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Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis
use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what
extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz; European ancestry
N= 161,405; African ancestry N= 15,846), cannabis use disorder (CanUD; European ancestry N= 886,025; African ancestry
N= 120,208), and ever-regular tobacco smoking (Smk; European ancestry N= 805,431; African ancestry N= 24,278) using the
largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes
were positively genetically correlated (rgs= 0.17–0.62). Genetic instrumental variable analyses suggested the presence of shared
heritable factors, but evidence for bidirectional causal relationships was also found between all three phenotypes even after
correcting for these shared genetic factors. We identified 327 pleiotropic loci with 439 lead SNPs in the European ancestry data, 150
of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which
showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three
phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our
results suggest that both shared genetic factors and causal mechanisms may play a role in the relationship between CanUD, Smk,
and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
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INTRODUCTION
Schizophrenia (Scz) is a psychiatric condition with an estimated
twin-based heritability of around 80% [1, 2]. Substance use
disorders (SUDs) are highly prevalent in individuals with Scz [3]. Of
these co-occurring SUDs, the role of cannabis use as a risk factor
for Scz and first episode psychosis onset remains a classical
“chicken or egg” problem in psychiatry [4].
Some studies have suggested a causal, dose- and age-

dependent effect of cannabis use on risk for onset of Scz and
other forms of psychosis [5–7]. However, cannabis use and
cannabis use disorder (CanUD) are heritable [8] (twin heritability
~50%), and an alternative hypothesis is that shared genetic
pathways underlie liability to Scz and cannabis use phenotypes
[9, 10]. Genetic correlations from genome-wide association studies
(GWAS) have provided support for some genetic commonality
(e.g., SNP-rg (Scz, cannabis use)= 0.25 [11], SNP-rg (Scz, CanUD)=

0.37 [12]). A recent study identified 27 and 21 genome-wide
significant loci contributing to the shared genetic etiology
between Scz and cannabis use and CanUD, respectively [13].
However, the identification of shared loci was largely driven by
genome-wide significant loci in the Scz GWAS, due to the relative
difference in discovery power between the Scz and cannabis
GWASs. Furthermore, these prior studies have largely been
performed in samples predominantly of European ancestry,
limiting the generalizability of these findings.
Horizontal pleiotropy (i.e., genetic variants independently

contributing to both CanUD and Scz) and vertical pleiotropy (i.e.,
genetic variants contributing to both traits via a causal path) are
not mutually exclusive; both mechanisms may play a role in the
co-occurrence of CanUD and Scz. Genetically informed causal
inference studies of CanUD and Scz have reached mixed
conclusions, with no single direction of causality receiving
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overwhelming support [14, 15]. Several Mendelian Randomization
(MR) analyses have suggested greater support for Scz causing
cannabis use and CanUD than the opposite direction [11, 16],
while the most recent GWAS of CanUD found a bidirectional
causal association between Scz and CanUD [17]. MR involves the
use of genetic variants associated with an “exposure” (such as
CanUD) as “instruments” to determine the likelihood of a causal
relationship between the exposure and an “outcome” (e.g., Scz),
relying on the fact that our genotypes are randomly “assigned” at
birth, and thus confounders should in theory be randomly
distributed across individuals with the effect allele (the genetic
instrument) and those without. However, MR is dependent on the
strength of the genetic instruments, and these analyses have thus
far been limited by relatively under-powered CanUD GWASs with
weak instruments. Furthermore, most MR methods assume the
absence of horizontal pleiotropy, a strong assumption that is
unlikely to be met for complex behavioral traits such as CanUD
and Scz.
Few prior genetic studies have attempted to disentangle how

nicotine/tobacco use genetics impacts the genetic relationship
between Scz and CanUD. Approximately 72% of those with Scz
report daily tobacco smoking (while this same report estimated
43% were regular cannabis users [18]), and there is evidence that
individuals who smoke tobacco daily are at increased risk of
psychosis [19], an earlier age of onset of first psychotic episode
[19], and the development of schizophrenia [20]. The prevalence
of tobacco use, whether as tobacco cigarettes or consumed with
cannabis in certain preparations (e.g., blunts, where tobacco is
removed from a cigar and replaced with cannabis, or spliffs, where
cannabis and tobacco are rolled together), is also high in
individuals with CanUD [21, 22]. Prior studies have reported
genetic correlations of tobacco smoking with CanUD (SNP-
rg= 0.61 [17]) and Scz (SNP-rg= 0.14 [23]). Despite this, few
epidemiologic studies have taken potential genetic sharing into
account when reporting evidence for causal relationships
between tobacco, cannabis, and Scz [6, 7]. In turn, few genomic
studies of cannabis and Scz have considered the role of tobacco
[13], despite the frequent co-occurrence of tobacco and cannabis
use, especially in Europe [24]. In a prior study, we found that
genetic liability for CanUD was positively associated with genetic
liability for Scz even when accounting for the genetic components
of cannabis ever-use, tobacco smoking, and nicotine dependence
[10]. Another study found a causal effect of genetic liability to
cannabis use on risk for schizophrenia, and this association was
unchanged when accounting for tobacco smoking [15]. Thus, the
genetic association between cannabis and Scz appears to be
independent of tobacco use genetics to some extent, although
the relatively low power of prior CanUD GWAS meant limited
conclusions could be drawn from these earlier studies.
Given the significant genetic correlations between CanUD,

