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Predicting prognosis for epithelial ovarian
cancer patients receiving bevacizumab
treatment with CT-based deep learning
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Epithelial ovarian cancer (EOC) presents considerable difficulties in prognostication and treatment
strategy development. Bevacizumab, an anti-angiogenic medication, has demonstrated potential in
enhancing progression-free survival (PFS) in EOC patients. Nevertheless, the identification of
individuals at elevated risk of disease progression following treatment remains a challenging task. This
study was to develop and validate a deep learning (DL) model using retrospectively collected
computed tomography (CT) plain scans of inoperable and recurrent EOC patients receiving
bevacizumab treatment diagnosed between January 2013 and January 2024. A total of 525 patients
from three different institutions were retrospectively included in the study and divided into training set
(N = 400), internal test set (N = 97) and external test set (N = 28). The model’s performance was
evaluated using Harrell’s C-index. Patients were categorized into high-risk and low-risk group based
on a predetermined cutoff in the training set. Additionally, a multimodal model was evaluated,
incorporating the risk score generated by the DL model and the pretreatment level of carbohydrate
antigen 125 as input variables. The Net Reclassification Improvement (NRI) metric quantified the
reclassification performance of our optimal model in comparison to the International Federation of
Gynecology andObstetrics (FIGO) stagingmodel. The results indicated that DLmodel achieved aPFS
predictive C-index of 0.73 in the internal test set and a C-index of 0.61 in the external test set, along
with hazard ratios of 34.24 in the training set (95%CI: 21.7, 54.1;P < 0.001) and 8.16 in the internal test
set (95%CI: 2.5, 26.8;P < 0.001). Themultimodalmodel demonstrated aC-index of 0.76 in the internal
test set and a C-index of 0.64 in the external test set. Comparative analysis against FIGO staging
revealed an NRI of 0.06 (P < 0.001) for the multimodal model. The model presents opportunities for
prognostic assessment, treatment strategizing, and ongoing patient monitoring.

Ovarian cancer is recognized as a highly lethal gynecologic malignancy,
ranking sixth in terms of mortality rates among women1. Epithelial ovarian
cancer (EOC) represents the most prevalent subtype, accounting for
approximately 90% of all ovarian cancer cases. The standard treatment
regimen for patients with EOC typically involves debulking surgery fol-
lowed by platinum-based chemotherapy2. In the realm of clinical
practice, some patients present with surgical contraindications upon
initial diagnosis, rendering them ineligible for ovarian tumor debulking

surgery. Furthermore, individuals who encounter recurrence following
debulking surgery in conjunction with platinum-containing chemotherapy
may be precluded from undergoing further tumor reduction surgery due to
factors such as extensive tumor burden. In cases of postoperative recurrence
and ineligibility for surgical intervention, the recommended course of
treatment is platinum-based chemotherapy. However, a considerable
number of patients experience relapse within three years of platinum-
based chemotherapy3, with subsequent recurrences characterized by a
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diminishing progression-free survival (PFS)4. Despite the emergence of
various treatment approaches in ovarian cancer, drug resistance has
developed, leading to therapeutic refractoriness. Although bevacizumab
treatment, which is a combination of the anti-angiogenic drug bevacizumab
with platinum-based chemotherapy has demonstrated efficacy in extending
PFS in certain patients, its utility is constrained by limitations5,6. The
prognosis of EOC patients receiving bevacizumab treatment is influenced
by factors such as disease stage, recurrence rate, and the development of
drug resistance7. Due to the considerable expense, potential adverse effects,
and notable variability in treatment effectiveness among individuals, it is
imperative to develop a precise prognostic prediction model prior to initi-
ating bevacizumab therapy.

The clinical management and prognostic evaluation of ovarian cancer
are heavily reliant on the stage of the disease8. Ovarian cancer staging
guidelines are established by the International Federation of Gynecology
and Obstetrics (FIGO), providing a crucial framework for healthcare pro-
fessionals to make prognostic assessments. It is important to note that
patients with the same FIGO stage may experience varying survival rates.
Carbohydrate antigen 125 (CA125) has become a prominent biomarker in
ovarian cancer screening9,10, attracting significant attention and utilization
in clinical practice. While it is valuable for evaluating response to che-
motherapy and predicting prognosis, the clinical effectiveness of CA125 is a
topic of debate11. Therefore, there is an urgent requirement to improve
prognostic accuracy by integrating additional indicators.

