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Abstract 

Objectives To assess the diagnostic performance of ultrafast magnetic resonance imaging (UF‑DCE MRI) in differenti‑
ating benign from malignant breast lesions.

Materials and methods A comprehensive search was conducted until September 1, 2023, in Medline, Embase, 
and Cochrane databases. Clinical studies evaluating the diagnostic performance of UF‑DCE MRI in breast lesion strati‑
fication were screened and included in the meta‑analysis. Pooled summary estimates for sensitivity, specificity, diag‑
nostic odds ratio (DOR), and hierarchic summary operating characteristics (SROC) curves were pooled under the ran‑
dom‑effects model. Publication bias and heterogeneity between studies were calculated.

Results A final set of 16 studies analyzing 2090 lesions met the inclusion criteria and were incorporated into the meta‑anal‑
ysis. Using UF‑DCE MRI kinetic parameters, the pooled sensitivity, specificity, DOR, and area under the curve (AUC) for differ‑
entiating benign from malignant breast lesions were 83% (95% CI 79–88%), 77% (95% CI 72–83%), 18.9 (95% CI 13.7–26.2), 
and 0.876 (95% CI 0.83–0.887), respectively. We found no significant difference in diagnostic accuracy between the two 
main UF‑DCE MRI kinetic parameters, maximum slope (MS) and time to enhancement (TTE). DOR and SROC exhibited low 
heterogeneity across the included studies. No evidence of publication bias was identified (p = 0.585).

Conclusions UF‑DCE MRI as a stand‑alone technique has high accuracy in discriminating benign from malignant 
breast lesions.

Clinical relevance statement UF‑DCE MRI has the potential to obtain kinetic information and stratify breast lesions 
accurately while decreasing scan times, which may offer significant benefit to patients.

Key Points 

• Ultrafast breast MRI is a novel technique which captures kinetic information with very high temporal resolution.

• The kinetic parameters of ultrafast breast MRI demonstrate a high level of accuracy in distinguishing between benign and  
  malignant breast lesions.

• There is no significant difference in accuracy between maximum slope and time to enhancement kinetic parameters.
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Introduction
Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is widely regarded as an excellent tool 
for evaluating inconclusive breast lesions, thanks to its 
high sensitivity and reliable negative predictive value in 
excluding malignancy [1–6]. However, a comprehensive 
breast MRI study protocol can be time-consuming. As 
a result, various efforts have been made to reduce scan 
times, aiming to make breast MRI more affordable and 
accessible. One such example is abbreviated breast MRI 
(AB-MRI), which substantially shortens the scan dura-
tion and necessitates only one post-contrast scan [7]. 
Several works have demonstrated the noninferiority of 
AB-MRI in cancer detection when compared to DCE-
MRI [8–11]. However, one potential limitation of AB-
MRI is the absence of kinetic information.

Ultrafast MRI (UF-DCE MRI) is a relatively novel 
technique which captures kinetic information within 
the first minute with very high temporal resolution 
(typically less than 7 s). Instead of relying on the con-
ventional washout characteristics, the technique ena-
bles analysis of early contrast wash-in curves [12, 
13]. Since UF-DCE MRI requires very high temporal 
resolution with an acceptable spatial resolution, sev-
eral advanced MRI techniques have been used includ-
ing view-sharing (VS), parallel imaging (PI), and 
compressed sensing (CS).

UF-MRI kinetic parameters, proposed as alternatives 
to those derived from conventional DCE-MRI, capture 
common pathophysiological processes in breast cancer, 
such as rapid contrast leakage [14] and tumor-associ-
ated vascular shunting [15]. Consequently, malignant 

lesions tend to exhibit more rapid enhancement on UF-
MRI when compared to benign ones.

Maximum slope (MS), suggested by Mann et al in 2014 
[16], is determined by drawing a tangent along the steep-
est part of the enhancing curve within the first minute, 
and calculating the relative enhancement percentage 
change divided by seconds (%/s). Time to enhancement 
(TTE), proposed by Mus et  al [17], is calculated by the 
time point in which the lesion starts to enhance minus 
the time point where the aorta starts to enhance on the 
maximum intensity projection images (MIP). Figure  1 
shows an illustration of MS and TTE.