tobacco smoking, and Scz, the increasing pace of cannabis
legalization with emerging increases in CanUD incidence [25],
parallel increases in the popularity of nicotine vaping [26], and the
consequent potential impact on the course of Scz in those with
heavy cannabis and tobacco use [27–31], we investigated the
evidence for causal relationships and horizontal pleiotropy
between CanUD, tobacco smoking, and Scz. We used the largest
genome-wide summary statistics available for Scz [32] (European
ancestry N= 161,405; African ancestry N= 15,846), CanUD [17]
(European ancestry N= 886,025; African ancestry N= 120,208),
and ever-regularly smoking tobacco [33] (Smk; European ancestry
N= 805,431; African ancestry N= 24,278) in samples whose
genetic ancestry is most similar to those historically from Europe
(henceforth referred to as “European ancestry”) and samples
whose genetic ancestry is most similar to those historically from
Africa (henceforth referred to as “African ancestry”). We sought to
identify and characterize pleiotropic signals, conduct genetic
correlation and causal inference analyses, and explore the

relationships between subsets of pleiotropic loci and a range of
mental and physical health traits. We focused on CanUD and Smk
(as opposed to cannabis ever-use, or nicotine dependence) as
CanUD was the cannabis phenotype with the largest genetic
correlation with Scz, there was no available GWAS of cannabis
consumption or heaviness of use, and current GWAS of nicotine
dependence (relying on the Fagerström Test for Nicotine
Dependence [34] (FTND)) have been relatively under-powered
compared to Smk.

METHODS
Genome-wide summary statistics
We used summary statistics from the largest available GWAS of each trait:
Scz, CanUD and tobacco smoking:

● Schizophrenia (Scz): We used data from the most recent Psychiatric
Genomics Consortium (PGC) Schizophrenia genome-wide association
study (GWAS) meta-analysis of individuals of European ancestry
(N= 161,405; Ncases= 67,390) [32]. We also analyzed summary
statistics from a GWAS meta-analysis of schizophrenia in African
ancestry individuals (N= 15,846; Ncases= 7509), from the Cooperative
Studies Program (CSP) #572 and the Genomic Psychiatry Cohort [35].

● Cannabis use disorder (CanUD): We used data from Levey et al.’s recent
GWAS meta-analysis of cannabis use disorder [17], which combined
data from the Million Veteran Program (MVP), the PGC, the Lundbeck
Foundation Initiative for Integrative Psychiatric Research, and deCODE
Genetics (European ancestry N= 886,025; Ncases= 42,281; African
ancestry N= 120,208; Ncases= 19,065).

● Ever-smoked tobacco regularly (Smk): We used summary statistics from
the GWAS & Sequencing Consortium of Alcohol and Nicotine use
(GSCAN) GWAS of self-reported ever/never regular cigarette smoking
(European ancestry N= 805,431; Never= 393,707; African ancestry
N= 24,278; Ncases= 9916) [33]. We used the publicly available set of
summary statistics, which does not include data from 23andMe; the
sample sizes reported here reflect that exclusion. This phenotype was
measured in a variety of ways in different cohorts (e.g., “Have you
smoked over 100 cigarettes over the course of your life?”, “Have you
ever smoked every day for at least a month?”, “Have you ever smoked
regularly?”).

We also used genome-wide summary statistics for attention deficit
hyperactivity disorder (ADHD), bipolar disorder, depression, post-traumatic
stress disorder (PTSD), educational attainment, executive function, risk-
taking, and the Townsend Deprivation Index (TDI) for follow-up analyses;
details are provided in the Supplementary Methods.

Genome-wide genetic correlation analyses
We used linkage disequilibrium score regression [36, 37] (LDSC) to estimate
SNP-heritability and pairwise genome-wide genetic correlations (rg)
between Scz, Smk, and CanUD. For the European ancestry summary
statistics, we used pre-computed LD scores from the 1000 Genomes Phase
3 European reference panel (available from the LDSC website). For the
African ancestry summary statistics, we used pre-computed LD scores from
the PanUKBB African ancestry sample (available from https://
pan.ukbb.broadinstitute.org/downloads).

Causal inference analyses
We tested for causal relationships between Scz, CanUD, and Smk using
CAUSE [38]. Compared to traditional Mendelian Randomization methods,
CAUSE has the advantage of accounting for correlated horizontal
pleiotropic effects (i.e., a genetic instrument is associated with a
confounder which is related to both the exposure and the outcome) as
well as uncorrelated horizontal pleiotropy. CAUSE uses a less stringent
p-value threshold (p < 1e−3) to incorporate data from more variants across
the genome. More details are provided in the Supplementary Methods.
We performed additional causal inference analyses, including Mendelian

Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO [39])
analyses to test for horizontal pleiotropy and causal relationships among
Scz, CanUD, and Smk. We performed these analyses using the
TwoSampleMR R package [40, 41]. More details are provided in
the Supplementary Methods. We report the results from the MR-PRESSO
global test for horizontal pleiotropy, MR-PRESSO test for causality after

E.C. Johnson et al.