Prior to establishing a treatment plan, ovarian cancer patients com-
monly undergo thorough clinical evaluations, including physical examina-
tions, blood tests, and computed tomography (CT) scans. The amalgamation
of information obtained from these various assessments plays a crucial role in
predicting prognosis12,13. Nevertheless, traditional statistical approaches may
face difficulties in analyzing the complex and extensive nature ofmultimodal
data. Recent advancements in artificial intelligence have significantly
enhanced the ability to analyze complex datasets14. Deep learning (DL) has
emerged as a particularly promising approach within machine learning for
the examinationofmultimodal data, eliminating theneed for domain experts
tomanually extract or curate features15, as opposed to conventional machine
learning techniques. It has the inherent ability toprocess rawdatadirectly and
independently generate necessary representations essential for pattern
recognition, thus bypassing the explicit definition of rules or characteristics16.
When provided with sufficient data points, deep learning has demonstrated
superior performance compared to traditional radiological analyses17. Recent
advancements in deep learning techniques have even resulted in achieving
expertise comparable to experiencedmedical professionals in variousmedical
image analysis tasks18,19.

This study involved the development and validation of a DL model,
referred to as the risk score, utilizing preprocessed CT images of EOC
tumors. The main objective was to predict the survival outcomes of EOC
patients receiving bevacizumab treatment. Additionally, we investigated the
potential enhancement of the model’s predictive accuracy by incorporating
the CA125 biomarker.

Results
Patient baseline characteristics
From the initial cohort comprising 712 EOC patients receiving bev-
acizumab treatment, 127 individuals were omitted due to the unavailability
of preprocessedCTplain images or suboptimal image quality, in addition to
60 patients with incomplete survival data. A comparison of baseline char-
acteristics among the training set (N = 400), the internal test set (N = 97)and
the external test set (N = 28) revealed no statistically significant differences,
as depicted in Table 1.

Performance of the ResNet18 DL model
A ResNet18 DL model was developed to predict PFS predicated on
tumor volume segmented from preprocessed CT plain images20. The
ResNet18DLmodel achieved a C-index of 0.73 for predicting PFS in the
internal test set and 0.61 in the external test set. Employing the training

set, risk scores were computed based on the output of the ResNet18 DL
model. Patients were then categorized into high-risk and low-risk
groups utilizing the optimal cutoff value derived from the risk scores
generated by the ResNet18 DL model. The Kaplan–Meier survival
curves presented in Fig. 1 illustrate the survival outcomes of distinct
patient groups, revealing a significant difference in survival prob-
abilities between low-risk and median- and high-risk groups (P < 0.05).
Nonetheless, the deep learning model exhibits limitations in accurately
distinguishing between medium and high-risk groups. The clinical
attributes characterizing these patient groups were outlined in Table 2.
Furthermore, Fig. 2 showcased the distribution of risk scores calculated
by the ResNet18 DLmodel and exemplars of original images within the
internal test set.

Independent predictive ability of ResNet18 DL model
As depicted in Fig. 3, regarding PFS, the multivariate Cox regression-
adjusted hazard ratios (HR) pertaining to risk prediction derived from the
ResNet18 DL model were determined to be 34.24 (95% CI: 21.7, 54.1;
P < 0.001), 8.16 (95% CI: 2.5, 26.8; P < 0.001), surpassing those associated
with FIGO stage. Analogously, comparisons of the C-index values for these
variables also yielded consistent findings, as illustrated in Fig. 4.

Performance of the LightGBMmodel
The risk score was chosen as an input for the LightGBM model. Further-
more, we augmented themodel by incorporating CA125, a pertinent tumor
marker, which improved the predictive capacity for PFS among EOC
patients receiving bevacizumab treatment (Fig. 4). The LightGBM model
achieved aC-index of 0.76 for predicting PFS in the internal test set and 0.63
in the external test set. Elevated scores corresponded to heightened pro-
gression risk. Subsequently, the progression risk scorewas applied to the test
set to validate its efficacy. The threshold value employed for stratifying the
risk score aligns with the tertiles. Patients exhibiting elevated scores
demonstrated a markedly escalated risk of progression compared to those
with lower scores, as demonstrated in Fig. 5.

Figure 6 elucidated the delineation and reclassification of patients
exhibiting adverse prognostic outcomes based on their respective scores.

