h later, RNA was collected 
using the Zymo QuickRNA Microprep isolation kit with in-column 
DNase treatment as per the manufacturer’s protocol.

Reporter cell line generation
Mutated or reference sequences of RORC 3ʹUTR were cloned into the 
dual GFP–mCherry reporter using the MluI-HF and PacI restriction 
enzymes (NEB) as described above. The reporters were lentivirally 
delivered to HEK293 and Jurkat cells and analyzed with flow cytometry 
as described above.

Drug treatment
Jurkat cells were seeded at a density of 0.25 × 107 cells per ml. Either the 
proteasome inhibitors (Carfilzonib or Bortezomib, Cayman Chemical) 
or negative control (dimethyl sulfoxide, DMSO) were added at the given 
concentration. After 24 h of incubation, the fluorescence of eGFP and 
of mCherry was measured on a BD FACSCelesta Cell Analyzer.

MCF-7 cells were treated either with 50 μM NMDI14 (TargetMol), 
or with DMSO, for 24 h. Afterwards, cells were treated with DMS as 
describe above and the RNA was collected as described above.

mRNA stability measurements
Jurkat cells were treated with 10 μg ml−1 α-amanitin (Sigma-Aldrich, cat. 
no. A2263) for 8–9 h prior to total RNA extractions. Total RNA was iso-
lated using the Zymo QuickRNA Microprep isolation kit with in-column 
DNase treatment as per the manufacturer’s protocol. mRNA levels were 
measured with RT-PCR, using 18S ribosomal RNA (transcribed by RNA 
Pol I) as the control.

T-cell isolation, transduction and Th17 cell differentiation
Th17 cells were derived as described previously34. Plates were coated 
with 2 μg ml−1 anti-human CD3 (UCSF monoclonal antibody core, clone: 
OKT-3) and 4 μg ml−1 anti-human CD28 (UCSF monoclonal antibody 
core, clone: 9.3) in PBS with calcium and magnesium for at least 2 h at 
37 °C or overnight at 4 °C with the plate wrapped in parafilm. Human 
CD4+ T cells were isolated from human peripheral blood using the 
EasySep human CD4+ T cell isolation kit (17952; STEMCELL) and stimu-
lated in ImmunoCult-XF T-cell expansion medium (10981; STEMCELL) 
supplemented with 10 mM HEPES, 2 mM l-glutamine, 100 μM 2-MOE, 
1 mM sodium pyruvate and 10 ng ml−1 transforming growth factor-β. 

At 24 h after T-cell isolation and initial stimulation on a 96-well plate, 
7 μl lentivirus was added to each sample. After 24 h, the media was 
removed from each sample without disturbing the cells and replaced 
with 200 μl fresh media. After 48 h, cells were stimulated with 1.2 μM 
ionomycin, 25 nM propidium monoazide and 6 μg ml−1 brefeldin-A, 
resuspended by pipetting, incubated for 4 h at 37 °C, and collected for 
analysis. Half of each sample was stained for CD4, FoxP3, interleukin 
(IL)-13, IL-17A, interferon (IFN)-γ and analyzed on a BD LSRFortessa 
cell analyzer (see below). The other half of the sample was not stained 
and was analyzed for the expression of eGFP and mCherry on a BD 
LSRFortessa cell analyzer.

Cultured human T cells were collected, washed and stained with 
antibodies against cell surface proteins and transcription factors. Cells 
were fixed and permeabilized with the eBioscience Foxp3/Transcrip-
tion Factor Staining Buffer Set or the Transcription Factor Buffer Set 
(BD Biosciences). Extracellular nonspecific binding was blocked with 
the anti-CD16/CD32 antibody (clone 2.4G2; UCSF Monoclonal Antibody 
Core). Intracellular nonspecific binding was blocked with anti-CD16/
CD32 antibodies) and 2% normal rat serum. Dead cells were stained 
with Fixable Viability Dye eFluor 780 (eBioscience) or Zombie Violet 
Fixable Viability Kit (BioLegend). Cells were stained with the following 
fluorochrome-conjugated anti-human antibodies: anti-CD4 (Invitro-
gen, cat. no. 17-0049-42), anti-FOXP3 (eBioscience, cat. no. 25-4777-61), 
anti-IL-13 (eBioscience, cat. no. 11-7136-41), anti-IL-17A (eBioscience, 
cat. no. 12-7179-42) and anti-IFNγ (BioLegend, cat. no. 502520). All of 
the antibodies were used at 1:200 dilution. Samples were analyzed on 
a BD LSRFortessa cell analyzer. Data were analyzed using FlowJo 10.7.1 
and BD FACSDiva v9 software.