1656

Neuropsychopharmacology (2024) 49:1655 – 1665

https://pan.ukbb.broadinstitute.org/downloads
https://pan.ukbb.broadinstitute.org/downloads


removing outliers for horizontal pleiotropy, MR-Egger, weighted median,
inverse variance weighted, simple mode, and weighted mode tests for
causality, heterogeneity tests for the inverse variance weighted and MR-
Egger tests, and the MR-Egger pleiotropy test.
We only performed these analyses using the European ancestry

summary statistics, because the African ancestry summary statistics were
relatively under-powered for a causal inference analysis, particularly the
Scz summary statistics.

Cross-disorder genome-wide association study meta-analysis
We used ‘Association analysis based on SubSETs’ (ASSET [42]) to combine
the GWAS summary data for CanUD, Smk and Scz (separately by ancestry),
using the two-tailed meta-analysis approach to obtain a single cross-
disorder association statistic. Unlike traditional meta-analysis approaches,
ASSET takes into account SNPs with significant effects on multiple
disorders even if the effects on the traits are in opposite directions. We
used the LDSC genetic covariance intercept to approximate the degree of
sample overlap amongst the studies and included it in the ASSET
covariance matrix. Default parameters were applied using the ‘h.traits’
function. Summary statistics are available to download from https://
github.com/WashU-BG/CanUD_Smk_Scz.
We then separated the ASSET results into subsets. Following Lam et al.

[43], we use the following notation for each subset: ∩ represents variant
subsets with the same directions of effect (+ or −), and | represents variant
subsets whose effect sizes are in the opposite direction of those for one
versus the other two traits. We defined four subsets: (1) Scz ∩ CanUD ∩
Smk (i.e., a subset with convergent effects across all 3 traits); (2) Scz ∩
CanUD | Smk (i.e., a subset of variants with convergent effects for Scz and
CanUD, but divergent effects for Smk); (3) Scz ∩ Smk | CanUD; and (4)
CanUD ∩ Smk | Scz.
For each subset, we used FUMA v1.6.1 [44] for annotation and

identification of genome-wide significant risk loci and independent lead
SNPs. We used the matching ancestry subset of the 1000 Genomes Project
Phase 3 [45] reference panel for clumping and annotation of SNPs (e.g., the
African ancestry reference panel for our African ancestry cross-disorder
summary statistics). More details are provided in the Supplementary
Methods.
To perform a cross-ancestry meta-analysis, we used the ancestry-specific

one-sided meta-analysis results from ASSET. Unlike the two-tailed
approach described above, the one-sided meta-analysis in ASSET is more
akin to a traditional meta-analysis and results in one effect size per SNP,
regardless of whether the SNP shows divergent directions of effect across
traits. We combined the ancestry-specific ASSET results using a sample-size
weighted meta-analysis scheme in METAL [46]. As before, we uploaded
METAL results to FUMA for clumping and annotation, using the 1000
Genomes Project Phase 3 [45] all ancestries reference panel.

Identification of novel loci
To determine whether the ASSET meta-analysis revealed any novel loci in
the European ancestry data that were not genome-wide significant in the
original GWAS (CanUD, Smk, Scz), we used the LDLink package [47] in R to
identify all LD proxy SNPs (r2 > 0.6) for each of the 439 lead pleiotropic
SNPs. We then merged these results with the summary statistics for
the original CanUD, Smk, and Scz GWASs to determine whether the
locus had been identified as genome-wide significant in any of the
original GWASs.

Genetic correlations with other relevant phenotypes
After defining SNP subsets using ASSET, we used GeNetic cOVariance
Analyzer (GNOVA [48]) to estimate genetic covariances (ρg) and correla-
tions (rg) between the SNP subsets and several psychiatric disorders
and other relevant phenotypes in the European ancestry data. We included
ADHD, bipolar disorder, depression, and PTSD, given previously reported
genetic correlations with our three primary phenotypes (CanUD, Smk,
and Scz). We also included educational attainment, executive function, risk-
taking, and a regional measure of material deprivation (the Townsend
deprivation index), which have also been correlated with CanUD, Smk, and
Scz in previous studies. For all subsets, the effect estimate was aligned with
the direction of effect for CanUD, for ease of interpretation. It was unclear
how best to weight the estimate for each subset; following the example of
Lam et al. [43], we used the largest absolute effect size from the three
phenotypes as SNP weights in each subset (flipping the sign of the
estimate as necessary, to align with the direction of effect for CanUD).