Table 1 | Comparison of baseline characteristics in training,
internal and external test sets

Variable Training
set (N = 400)

Internal test
set (N = 97)

External test
set (N = 28)

P

Age 0.26

≤65 years 312 (78.0) 80 (82.5) 19 (67.9)

>65 years 88 (22.0) 17 (17.5) 9 (32.1)

BMI 0.35

<18 17 (4.3) 2 (2.1) 2 (7.1)

18 ≤ X < 24 275 (68.8) 73 (75.3) 16 (57.1)

24 ≤ X < 28 96 (23.5) 19 (19.6) 10 (35.8)

≥28 12 (3.4) 3 (3.0) 0 (0.0)

ECOG 0.29

0 97 (24.3) 19 (19.6) 13 (46.4)

1 277 (69.3) 74 (76.3) 12 (42.9)

2 26 (6.4) 4 (4.1) 3 (10.7)

FIGO stage 0.33

Stage II 22 (5.5) 3 (3.1) 0 (0.0)

Stage III 246 (61.5) 70 (72.2) 14 (50.0)

Stage IV 132 (33.0) 24 (24.7) 14 (50.0)

Pretreatment 382.5 592.3 301.0 0.17

CA125 level
(U/ml)

(3.4–7410) (5.9–7459) (7.9–1287)
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Notably, the scores assigned to high-risk progression patients markedly
exceeded those assigned to their low-risk counterparts. As depicted in
Table 3, comparison with the conventional classification relying on
FIGO staging as a prognostic measure demonstrated the LightGBM
model’s notable effect on prognostic reclassification. With the
LightGBM model, grounded in the anticipated progression risk sub-
sequent to bevacizumab treatment, the Net Reclassification Improve-
ment (NRI) reached 0.06 (P < 0.001).

Discussion
EOC represents a highly aggressive malignancy originating from ovarian
tissues. The prognostication of EOC patients receiving bevacizumab treat-
ment is contingent upon established indicators such as pretreatment FIGO
stage21,22, disease recurrence, and treatment refractoriness, all of which sig-
nificantly influence PFS outcomes. Extensive clinical investigations have
underscored the considerable variability in PFS observed among EOC
patients receiving bevacizumab treatmentwithin bothfirst- and second-line
treatment contexts5,23,24.However, it is crucial to conduct additional research
to determine the most effective timing and duration of bevacizumab
treatment, as well as to evaluate its cost-effectiveness. Furthermore, iden-
tifying predictive markers that can differentiate between positive and
negative treatment outcomes is an important area of focus. Utilizing these
markers strategically has the potential to expand the range of therapeutic
applications for bevacizumab and aid in selecting patient populations that
will derive the greatest benefit from its use.

CT imaging plays a crucial role inmodernmedical practice by assisting
in the development of treatment plans and the identification of medical
conditions25,26. The extensive image data provided by CT scans allows for
detailed analysis of various aspects of tumors in patients, such as the extent
ofmetastasis, depth of infiltration, and spatial location27–29. This information
is valuable for healthcare professionals in evaluating and predicting out-
comes for cancer patients. Utilizing the capabilities of CT imaging, we
utilized a ResNet18 deep learning model to predict PFS based on tumor
volume extracted from preprocessed CT images. The ResNet18 DL model
demonstrated significant predictive accuracy, as indicated by the multi-
variate Cox regression-adjusted hazard ratios obtained from the model.
These hazard ratios were found to be 34.24 in the training set (95%CI: 21.7,
54.1;P < 0.001) and 8.16 in the internal test set (95%CI: 2.5, 26.8;P < 0.001),
surpassing those associatedwith FIGOstage.Moreover, after accounting for
relevant clinicopathologic variables such as FIGO stage, age, and CA125
levels, the risk score generated by the ResNet18 deep learning model
remained a statistically significant independent predictor of patient out-
comes. The subsequent stratification of patients into high-risk and low-risk
groups, based on the optimal cutoff value obtained from risk scores, played a
crucial role in identifying distinct survival trajectories. This was demon-
strated by notable differences in survival probabilities between the two
cohorts, as shown byKaplan–Meier survival curves (P < 0.05). These results
provide comprehensive validation of the prognostic utility of the ResNet18
deep learning model in informing treatment decisions for EOC patients
receiving bevacizumab treatment.