Less frequently utilized kinetic parameters have been 
proposed, all grounded in the same fundamental patho-
physiological mechanisms, showing variable success in 
differentiating benign from malignant processes. Exam-
ples include bolus arrival time (BAT) which closely 
resembles TTE [18], the time interval between arterial 
and venous visualization (AVI) [19], and the kinetic area 
under the curve (KAUC) [20].

While numerous studies have explored the diagnostic 
performance of UF-DCE MRI, a comprehensive quanti-
tative review to consolidate the existing body of research 
has not been conducted until now. The goal of this sys-
tematic review and meta-analysis was to assess the diag-
nostic performance of UF-DCE MRI in differentiating 
benign from malignant breast lesions.

Materials and methods
Our protocol was constructed and registered at the 
Research Registry (Researchregistry1731, researtch-
registry.com). Our work was performed by following 

Fig. 1 Graphic illustration of MS and TTE. MS is defined as the steepest part of the lesion’s enhancing curve (%/s). TTE is calculated by the time point 
in which the lesion starts to enhance minus the time point where the aorta starts to enhance (s). MS, maximun slope. TTE, time to enhancement
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the updated Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis guidelines (PRISMA 2020 
[21]). A previous paper describing the approach to diag-
nostic test accuracy (DTA) meta-analysis in R software 
was used as a reference [22].

Literature search
A comprehensive search of Medline, Embase, and 
Cochrane was conducted for relevant articles published 
from each database’s inception up to September 1, 2023. 
Both controlled vocabulary terms and text words were 
used. No age restrictions were applied. Details of the 
search strategy are included in the Supplemental mate-
rials. Reference lists of included studies were manu-
ally searched to identify additional relevant studies. The 
search strategy is shown in Table S1.

Eligibility criteria
Studies were included if they met the following criteria: 
(a) The full text was available in English. (b) Published in 
a peer-reviewed journal (abstracts and conference presen-
tations excluded). (c) MRI acquisition data was available. 
(d) The purpose of the study was to assess the diagnostic 
performance of UF-DCE MRI in differentiating benign 
from malignant breast lesions. Only studies using UF-MRI 
kinetic parameters exclusively to stratify lesions were used 
in this work. Studies using artificial intelligence (AI) meth-
ods, such as convolutional neural networks or radiomics, 
were excluded. (e) The study reported sufficient data to 
calculate the number of true-positive (TP), false-positive 
(FP), true-negative (TN), and false-negative (FN). If these 
values could not be obtained, the study was excluded.

Study selection
We executed a strategy that encompassed three distinct 
phases.

In phase 1, the results of the literature search were 
imported into reference manager software (EPPI Reviewer 
6, University of London, England) for independent title 
and abstract review by multiple investigators (Y.A., T.M., 
O.G., and R.K.). Prior to commencing the independ-
ent review of titles and abstracts, reviewers conducted a 
preliminary screening of 20 studies in duplicate, aimed at 
enhancing consistency among the reviewers.

In phase 2, the full-text articles from potentially eligi-
ble sources were retrieved, and three investigators (Y.A., 
T.M., O.G., and R.K.) independently assessed them for 
inclusion. Any discrepancies were resolved by consensus.

In phase 3, three reviewers (Y.A., T.M., and O.G.) inde-
pendently assessed the risk of bias using Quality Assess-
ment of Diagnostic Accuracy Studies-2 (QUADAS-2 [23]). 
Any discrepancies were again resolved by consensus.

Data extraction
Data were extracted into a spreadsheet program (Micro-
soft Excel 2021; Microsoft, Redmond, USA) indepen-
dently by multiple investigators (Y.A., T.M., O.G., and 
R.K.). Prior to commencing the data extraction, review-
ers extracted data from three studies in duplicate, aimed 
at enhancing consistency among the reviewers. Any dis-
crepancies were resolved by consensus.

For studies that used multiple readers, readers’ data 
was averaged for analysis [24]. For the construction of 
the main contingency table, we used the model in each 
study that achieved the best results using only UF-DCE 
MRI criteria, either a single UF-MRI kinetic parameter 
or a combination of UF-DCE MRI parameters. When a 
dataset was used for multiple studies, we extracted values 
from only one of the studies.