Analysis of capillary electrophoresis data with HiTRACE
Capillary electrophoresis runs from chemical probing and 
mutate-and-map experiments were analyzed with the HiTRACE MAT-
LAB package81. Lanes were aligned, bands fitted to Gaussian peaks, 
background subtracted using the no-modification lane, corrected for 
signal attenuation, and normalized to the internal hairpin control. The 
end result of these steps is a numerical array of ‘reactivity’ values for 
each RNA nucleotide that can be used as weights in structure prediction.

UPF1 targeted CLIP-seq
Jurkat cells expressing RORC reporters (reference, 77-GA mutant vari-
ant or 116-CCCTAAG mutant variant) were collected and crosslinked by 
ultraviolet radiation (400 mJ cm−2). Cells were then lysed with low salt 
wash buffer (1x PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% IGEPAL). 
To probe preferential UPF1 binding towards different reporters, lysates 
from 77-GA mutant cells were mixed with lysates from either wild-type 
or 116-CCCTAAG mutant cells at a 1:1 ratio prior to immunoprecipita-
tion. Samples were then treated with a high dose (1:3,000 RNase A and 
1:100 RNase I) and a low dose (1:15,000 RNase A and 1:500 RNase I)  
of RNase A and RNase I separately and combined after treatment. To 
immunoprecipitate UPF1–RNA complex, a UPF1 antibody (Thermo, 
cat. no. A301-902A) was incubated with Protein A/G beads (Pierce) 
first and then incubated with the mixed cell lysates for 2 h at 4 °C. 
Immunoprecipitated RNA fragments were then dephosphorylated (T4 
PNK, NEB), polyadenylated and end-labeled with 3ʹ-azido-3ʹ-dUTP and 
IRDye 800CW DBCO Infrared Dye (LI-COR) on beads. SDS–PAGE was 
then performed to separate protein–RNA complexes, and RNA frag-
ments were collected from nitrocellulose membrane by proteinase K 
digestion. cDNA was then synthesized using Takara smarter small RNA 
sequencing kit reagents with a custom UMI-oligoDT primer (CAAGCA-
GAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGT-
GTGCTCTTCCGATCTTTTTTTTTTTTTTT). The RORC reporter locus 
was then amplified with a custom primer (ACACTCTTTCCCTACAC-
GACGCTCTTCCGATCT TGGGGTGATCCAAATACCACC) and sequencing 
libraries were then prepared with SeqAmp DNA Polymerase (Takara). 
Libraries were then sequenced on an illumina Hiseq 4000 sequencer.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited in the Gene Expression Omnibus 
(GEO accession GSE266070). Cryo-EM density maps have been deposited 
in EMDB, accession numbers EMD- 42275 (WT Class A), EMD- 42276 (WT 
Class B), EMD- 42277 (WT Class C), EMD- 42400 (77-GA Class C), EMD- 
42401 (77-GA Class A), EMD- 42403 (117-AC Class C) and EMD-42404 (117-AC 
Class B). Rfam database 14.10 (https://rfam.org/) was used in the study.

Code availability
SwitchFinder source code is available at https://github.com/
goodarzilab/SwitchFinder.
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Extended Data Fig. 1 | SwitchFinder identifies saddles in RNA folding energy 
landscape. a Example of SwitchFinder locating the thiamine pyrophosphate 
RNA switches within the mRNA sequence. Top: arc representation of the RNA 
base pairs that change between the two conformations of the E.coli TPP RNA 
switch, as in (Barsacchi et al. 10). The two conformations are shown in red and 
blue, respectively. Bottom: the two conformations of the RNA switch as predicted 
by SwitchFinder. Middle: SwitchFinder score reflecting the likelihood of a given 
nucleotide to be involved in two mutually exclusive base pairings. b Scheme of 

SwitchFinder model. SwitchFinder analyzes RNA folding energy landscape of a 
given RNA sequence and assigns higher score to the landscapes that demonstrate 
riboswitch-like features. c The set-up for evaluating the ability of a model to find 
RNA switches from novel families. At the classifier training step, riboswitches 
from one of the Rfam families get separated into the ‘test set’, while the model 
gets trained on the riboswitches from other Rfam families. The test set then is 
used to evaluate the model performance.
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Extended Data Fig. 2 | Overview of high-throughput screening approaches 
for improved RNA switch predictions. a Overview of DMS-MaPseq workflow. 
Mammalian cells are treated with DMS. DMS-modified nucleotides cause 
mutations when cDNA is synthesized from RNA templates. The cDNA libraries are 
sequenced, the DMS-caused mutations are counted, providing the Watson-Crick 
face accessibility estimates for each A- or C- nucleotide. b Cumulative mutation 
frequency in DMS-treated candidate RNA switches, separated by nucleotide. 
c Cumulative mutation frequency in nontreated candidate RNA switches, 
separated by nucleotide. d Overview of the library generation workflow for 
Massively Parallel Reporter Assay (MPRA). Sequences of candidate RNA switches 
are synthesized as DNA oligonucleotides and cloned into a reporter vector into 
3ʹUTR region of a eGFP cDNA. The plasmid library is packaged into lentiviral 
particles, and used for infecting mammalian cells. The infection is performed 