Radiomics methodologies often require precise manual tumor
annotation and empirical feature extraction17,30,31, which can limit the
reproducibility and scalability of studies in this field. In contrast, our
study employed a practical approach by carefully selecting the CT slice
with the largest tumor region as the primary input for modeling.
Additionally, in survival prediction research, accurately ordering sur-
vival time is crucial, unlike in image classification tasks. However, the
existence of censored data within subsequent records presents a diffi-
culty for utilizing ResNet18 deep learning models in predicting survi-
val. Previous studies have often utilized binary classificationmethods to
tackle this problem32–34. In our study, we implemented a customized
loss function based on the Cox partial likelihood35,36 to address the
varied range of survival risks among patients during the optimization
process. This personalized loss function enabled continuous adjust-
ments to the model parameters, with the primary goal of reducing
overall loss. Additionally, we incorporated tailored loss functions
related to PFS into the training dataset, allowing the ResNet18 deep
learning model to capture the relevant characteristics linked to recur-
rence, metastasis, and mortality. This approach enhances the model’s
predictive capabilities beyond individual event forecasts.

Identifying patients at high risk post-bevacizumab treatment com-
pletion continues to present a persistent challenge. The discriminative
capabilities of theResNet18DLmodel’s risk score in distinguishing between
high- and low-risk patients highlight its potential utility in identifying

Fig. 1 | Kaplan–Meier curves showed ResNet18 DL model’s risk score.
a Kaplan–Meier curves for PFS in training set; b Kaplan–Meier curves for PFS in
internal test set; c Kaplan–Meier curves for PFS in external test set.
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Table 2 | Characteristics of patients in high and low risk in training, internal and external test sets

Variable Training set P Internal
Test Set

P External
test set

P

High
risk (N = 125)

Median
risk

(N = 112)

Low
risk (N = 163)

High
risk (N = 13)

Median
risk (N = 13)

Low
risk (N = 71)

High
risk (N = 5)

Median
risk (N = 10)

Low
risk (N = 13)

Age 0.32 0.11 0.87

≤65 years 92 88 132 9 9 62 4 7 8

(73.6) (78.6) (81.0) (69.2) (69.2) (87.3) (80.0) (70.0) (61.5)

>65 years 33 24 31 4 4 9 1 3 5

(26.4) (21.4) (19.0) (30.8) (30.8) (12.7) (20.0) (30.0) (38.5)

BMI 0.06 0.51 0.95

<18 4 5 8 0 1 1 0 1 1

(3.2) (4.5) (4.9) (0.0) (7.6) (1.4) (0.0) (10.0) (7.7)

18≤X<24 98 79 98 9 9 55 3 5 8

(78.4) (70.5) (60.1) (69.2) (69.2) (77.5) (60.0) (50.0) (61.5)

24≤X<28 21 25 50 3 3 13 2 4 4

(16.8) (22.3) (30.7) (23.2) (23.2) (18.3) (40.0) (40.0) (30.8)

≥28 2 3 7 1 0 2 0 0 0

(1.6) (2.7) (4.3) (7.6) (0.0) (2.8) (0.0) (0.0) (0.0)

ECOG 0.09 0.33 1.00

0 31 26 40 4 3 12 2 5 6

(24.8) (23.2) (24.5) (30.8) (23.1) (16.9) (40.0) (50.0) (46.2)

1 86 84 107 8 9 57 2 4 6

(68.8) (75.0) (65.6) (61.6) (69.3) (80.3) (40.0) (40.0) (46.2)

2 8 2 16 1 1 2 1 1 1

(6.4) (1.8) (9.9) (7.6) (7.6) (2.8) (20.0) (10.0) (7.6)

FIGO stage 0.88 0.20 0.30

Stage II 6 5 11 0 1 2 0 0 0

(4.8) (4.5) (6.7) (0.0) (7.6) (2.8) (0.0) (0.0) (0.0)

Stage III 78 72 96 8 7 55 3 3 8

(62.4) (64.3) (58.9) (61.5) (53.9) (77.5) (60.0) (30.0) (61.5)

Stage IV 41 35 56 5 5 14 2 7 5

(32.8) (31.2) (34.4) (38.5) (38.5) (19.7) (40.0) (70.0) (38.5)

Pretreatment 384.4 378.4 382.6 0.99 612.5 508.9 486.7 0.68 317.4 286.9 302.6 0.53

CA125 Level
(U/ml)

(3.4–7410) (5.1–4724) (4.3–5379) (5.9–7459) (7.1–4029) (4.6–5076) (9.8–1287) (7.9–826.4) (11.2–4682)