The following data were extracted: title of study, first 
author, country of first author, journal of publication, 
study design, patient demographics (mean age, indication 
for imaging, sample size BIRADS cutoff for inclusion if 
available), number of cancer cases, cancer definition, ref-
erence standard used (histopathology vs imaging follow-
up), MRI parameters (MRI system and magnetic field 
strength, temporal resolution, slice thickness, accelera-
tion method, injection speed), UF-DCE MRI parameters 
(kinetic parameters used, a priori vs post hoc cutoff used 
to stratify lesions), number of readers for each lesion, and 
2 × 2 contingency table (FP, FN, TP, TN).

Quality assessment
Independent quality assessment of included studies was 
performed using the revised tool for QUADAS-2 [23]. 
Three investigators (Y.A., T.M., and O.G.) assessed all 
studies for the following criteria: patient selection, index 
test, reference standard, flow, and timing. The following 
criteria were defined as being high risk for bias: consecu-
tive patient selection was not used (patient selection 1), 
inclusion limited to a particular group of patients, e.g., 
those who had undergone surgery or individuals with 
non-mass enhancement (NME) lesions (patient selection 
2), radiologists were not blinded to previous clinical or 
imaging tests (index test), and the histopathological test-
ing was not used for all lesions (reference standard and 
flow and timing). Any discrepancies were resolved by 
consensus.

Outcomes
The primary outcome was to estimate the diagnostic test 
accuracy of UF-DCE MRI in differentiating benign from 
malignant lesions. In the primary analysis, we assessed 
diagnostic accuracy using the most accurate model from 
each study. Additionally, in a separate analysis, we evalu-
ated the diagnostic accuracy of MS and TTE individually 
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with direct comparison between them. Several covariates 
were used in the meta-regression models when there was 
sufficient variability within the data.

Statistical analysis
Each meta-analysis was conducted to calculate the com-
bined sensitivity, specificity, and diagnostic odds ratio 
(DOR), along with their respective 95% confidence inter-
vals (CIs). Coupled forest plots and hierarchic summary 
operating characteristics (SROC) curves were created 
using the estimated model parameters. The bivariate ran-
dom-effects model was used for the analysis [22, 25]. The 
following meta-analyses were conducted:

– The best UF-DCE MRI kinetic parameter within 
each study (main analysis).

– Studies assessing MS kinetic parameter individually.
– Studies assessing TTE kinetic parameter individually.

Meta-regression models were created for the main 
analysis. To compare diagnostic accuracy between MS 
and TTE, “head-to-head” meta-regression models were 
performed with the inclusion of all studies assessing 
either MS or TTE individually and the kinetic parameters 
as covariates.

Heterogeneity for sensitivity, specificity, and DOR was 
assessed using the I2 test, with values greater than 50% 
considered at risk for significant variability [26]. Hetero-
geneity for SROC curve was assessed using the correla-
tion coefficient between sensitivity and specificity, with 
values larger than 0 indicating high heterogeneity [27].

The publication bias was evaluated by a funnel plot and 
Egger’s test.

Analysis was performed using the “mada,” “meta,” and 
“dmetatools” packages in R (R version 3.6.3; R Founda-
tion for Statistical Computing). A two-sided p value less 
than 0.05 was considered statistically significant.

Results
Study demographics and risk of bias
Figure 2 illustrates the study flow diagram. In the initial 
stage, 198 studies underwent screening based on their 
titles and abstracts, and from this pool, 38 were identified 
as potentially meeting the eligibility criteria. Following a 
thorough review of their full texts, 16 studies analyzing 
2090 lesions were found to meet the inclusion criteria 
and were subsequently incorporated into the meta-analy-
sis [16–18, 20, 28–40]. Table 1 provides a summary of the 
included studies.

Table 2S provides a risk of bias summary. Three studies 
were at low risk of bias [28, 37, 38], while the remaining 
13 studies were at high risk or unknown risk of bias. The 

main sources of bias included no indication as to whether 
the patients were selected consecutively, radiologists 
unblinded to previous imaging or clinical data, and his-
topathology not employed as the reference standard for 
all lesions.