Polygenic scores of ASSET-derived SNP subsets and
associations in BioVU
We sought to explore the relationships between the different SNP subsets
and a range of health-related phenotypes, including mental health
conditions, using a hypothesis-free approach. To accomplish this, we
created polygenic scores for each ASSET-derived SNP subset in the
European ancestry subset of the BioVU biobank (N= 72,225) [49, 50]. As
described above for the genetic correlations, the effect estimate was
aligned with the direction of effect for CanUD for all SNP subsets. We used
PRS-CS to weight the SNP effect sizes, using the ‘auto’ function to allow the
global shrinkage parameter to be learned from the data. We then used
PLINK1.9’s --score function to create the polygenic scores in BioVU based
on the SNP weights from PRS-CS. We fitted a logistical regression model to
each of 1338 case/control phenotypes (“phecodes") to estimate the odds
of diagnosis given each PGS. Models were adjusted for sex, median age of
the longitudinal electronic health records, and the first 10 PCs. More details
are provided in the Supplementary Methods.

Partitioned genetic covariance analyses
We used GNOVA [48] to partition the genetic covariance (ρg) between
CanUD, Smk, and Scz into salient annotation categories. These included
tissue-specific functionality (GenoSkyline-Plus annotations, which are
tissue-specific functional regions defined by integrating high-throughput
epigenetic annotations from the Roadmap Epigenomics Project) for 7
tissues: brain, cardiovascular, epithelium, gastrointestinal, immune, muscle,
and “other” tissues. GNOVA is robust to potential sample overlap between
summary statistics. We applied Bonferroni correction for multiple testing
across all 3 trait pairs (CanUD ~ Smk, CanUD ~ Scz, and Smk ~ Scz) and 7
tissue types tested (e.g., we corrected for 3 × 7= 21 tests, for an α= 0.002.)
Substantial enrichment in a particular tissue suggests that the genetic
covariance shared between a pair of traits is enriched in the portion of the
genome predicted to be functional in that tissue. We only performed these
analyses using the European ancestry summary stats, as the annotation
data was derived using European ancestry samples.

RESULTS
SNP-heritability and genome-wide genetic correlations
Schizophrenia (Scz), Cannabis Use Disorder (CanUD), and ever-
smoking tobacco regularly (Smk) all showed significant SNP-
heritability (liability-scale h2SNP= 0.21, 0.09, and 0.11, respectively)
and were significantly genetically correlated in the European
ancestry data (Table S1). The magnitude of the genetic correlation
between Scz and CanUD (rg= 0.37, SE= 0.02, p= 2.97e-60) was
statistically greater (pdiff= 6.5e-18) than the correlation between
Scz and Smk (rg= 0.17, SE= 0.02, p= 6.88e-20) or between Scz
and a measure of nicotine dependence more similar to CanUD,
the FTND (rg= 0.22, SE= 0.04, p= 1.56e-7; pdiff= 0.002). This
suggests that our choice of ever-regular smoking, rather than the
FTND, as a measure of tobacco use was not the reason for the
lower genetic correlation.
In the African ancestry data, the largest genetic correlation was

between Scz and CanUD (rg= 0.61, SE= 0.14, p= 1.41e-5;
Table S1). While the genetic correlation between Scz and Smk
(rg= 0.34, SE= 0.15, p= 0.03) was of greater magnitude than in
the European ancestry data, this estimate was not significantly
different from zero after accounting for multiple testing, due to
the much larger standard error.

Causal inference analyses
Using CAUSE [38], a method that accounts for both correlated and
uncorrelated horizontal pleiotropic effects, we found evidence for
bidirectional causal relationships between all three phenotypes in
the European ancestry data (Fig. 1a, Table S2).
To explicitly test for the presence of horizontal pleiotropy, and

to ensure our results were not isolated to a specific method of
causal inference, we also performed Mendelian Randomization
Pleiotropy RESidual Sum and Outlier (MR-PRESSO [39]) analyses in
the European ancestry data. The MR-PRESSO global test for
horizontal pleiotropy was significant for each pairwise test, and we
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Fig. 1 Causal estimates from CAUSE and MR-PRESSO. A Causal estimates (gamma) and 95% confidence intervals from CAUSE. B Causal
estimates (beta) and 95% confidence intervals from MR-PRESSO after removal of outliers. “Exposure” phenotypes are indicated by the color,
while “Outcome” phenotypes are listed on the y-axis.
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found significant bidirectional causal effects between all three
traits after the removal of outliers for horizontal pleiotropy
(Fig. 1b), consistent with the results from CAUSE. Results from
other MR methods were generally consistent, with the same
direction of effect (Table S3), although the more conservative MR-
Egger test [51, 52] only showed a statistically significant causal
effect of Smk on CanUD.