at low MOI (infection rate) to ensure that most cells get only a single plasmid 
copy. e Overview of the MPRA workflow. A population of mammalian cells is 
separated into bins based on GFP/mCherry fluorescence ratio. In the schematic, 
cells are colored according to the sequence they carry in the 3ʹUTR of the GFP 
reporter. f Cumulative density plot of dysregulation values, comparing the 
candidate RNA switches predicted in first and second (DMS-MaPseq informed) 
iterations of SwitchFinder. Dysregulation values are estimated using chi-square 
test for every individual candidate RNA switch across 8 expression bins. Median 
difference (∆M) and P value (calculated using Mann-Whitney U-test) are shown. 
g Correlations of read counts of gDNA libraries between the biological replicates 
of massively parallel mutagenesis analysis. h Correlations of read counts of RNA 
libraries between the biological replicates of massively parallel mutagenesis 
analysis.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | In vitro SHAPE reactivity of the RORC RNA switch 
sequence in vitro. a SHAPE reactivity profiles for the reference sequence and 
for the mutation–rescue pair of sequences (blue - ‘77-GA’, red - ‘63-TC,77-GA’).  
Shown is the average for 3 replicates with the respective error bars (SD). 
The SHAPE reactivity changes in the nonmutated regions are highlighted in 
bold arrows. b Barplots of cumulative SHAPE reactivity within the switching 
regions for the reference sequence (in gray) and for the mutation–rescue 
pair of sequences (blue - ‘77-GA’, red - ‘63-TC,77-GA). N replicates = 3. c Scatter 
plot showing the reproducibility of the DMS signal between two replicates. 
Each dot represents a single nucleotide. Normalized DMS signal is shown on 
both axes. Correlation and P value is determined with Pearson correlation 
coefficient (P = 1.59-42). d Scatter plots showing the reproducibility of the 
DRACO clusters between replicates (N = 2). Each replicate’s reads were clustered 
with DRACO, the DMS reactivity was calculated for each cluster; the clusters 
were subsequently matched between replicates. Shown are DMS reactivities 

for a given cluster in a given replicate; each dot represents a single nucleotide. 
Correlation and P value is determined with Pearson correlation coefficient. 
P values left to right: 2.60e-23,3.62e-07,0.18,0.73. e DMS reactivities of the 
two clusters identified by the DRACO unsupervised deconvolution algorithm 
(Morandi et al. 28). The algorithm was run on two replicates independently, and 
identified the same clusters in both of them. The ratios of the clusters reported 
by DRACO are 22% to 78% in replicate 1 and 32% to 68% in replicate 2. The ratio 
shown is an average between the two replicates. The switching regions are 
shown in color. f The effect of sequence mutations in the ‘Box 2’ and ‘Box 3’ 
regions of RORC element on their reactivity, as measured by DMS-MaPseq in a 
reporter cell line. P values were determined using the two-sided independent 
T-test. g Correlation of relative proportions of the two conformations between 
the reporter context and the endogenous RORC mRNA. Linear regression is 
shown with a line. The relative conformations’ proportion is defined as the ratio 
of reactivities of Box 2:Box 3.
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Extended Data Fig. 4 | Qualitative modeling of cryo-EM data. (a–c) Source 
cryo-EM images for the example particles shown in Fig. 4a, with phase-flipping 
to correct contrast and CTF delocalization. The WT image (A) evinces a greater 
diversity of particles, while 77-GA (B) appears to contain primarily elongated 
particles and those of 117-AC (C) seem more compact. The data collection 
statistic is available in Data file S7. (d-f) Cryo-EM 3D classes A, B, and C of the 
WT RORC RNA overlaid with stereotypical RNA tertiary structures from the 