Data synthesis and pooling
Best UF‑MRI kinetic parameter analysis
Sixteen studies encompassing 2090 lesions were included 
in this meta-analysis [11, 16–18, 20, 28–39] (Fig. 3A–D). 
The best model in each study is specified in Table 1. The 
pooled sensitivity was 83% (95% CI 79–88%), the pooled 
specificity was 77% (95% CI 72–83%), the pooled DOR 
was 18.9 (95% CI 13.7–26.2), and the AUC of the SROC 
curve was 0.876 (95% CI 0.830–0.887).

Based on the I2 test, there was a high risk for substan-
tial heterogeneity for sensitivity and specificity, and a low 
risk of substantial variability for DOR (Fig.  3A–C). The 
correlation coefficient between sensitivity and specific-
ity was −0.62, indicating low heterogeneity of the SROC 
curve.

In multivariate meta-regression models (as shown in 
Table 3S), we observed that a lower mean age and the use 
of Siemens MRI systems were linked to increased sen-
sitivity, with corresponding p values of 0.034 and 0.008, 
respectively. Additionally, MRI temporal resolution 
greater than 5 s was found to be associated with greater 
specificity (p = 0.037), while studies involving more than 
110 lesions were associated with a higher DOR with a p 
value of 0.021.

Individual UF‑DCE MRI parameter analysis—MS vs TTE
Seven studies incorporating 956 lesions were included in 
the MS meta-analysis [16, 28, 30, 32, 34, 35, 37] (Fig. 4A–
D). The pooled sensitivity was 80% (95% CI 70–90%), the 
pooled specificity was 77% (95% CI 68–89%), the pooled 
DOR was 17.1 (95% CI 11.4–25.6), and the AUC of the 
SROC curve was 0.865 (95% CI 0.805–0.891).

Seven studies comprising a total of 889 lesions were 
included in the TTE meta-analysis [17, 28, 30–32, 37, 
39] (Fig. 5A–D). The pooled sensitivity was 71% (95% CI 
57–86%), the pooled specificity was 80% (95% CI 69–82%), 
the pooled DOR was 15.5 (95% CI 8.3–28.9), and the AUC 
of the SROC curve was 0.857 (95% CI 0.763–0.889).

For both the MS and TTE analysis, there was a high 
risk for substantial heterogeneity for sensitivity and 
specificity, and a low risk of substantial variability for 
DOR (Figs.  4A–C,  5A–C). The correlation coefficients 
between sensitivity and specificity were −0.77 and 
−0.75 for MS and TTE respectively, suggesting low het-
erogeneity of the SROC curves.

In the “head-to-head” meta-regression analysis, as pre-
sented in Table 4S, there were no statistically significant 
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differences observed between MS and TTE in terms of 
sensitivity, specificity, or DOR, with corresponding p val-
ues of 0.346, 0.638, and 0.880, respectively.

Table 2 provides an overview of various models along 
with their corresponding pooled accuracy measurements.

Publication bias
The shape of the funnel plot is generally symmetrical, 
which indicates low publication bias (Figure  1S). Egg-
er’s test also supports low publication bias (p = 0.585).

Discussion
UF-DCE MRI is a promising new technique which has 
the potential to obtain kinetic information while reduc-
ing scan time. To the best of our knowledge, this is the 
first meta-analysis exploring the diagnostic accuracy of 

this novel approach. This comprehensive meta-analysis 
aggregated 16 studies and 2090 lesions to investigate the 
discriminatory power of UF-DCE MRI in differentiating 
benign from malignant breast lesions.

We found that when using UF-DCE MRI kinetic 
parameters, the pooled diagnostic sensitivity, specificity, 
DOR, and area under SROC for differentiating benign 
from malignant lesions are 83% (95% CI 79–88%), 77% 
(95% CI 72–83%), 18.9 (95% CI 13.7–26.2), and 0.876 
(95% CI 0.83–0.887), respectively. Prior meta-analyses 
assessing the diagnostic accuracy full protocol DCE-
MRI have found a pooled sensitivity, specificity, DOR, 
and area under the SROC of 87–93%, 74–85%, 18.8–91, 
and 0.86–0.96 respectively [41–43]. Except for sensitiv-
ity, which is slightly lower, our pooled figures fall within 
the range of these values, which is highly encouraging. 
Our work focused on the diagnostic accuracy of UF-DCE 