Cross-trait loci: European ancestry
In consideration of the significant genetic correlations and
evidence for horizontal pleiotropy from MR-PRESSO, we used
‘Association analysis based on SubSETs’ (ASSET [42]) to combine
the GWAS summary data for CanUD, Smk and Scz (separately by
ancestry), using the two-tailed meta-analysis approach. Unlike
traditional meta-analysis approaches, ASSET accounts for SNPs
with significant effects on multiple disorders even if the effects on
the traits are in opposite directions. We defined four subsets of
variants: (1) Scz ∩ CanUD ∩ Smk (i.e., a subset with convergent
effects across all 3 traits); (2) Scz ∩ CanUD | Smk (i.e., a subset of
variants with convergent effects for Scz and CanUD, but divergent
effects for Smk); (3) Scz ∩ Smk | CanUD; and (4) CanUD ∩ Smk | Scz.
In total, we identified 327 pleiotropic genomic risk loci (i.e., loci

where the lead SNP influences all three phenotypes) with 439 lead
SNPs. Of these, 150 loci were novel (i.e., not genome-wide
significant in any of the original GWAS; see Tables S4 and S5), with
127 of these loci having lead SNP p ≤ 1e-5 in at least one of the
original GWAS, and the remaining 23 having p ≤ 1.4e-4.
For the subset of SNPs with convergent effects across all 3 traits

(Scz ∩ CanUD ∩ Smk) in the European ancestry samples, we
identified 202 genomic risk loci with 259 lead SNPs (Table S6). The
strongest locus was on chromosome 8, with the top lead SNP
being rs73229090 (chr8:27442127, p= 1.5e-62; Fig. 2), located in

an intron of the non-coding gene GULOP, replicating previous
associations with each trait (e.g., [53–55]). This SNP is also an
expression quantitative trait locus (eQTL) for EPHX2 in B cells, tibial
artery, esophagus, and cultured fibroblast cells, CHRNA2 in the
cerebellum, and CCDC25 in the nucleus accumbens.
The Scz ∩ CanUD | Smk subset of SNPs revealed 37 genomic risk

loci with 37 lead SNPs (Table S7). The top association was on
chromosome 16, with lead SNP rs9924686 (chr16:30003076,
p= 3.3e-15) within a locus previously implicated by Scz GWAS
[53]. This SNP, located in the 3’ untranslated region of the serine/
threonine-protein kinase gene TAOK2, has a CADD score of 18.16,
suggesting deleteriousness, and a RegulomeDB score of 1f (eQTL
+ transcription factor binding/DNase peak), suggesting that this
SNP is likely to affect transcription factor binding and linked to
expression of a gene target. Furthermore, rs9924686 is an eQTL for
several genes, including genes associated with metabolic and
immunological traits [56, 57] (YPEL3 and INO80E in adipose tissue
and several brain tissues) and alcohol intake [57, 58] (PPP4C and
MVP in cultured cell fibroblasts).
We identified 46 genomic risk loci with 48 lead SNPs for the Scz

∩ Smk | CanUD subset (Table S8). Chromosome 2 had the
strongest signal in this subset, with intergenic lead SNP rs2947411
(chr2:614168, p= 3.6e-19) that replicates previous associations
with Smk [55]. This SNP was an eQTL for only one gene (SH3YL1 in
whole blood).
There were 114 genomic risk loci and 143 lead SNPs for the

CanUD ∩ Smk | Scz subset (Table S9). The strongest meta-analytic
effect was at lead SNP rs4620159 on chromosome 6
(chr6:111744735, p= 1.8e-28); this locus was previously associated
with Smk and CanUD [59, 60]. The lead SNP is an intronic variant in
REV3L, a gene previously associated with smoking and several
metabolic traits [23, 57].

Fig. 2 Example forest plots from the ASSET European ancestry cross-disorder meta-analysis of CanUD, Smk, and Scz. The lower right
panel shows lead SNP (rs73229090) in Scz ∩ CanUD ∩ Smk subset. The upper right panel shows SNP (rs9924686) in Scz ∩ CanUD | Smk subset.
The upper left panel shows SNP (rs2947411) in Scz ∩ Smk | CanUD subset. The lower left panel shows SNP (rs4620159) in CanUD ∩ Smk | Scz
subset.
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Cross-trait loci: African ancestry
No associations passed the genome-wide significance threshold
(alpha= 5e-8) in the ASSET analysis of the African ancestry data.
However, the 14,001 pleiotropic SNPs that were genome-wide
significant in the European ancestry data showed smaller p-values
than expected by chance in the African ancestry data (i.e., the
distribution of p-values was significantly left-skewed, with a
Kolmogorov–Smirnov goodness-of-fit test indicating significant
(p < 2e-16) divergence from a distribution of 14,001 randomly
sampled SNP p-values). This suggests that with larger sample sizes,
future analyses might identify similar loci across both the
European and African ancestry datasets.

Cross-ancestry meta-analysis
We performed a sample size-weighted cross-ancestry meta-
analysis of the ancestry-specific one-sided meta-analysis results
from ASSET. Unlike the ancestry-specific two-tailed meta-analyses
described above, the one-sided meta-analysis in ASSET is more
like a traditional meta-analysis, resulting in one effect size per SNP
regardless of whether the SNP shows divergent directions of effect

across traits. The cross-ancestry meta-analysis of CanUD, Smk, and
Scz resulted in 448 genome-wide significant risk loci (Table S10).