PDB including dsRNA B-helix and RNA hairpin. Features representing the major 
groove and a hairpin are visible in regions of the maps. (g, h) Pairs of high-scoring 
models created by DRRAFTER for WT 3D classes B and C with density overlaid. 
The pre-positioned, idealized RNA structures used as initial models are indicated 
by a bracket. Although the individual models are of low-confidence, they 
demonstrate that the class densities likely represent all or the majority of the  
RNA molecule.
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Extended Data Fig. 5 | Cryo-EM image processing and validation.  
(a-c) Representative micrographs and 2D class averages for RORC RNA switch WT 
sequence (A), 77-GA (B) and 117-AC (C). The data collection statistic is available 
in Data file S7. (d) Schematic cryo-EM image processing pipelines for WT RORC 
RNA. During template picking, templates and micrographs were low-pass filtered 
to 20 Å. (e, f) Schematic cryo-EM image processing pipelines for 77-GA (E), and 
117-AC (F) mutants. During template picking, templates and micrographs were 

low-pass filtered to 20 Å. (g) Gold-standard half-map refinement volume, FSC 
curves, and orientation distribution plot for 3D classes from WT RNA sample. 
(h) Gold-standard half-map refinement volume, FSC curves, and orientation 
distribution plot for 3D classes from 77-GA sample. (i) Gold-standard half-map 
refinement volume, FSC curves, and orientation distribution plot for 3D classes 
from 117-AC sample.
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Extended Data Fig. 6 | Differentiation of Th17 cells from primary human 
CD4+ cells. Representative fluorescence-activated cell sorting plots of human 
primary Th17 cells, infected with RORC RNA switch 3ʹUTR reporter. On the day 
5 of differentiation, each sample was split in half; one half was analyzed for 
mCherry and GFP expression (shown in Fig. 5c), the other half was stained for 
the expression of CD4, FoxP3, IL-13, IL-17A, IFN-gamma. The cells expressing 
a given marker are highlighted with a frame and a fraction of the parental 

cellular population is given. Each sample was analyzed in 4 replicates; a single 
representative replicate is displayed. CD4 is a marker for T-helper cells, including 
Th17. FoxP3 is typically associated with regulatory T cells, contrasting the pro-
inflammatory role of Th17 cells. IL-13 and IL-17A are cytokines indicative of Th2 
and Th17 cell activity, respectively, with IL-17A being a key marker for Th17 cell 
identity. IFN-gamma is a signature cytokine of Th1 cells.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | CRISPRi screen highlights the pathways acting 
downstream of the RORC RNA switch. a Overview of the flow cytometry- 
based CRISPRi screen workflow. b Gene set enrichment analysis of the data 
depicted in Fig. 6a (left) and Fig. 6b (right). The genes were distributed into 
equally populated bins based on their comparative abundance between high 
expression and low expression quartiles (left), or based on their comparative 
phenotype in the CRISPRi screens performed in WT or 77-GA mutant 
backgrounds (right). Then the enrichment of a given gene set was calculated 
in each bin using iPAGE, a mutual information-based algorithm (Goodarzi et al. 
2009). c Experiment design table. d The effect of knockdown of SURF and EJC 
complex member proteins on the expression change upon the conformation 
equilibrium shift. The individual genes were knocked down using the CRISPRi 
system in both WT and 77-GA mutant cell lines, then the change of reporter gene 
expression was measured by flow cytometry (N replicates = 2). The bar plots 
demonstrate the expression ratios of WT to 77-GA mutation cell lines. e The 
bar plots demonstrate the fractions of reads carrying the Box 2 (77-GA) mutant 
sequence or Box 3 (116-CCCTAAG) mutant sequence in UPF1 cross-linking and 
immunoprecipitation (CLIP) library. Box 2 mutant favors conformation 1, Box 3 
mutant favors conformation 2. Left: input RNA libraries, extracted from the  

Box 3 and Box 2 mutant-expressing Jurkat cells, mixed at 1:1 ratio. Right: libraries 
after anti-UPF1 immunoprecipitation. P value was calculated using Translation 
Efficiency Ratio test as in (Navickas et al. 58). N replicates = 2. f Density plots 
showing the correlation of sgRNA counts between the replicates of the CRISPRi 
screens performed in the WT (left) and 77-GA mutant (right) backgrounds.  
g Density plots showing the correlation of gene counts between the replicates 
of the CRISPRi screens performed in the WT (left) and 77-GA mutant (right) 
backgrounds. The counts of all the sgRNAs targeting a given gene are pooled and 
reported as a single number (N = 5 sgRNAs per gene). h Scatter plots showing the 
correlation of sgRNA phenotypes between the replicates of the CRISPRi screens 
performed in the WT (left) and 77-GA mutant (right) backgrounds. Logarithmic 
fold changes between the sgRNA abundance ‘high’ and ‘low’ expression bins are 
shown on both axes. Nontargeting sgRNAs are shown in orange; all the other 
sgRNAs are shown in blue. The correlation values are reported separately for 
nontargeting and targeting sgRNAs. i Density plots showing the correlation of 
gene phenotypes between the replicates of the CRISPRi screens performed in 
the WT (left) and 77-GA mutant (right) backgrounds. Logarithmic fold changes 
between the abundance of sgRNAs targeting a given gene in ‘high’ and ‘low’ 
expression bins are shown on both axes.
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