Identification 

Abstracts identified 

through database 

search (N = 276) 

Screening 

Abstracts excluded as 

duplicates (N = 78) 

Abstracts identified 

through database 

search (N = 198) 

Eligibility 

Abstracts excluded, 

not eligible (N = 160) 

Full text articles 

assessed for eligibility 

(N = 38) 

Studies excluded, not 

eligible (N=19) or 

using AI models (N = 

3) 

Included 

Studies using UF-

DCE MRI included in 

the meta-analysis* 

(N = 16) 

Fig. 2 Prefered Reporting Items for Systematic Reviewes and Meta‑Analysis (PRISMA) flowchart. UF‑MRI, ultrafast magnetic resonance imaging. AI, 
artificial intelligence. *Typically, one or a combination of the following parameters is used: maximum slope, time to enhancement, bolus arrival time, 
arterial venous visualization, kinetic area under curve, or peak enhancement
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MRI as a stand-alone technique. In contrast, the previous 
abovementioned meta-analyses [41–43] examined the 
diagnostic accuracy of full-protocol breast MRI, which 
encompasses morphological data, kinetic curve data, and 
diffusion sequences. It is probable that by combining UF-
DCE MRI with DCE-MRI sequences, we can expect an 

additive effect that will further enhance diagnostic accu-
racy. Many studies included in this meta-analysis lend 
support to this hypothesis. A few works have shown that 
the addition of UF-DCE MRI to DCE-MRI increased the 
diagnostic accuracy compared to DCE-MRI alone [29, 
31, 32]. Other works have shown that UF-DCE MRI as 

Table 2 Different meta‑analysis models and their pooled accuracy measurements

AUC  area under curve, DOR diagnostic odds ratio, MS maximum slope, ROC receiver operating characteristic, TTE time to enhancement, UF-DCE MRI ultrafast magnetic 
resonance imaging

Meta-analysis model Number of 
studies

Sensitivity (95%CI) Specificity (95%CI) DOR (95%CI) AUC of the ROC curve (95%CI)

Best UF‑DCE MRI kinetic parameter 16 83% (79–88%) 77% (72–83%) 18.9 (13.7–26.2) 0.876 (0.830–0.887)

MS individually 7 80% (70–90%) 77% (68–89%) 17.1 (11.4–25.6) 0.865 (0.805–0.891)

TTE individually 7 71% (57–86%) 80% (69–82%) 15.5 (8.3–28.9) 0.857 (0.763–0.889)

Fig. 3 Diagnostic performance of best ultrafast magnetic resonance imaging (UF‑DCE MRI) kinetic parameters for differentiating benign 
from malignant breast lesions. A Summary forest plot of sensitivity. B Summary forest plot of specificity. C Summary forest plot of diagnostic odds 
ratio (DOR). D Hierarchic summary operating characteristics (SROC) curve
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a stand-alone technique is as good or even better than 
standard curve type analysis [17, 20, 30, 33, 34]. This sug-
gests the possibility of reducing scan time while main-
taining or potentially enhancing diagnostic accuracy. An 
option to consider involves integrating AB-MRI and UF-
DCE MRI, allowing the utilization of kinetic data while 
simultaneously reducing examination time by eliminat-
ing the requirement for delayed scans. Researchers are 
encouraged to conduct more in-depth examinations in 
this direction in their future work.

In our analysis, we observed a considerable degree of 
heterogeneity in sensitivity and specificity assessments, 
while there was comparatively lower heterogeneity in the 
analysis of DOR and SROC. This outcome aligns with the 
conventional expectation of a negative correlation between 
sensitivity and specificity. As one of these values increases, 
the other tends to decrease, resulting in what is known as 
the “threshold effect” [44], which likely contributed to vari-
ations in heterogeneity. We used the random-effects model 
to enable pooling of the results within this context. For the 
DOR and SROC analysis, which provide a single measure 
merging the results of each diagnostic study thereby elimi-
nating the “threshold effect,” heterogeneity was low.