Genetic associations with other phenotypes
After defining SNP subsets using ASSET, we used GNOVA [48] to
estimate genetic correlations between the SNP subsets and four
psychiatric disorders (ADHD [61], bipolar disorder [62], depression
[63], and PTSD [64]), educational attainment [65] (Edu), executive
function [66], risk-taking [58], and the Townsend deprivation index
(TDI; a regional measure of deprivation in the UK) in the European
ancestry data (Fig. 3, Table S11). All four psychiatric disorders have
previously been reported to be genetically correlated with CanUD,
Smk, and/or Scz. Edu has previously been shown to be positively
correlated with a subset of variants contributing to Scz risk [43],
despite negative genetic correlations between Scz and cognitive
function [67], and we expected that related socioeconomic
status (i.e., TDI), executive function, and risk-taking phenotypes
might be differentially associated with SNP subsets. For all subsets,
the effect estimate was aligned with the direction of effect
for CanUD.

Fig. 3 Estimated genetic correlations between SNP subsets from ASSET and other psychiatric disorders (attention deficit hyperactivity
disorder (ADHD), bipolar disorder, depression, and post-traumatic stress disorder (PTSD)), educational attainment (Edu), executive
function (EF), risk-taking (Risk), and Townsend deprivation index (TDI). Asterisks (*) represent genetic correlations that are statistically
significant after Bonferroni correction for 32 tests (p < 0.0016).
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For all phenotypes tested except for bipolar disorder and
executive function, the Scz ∩ CanUD ∩ Smk and CanUD ∩ Smk |
Scz subsets showed the same direction of genetic correlation,
while the Scz ∩ Smk | CanUD subset showed correlations in the
opposite direction. In other words, genetic variants with the same
direction of effect on CanUD and Smk, regardless of the direction
of effect on Scz, showed similar negative genetic correlations with
Edu, and positive genetic correlations with psychiatric disorders
(except bipolar disorder), risk-taking, and TDI, while genetic
variants with the same direction of effect on Scz and Smk but
not CanUD showed correlations in the opposite direction. Notably,
the Scz ∩ CanUD ∩ Smk and Scz ∩ CanUD | Smk subsets were
negatively genetically correlated with executive function, while
the Scz ∩ Smk | CanUD subset was positively correlated,
suggesting a pivotal role of the intersection of CanUD and Scz,
regardless of Smk, on executive functioning. The direction of
genetic correlation between bipolar disorder and the SNP subsets
seemed to depend on Scz (unsurprising, given the high genetic
correlation between these two disorders): when the effect
estimate was aligned with Scz (the Scz ∩ CanUD ∩ Smk and Scz
∩ CanUD | Smk subsets), the genetic correlation was positive, and
otherwise it was negative.
We also created polygenic scores (PGS) from each SNP subset in

the European ancestry data and tested their associations with a
range of health-related phenotypes in the BioVU biobank. We only
present associations with mental health and metabolic outcomes
in Fig. 4B, but results for all phenotypes with a significant
association with at least one of the PGS are available in Table S12.
In line with the genetic correlations in GNOVA, the PGS for the

convergent subset of SNPS (Scz ∩ CanUD ∩ Smk) showed the
strongest associations overall with most subsets of traits (Fig. 4A),
especially suicide attempt, psychosis, PTSD, conduct disorders,
antisocial/borderline personality disorder, bipolar disorder, and
alcohol-related disorders, among other psychiatric phenotypes
(Fig. 4B). Exceptions to this pattern included metabolic and
endocrine phenotypes (Fig. 4B), for which the PGS for the CanUD
∩ Smk | Scz subset had the greatest magnitude of associations
with many of these traits, including acidosis, adult failure to thrive,
type 2 diabetes, and hyperkalemia. In general, PGS for the Scz ∩
CanUD | Smk subset showed associations with metabolic
phenotypes in the opposite direction of effect from the PGS for
the CanUD ∩ Smk | Scz subset. For example, the PGS for the Scz ∩
CanUD | Smk subset was negatively associated with obesity, while
the PGS for the CanUD ∩ Smk | Scz subset showed a positive
association.

Partitioned genetic covariance analysis
When stratified by broad tissue type, the genetic covariance
between CanUD and Scz was significantly enriched for brain
tissues in the European ancestry data (ρ= 0.029, p= 8.3e-4), while
the genetic covariance between Smk and Scz was not significantly
enriched for any tissue category (Fig. S1, Table S13).

DISCUSSION
The nature of the relationship between cannabis use and
schizophrenia is a compelling and fiercely debated question in
psychiatry, one that is complicated by the possibility of shared
genetic factors and the frequent co-occurrence with tobacco
smoking. There are major public health implications associated
with a causal effect of cannabis use on schizophrenia risk, so a
resolution of this question is important. Here, we describe the
largest genome-wide, cross-ancestry and cross-disorder analyses
of cannabis use disorder (CanUD), tobacco smoking (Smk), and
schizophrenia (Scz) to date.
Our analyses revealed three key findings. First, CanUD and Smk

are both genetically correlated with Scz, and this was consistent in
both the European and African ancestry datasets. However,