We investigated additional sources of heterogene-
ity through a meta-regression analysis. Studies of larger 
scale that utilized Siemens MRI systems, featuring a tem-
poral resolution exceeding 5 s and including younger 
women, tended to yield slightly better accuracy. The cor-
relation between different technical parameters and diag-
nostic performance is particularly important, as there is 
no standardized protocol for UF-DCE MRI; each vendor 
and institution employ different MRI sequences. How-
ever, our findings were inconsistent across various analy-
ses, making it challenging to draw firm conclusions. With 
the accumulation of more data, it is expected that a more 
standardized UF-DCE MRI sequence with optimal tech-
nical parameters can be established.

MS and TTE are the two most frequently utilized 
kinetic parameters in UF-DCE MRI, and most studies 
within this meta-analysis incorporated either one or both 
parameters. Based on our results, although MS achieved 
slightly higher accuracy than TTE individually, there is no 
statistically significant difference between the two meth-
ods. The parameters capture different kinetic values—
MS is a measurement of the time-intensity curve and 
TTE measures the earliest time of lesion enhancement 

Fig. 4 Diagnostic performance of maximum slope (MS) individually for differentiating benign from malignant breast lesions. A Summary forest 
plot of sensitivity. B Summary forest plot of specificity. C Summary forest plot of diagnostic odds ratio (DOR). D Hierarchic summary operating 
characteristics (SROC) curve
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(Fig.  1). However, as both parameters reflect the same 
basic pathophysiological mechanism (AV shunting and 
capillary leakage), their yielding of similar outcomes is 
not unexpected. This observation might also explain why 
our meta-regression analysis failed to reveal any evidence 
supporting an increase in accuracy when using models 
combining more than one parameter, in contrast to our 
initial expectation. It is possible that these parameters are 
not additive but instead redundant.

In addition to its role in classifying breast lesions as 
benign or malignant, UF-DCE MRI may have other appli-
cations in the realm of breast cancer. These could include 
improving lesion conspicuity compared to DCE-MRI [45, 
46], differentiating invasive breast carcinoma from ductal 
carcinoma in  situ (DCIS) [30, 47, 48], predicting tumor 
prognostic markers and receptor status [29, 47–49], and 
predicting pathological complete response (pCR) after 
neoadjuvant treatment [50–52]. These potential roles 
warrant further exploration in upcoming dedicated sys-
tematic reviews and meta-analyses.

Our study had several limitations. First, many of the 
studies had suboptimal quality with regard to patient 

selection, index test, and reference standard. Second, we 
included only studies using UF-DCE MRI parameters 
exclusively, thereby limiting the number of available stud-
ies and affecting its statistical power. Third, there was 
significant variability among the included studies with 
respect to the kinetic parameter used in each study. This 
limitation is relevant specifically to our main analysis using 
the best model in each study. Nevertheless, as discussed 
previously, all kinetic parameters reflect a similar patho-
physiological mechanism of rapid contrast leakage and 
AV shunting, resulting in faster wash-in within the first 
minute, and thus potentially allowing for pooling of the 
results. This is further supported by the low heterogeneity 
of DOR and SROC curves between the studies, the similar 
accuracy values of the two main kinetic parameters when 
used individually (MS and TTE), and the similar accuracy 
of models using one or multiple parameters. Furthermore, 
our analysis did not encompass studies utilizing artifi-
cial intelligence methods, primarily due to their scarcity. 
However, such an investigation could be undertaken in 
the future as more data become available. Finally, several 
of the studies did not report TP, FP, TN, and FN values 

Fig. 5 Diagnostic performance of time to enhancement (TTE) individually for differentiating benign from malignant breast lesions. A Summary 
forest plot of sensitivity. B Summary forest plot of specificity. C Summary forest plot of diagnostic odds ratio (DOR). D Hierarchic summary operating 
characteristics (SROC) curve
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directly, necessitating extraction of these values indirectly 
from the sensitivity, specificity, and total number of malig-
nancies values, which may decrease accuracy.

In conclusion, based on our meta-analysis, UF-DCE 
MRI as a stand-alone technique has high accuracy in 
discriminating benign from malignant breast lesions. 
Our findings did not reveal a notable distinction in 
accuracy between the two primary UF-DCE MRI 
kinetic parameters, MS and TTE. We recommend fur-
ther research, particularly focusing on the utilization of 
AI techniques and the integration of UF-DCE MRI with 
DCE-MRI sequences, to enhance diagnostic precision.
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