CanUD and Scz showed a greater degree of genetic overlap than
Smk and Scz. Second, causal inference analyses suggested
evidence of bidirectional causality for genetic liability to Scz,
CanUD, and Smk, albeit in the presence of horizontal pleiotropy.
Third, genomic loci that comprise the intersection between
CanUD and Scz are associated with other mental health conditions
and executive functioning. Overall, our results support potential
reciprocal causal links between schizophrenia, cannabis use
disorder, and tobacco smoking, which may have implications for
public health efforts. As cannabis use continues to rise alongside
parallel increases in nicotine use through vaping, it is important
that the public be informed of potential risks and that these risks
are presented from a nuanced perspective that acknowledges
other mechanisms contributing to CanUD, Smk, and Scz
comorbidity (including potential shared genetic factors).
In causal inference analyses that accounted for both correlated

and uncorrelated forms of horizontal pleiotropy, we saw evidence
for bidirectional causal relationships between all three pheno-
types. We found evidence of horizontal pleiotropy for all trait pairs
through the MR-PRESSO global test, but again found significant
bidirectional causal estimates even after removing outlier SNPs for
horizontal pleiotropy. Collectively, these results support causal
links between CanUD, Smk, and Scz, although it is worth noting
that the MR-Egger test did not support any causal relationships
except for genetic liability for Smk causing CanUD. Convergent
evidence from additional sources (especially longitudinal, pro-
spective cohort studies) are needed [68], especially in light of
conflicting results from epidemiological studies [5, 6, 69] and the
limitations (and assumptions) associated with genetic methods of
causal inference [70].
Over 200 loci had convergent genome-wide significant effects

on CanUD, Smk and Scz. The strongest convergent locus was on
chromosome 8, with the lead SNP being a brain eQTL for EPHX2,
CHRNA2, and CCDC25. While CHRNA2, a nicotinic cholinergic
receptor (nAChR), seems an intuitive finding for Smk, this locus
was most strongly associated with Scz and CanUD (Fig. 2), and the
top lead variant in all recent CanUD GWASs has mapped to this
locus [12, 17, 54]. The role of cholinergic disturbance in positive
[71] symptoms and cognitive symptoms [72] of Scz raise the
potential for use of nChR agonists for treatment of comorbid Scz,
CanUD and Smk [73]. EPHX2 encodes soluble epoxide hydrolase
(sEH), the overexpression of which has been implicated in Scz [74]
and other diseases with a neuroinflammatory component (e.g.,
Alzheimer’s Disease). There is evidence for synergy between sEH
and fatty acid amide hydrolase (FAAH [75]), which metabolizes
endogenous cannabinoids and the inhibition of which is being
evaluated for the treatment of pain. Given the emerging and
paradoxical role of CanUD and a proinflammatory state [76], the
role of EPHX2 at the intersection of these disorders is intriguing.
Variants previously implicated in metabolic phenotypes

emerged from the Scz ∩ CanUD | Smk subset. For instance, the
lead SNP rs9924686 in TAOK2 was negatively associated with
CanUD and Scz but not Smk and has been implicated in numerous
prior GWAS of metabolic traits [77, 78]. Further, while PGS derived
from this subset were associated with both psychiatric and
metabolic traits, the direction of association differed between this
subset and the polygenic score of the fully convergent subset for
metabolic but not psychiatric phenotypes (Fig. 4).
Genetic predisposition for executive functioning was negatively

correlated with the subset of fully convergent variants (Scz ∩
CanUD ∩ Smk), as well as those in the Scz ∩ CanUD | Smk subset,
but positively associated with the other two subsets (i.e., where
effects diverged for either CanUD or Scz), suggesting that only
variants with risk-increasing effects on both CanUD and Scz
related to lower executive functioning. Executive functioning
deficits are a defining feature of Scz [67] and a broad range of
substance use disorders [66, 79, 80], consistent with our findings.
Executive functioning deficits have also been implicated in a
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Fig. 4 Associations between polygenic scores for SNP subsets from ASSET and health-related phenotypes in the BioVU biobank. A Upset
plot showing the number of phenotypes within different categories associated with one or more PGS. B Forest plots showing associations
(represented by the regression coefficient, i.e., the change in log(odds)) between the four ASSET SNP subset PGSs and mental disorders (left
panel) and endocrine/metabolic traits (right panel) in BioVU.

E.C. Johnson et al.

1662

Neuropsychopharmacology (2024) 49:1655 – 1665



broader range of mental health conditions [66], which also aligns
with our observation that variants influencing CanUD and ScZ,
regardless of their effects of Smk, appear to index serious
psychiatric comorbidity. Thus, our study implicates the genetic
liability to lower executive functioning as a common mechanism
undergirding CanUD and Scz, which may prove useful for future
studies seeking to develop improved treatment and early
intervention efforts. Notably, while executive functioning is related
to educational attainment [66], the pattern of associations
between subsets of variants and educational attainment appeared
to be quite different—for instance, subsets where effects for
CanUD and Smk diverged (Scz ∩ CanUD | Smk and Scz ∩ Smk |
CanUD) were associated with greater educational attainment,
while subsets with convergent effects on both CanUD and Smk
were associated with lower educational attainment. Interestingly,
the subset of variants with a risk-increasing effect on CanUD but
protective effects on Scz and Smk (i.e., variants which were
divergent for CanUD; Scz ∩ Smk | CanUD) were generally
correlated with lower risk for psychopathology (ADHD, bipolar
disorder, and depression), risk-taking, and material deprivation,
and greater educational attainment and executive functioning.
The genetic correlation between CanUD and Scz (rg= 0.37,

SE= 0.02) was significantly greater (pdiff= 6.5e-18) than that
between Smk and Scz (rg= 0.17, SE= 0.02) in the European
ancestry data (with a similar but non-significant pattern in the
African ancestry data: rg(CanUD, Scz)= 0.61, SE= 0.14 vs. rg(Smk,
Scz)= 0.34, SE= 0.15). This suggests a greater proportion of
shared genetic effects for CanUD and Scz than for Smk and Scz.
When we partitioned the genetic covariance between phenotype
pairs (Scz and CanUD, and Scz and Smk) into broad tissue types,
the genetic covariance of CanUD and Scz was significantly
enriched for genes functional in brain tissue, while the genetic
covariance between Smk and Scz was not significantly enriched in
any tissue category. While it is important to note that the size of
the annotation set is linked to statistical power, and therefore p-
values do not necessarily indicate the relative importance of
different tissue types (e.g., genes functional in immune tissues
might also be important for CanUD ~ Scz), the greater statistical
power of the Smk GWAS compared to the CanUD GWAS and the
substantially larger genetic covariance observed for CanUD~Scz
relative to Smk ~ Scz (e.g., ρBrain= 0.029 vs. ρBrain= 0.009, respec-
tively) suggests a meaningful difference in the degree of
functional genomic overlap between CanUD and Scz compared
to Smk and Scz that is not attributable to statistical power alone.
These results are consistent with an overall pattern of findings in
our study: the degree of genetic overlap, and the extent to which
the genetic covariance is enriched in meaningful biological
categories, is greater for CanUD and Scz than for Smk and Scz.
Our analyses of African ancestry data increase the general-

izability of our findings. However, the smaller sample size of the
individual African ancestry GWASs and limited available data for
follow-up analyses (e.g., annotation files for partitioned genetic
covariance analyses) constrained the extent to which we were
able to accomplish our goal of equitable analyses. The genetic
correlation between CanUD and Scz was substantially larger in the
African ancestry data (rg= 0.610, SE= 0.140, p= 1.41e-5) than in
the European ancestry data (rg= 0.373, SE= 0.023, p= 2.97e-60),
albeit with a much larger standard error, suggesting that with
increasing sample size, there could be considerable opportunity to
identify pleiotropic loci.
Several other limitations applied to our study. First, while early

age of cannabis initiation and use of high-potency cannabis have
been suggested as risk factors for Scz, we did not have data
available on potency and did not include age at first use in our
analyses, as the only available GWAS for this phenotype was
relatively underpowered and had non-significant SNP-heritability
[81]. Similarly, we were unaware of any GWAS of cannabis
consumption (i.e., heaviness or frequency of use). We also

acknowledge the potential for collider bias to affect the causal
inference analyses; for example, selection bias (which can induce
collider bias) in the UK biobank has been shown to result in over-
and under-estimated genetic correlations and MR causal esti-
mates, including for substance use-related traits like drinking
frequency and smoking status [82]. It is difficult to definitively
diagnose the presence of collider biases, but future studies should
explore this further. Another limitation is that the individual GWAS
likely contain comorbid cases (e.g., a SCZ case with co-occurring
CanUD), and this could artificially inflate our estimates of genetic
correlations. Similarly, cannabis is often mixed with tobacco in
Europe as well as in certain preparations in the US (e.g., blunts),
but existing CanUD GWASs do not account for this potential
confounder. Furthermore, cross-trait assortative mating has been
shown to bias genetic correlations (e.g., between alcohol use
disorders and schizophrenia) [83], although the extent to which
this could be affecting estimates of correlation between Scz,
CanUD, and Smk specifically has not yet been quantified. We were
unable to assess the presence of sex-specific effects related to the
relationship between Scz, CanUD, and Smk because sex-stratified
versions of the primary GWASs were unavailable. As sample sizes
increase, such analyses should be prioritized. Finally, there may be
some sample overlap among the different GWAS (especially for
CanUD and Smk), which could have inflated our MR results, but
not results from CAUSE, which accounts for sample overlap.
Overall, our results add to the body of literature suggesting that

both Smk and CanUD may be important predisposing factors as
well as sequela of Scz. We demonstrate that the relationship
between Smk, CanUD, and Scz may be due to both correlated
genetic and reciprocal causal effects. While cigarette use is
generally decreasing [84], nicotine exposure through vaping is
increasing [26, 85] and cannabis legalization and use are
becoming more widespread worldwide [86]. As substance use
policies and modes of use continue to change, it is important to
carefully monitor epidemiologic trends in mental health condi-
tions, especially schizophrenia and other psychotic disorders, and
consider targeted interventions that may benefit individuals with
heavy cannabis and tobacco use.
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