Fig. 2 | Histogram of the distribution of ResNet18 DLmodel’s risk score and examples of CT plain images.A histogram of the distribution of ResNet18 DLmodel’s risk
score is shown on the left. Examples of CT plain images and the gradient-weighted class activation map (grad-cam) heat map are shown on the right.
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individuals at elevated risk who may benefit from more aggressive ther-
apeutic interventions, even in cases where a favorable response is initially
observed following bevacizumab treatment. Such integration of risk
assessment scores could serve as a valuable adjunct to the decision-making

process for these patients. The Harrell’s C-index serves as a crucial perfor-
mance assessment measure for DL models, with a value of 1 indicating
flawless model performance and a score of 0.5 or below suggesting inade-
quate performance on datasets. Therefore, a Harrell’s C-index approaching

Fig. 4 | Comparison of Harrell C-indexes for
LightGBMmodel, ResNet18 DL model and FIGO
staging model. This boxplot compares the perfor-
mance of three models—ResNet18 DL, LightGBM,
and the FIGO staging model—across different
datasets: training, internal test, and external test sets.
Each boxplot shows themiddle 50% of the data, with
the top and bottom edges representing the third
quartile (Q3) and first quartile (Q1), respectively.
The box height (Q3 - Q1) indicates performance
variability. The line inside the box shows themedian
(Q2), reflecting the central tendency. Whiskers
extend from the box to 1.5 times the interquartile
range, capturing typical values. Points outside this
range are outliers, indicating extreme values that
significantly deviate from the majority of the data.

Fig. 3 | Forest plots for the multivariable Cox
regression analysis. aMultivariable Cox regression
analysis between ResNet18 DL model’s risk and
clinical features for PFS in the training set;
bMultivariable Cox regression analysis between
ResNet18 DL model’s risk and clinical features for
PFS in the internal test set. The multivariate Cox
regression plot shows the coefficients representing
the HR (Hazard Ratio) values for each variable. The
horizontal lines indicate the 95% confidence interval
for the HR values. Variables that have a significant
impact are represented by solid symbols, while those
considered not to have a significant impact are
represented by hollow circles.
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1 indicates optimal training of the DL model. In the specific context of
predictingPFS, theResNet18DLmodel achieved aHarrell’s C-index of 0.73
in the internal test set, demonstrating its noteworthy predictive accuracy.

This study introduced a LightGBM model, integrating CA125 and
ResNet18 risk scores as inputs. CA125, a well-known blood biomarker, has
been linked to unfavorable outcomes when found in elevated levels37. The
Harrell’s C-index for the LightGBMmodel, in terms of predicting PFS, was
calculated to be 0.76, outperforming the 0.73 achieved by the ResNet18 DL
model alone. Furthermore, compared to the ResNet18 DL model, the

LightGBM model can classify patients into more refined subgroups. We
believe this is because while the ResNet18 DL model is trained solely on
imaging data, the LightGBMmodel integrates both imaging and blood test
features. Therefore, it can predict patient risk scores more accurately from
themultimodal data, resulting in a higher c-index and evident differences in
the KMcurve outcomes. LightGBMbuilds upon the results of the ResNet18
DL model and incorporates blood test data, representing a progressive
enhancement. Future research could investigate the inclusion of additional
prognostic factors to further enhance the predictive accuracy of the model.
In order to evaluate the effectiveness of the LightGBM model, the NRI
metric was utilized to measure its ability to correctly reclassify patients
compared to the establishedmodel. Thismetric aimed to assess howwell the
LightGBM model improved the classification of patient progression risk
whencompared to the traditional FIGOstagingmodel. The results showeda
significantNRI value of 0.06 (P < 0.001), indicating its substantial impact on
prognostic reclassification when compared to the FIGO staging system.

The study is limited by factors such as its retrospective design. Addi-
tionally, the dataset used in this research may lack generalizability to
populations in diverse geographic regions due to its reliance on data
exclusively from the authors’ institution, potentially leading to variability in
outcomes. To address these limitations, future research endeavors should
prioritize external validation of the findings and incorporate data from a
broader array of sources to enhance the robustness and applicability of the
conclusions drawn from this study.

In conclusion, we developed and validated a DL model based on
pretreatment CT imaging to prognosticate survival outcomes in EOC
patients receiving bevacizumab treatment, obviating the need for
manual feature extraction or selection. The risk score produced by our
DL model demonstrates autonomous prognostic value and offers
promise as a pretreatment risk assessment tool for the patients. While
we have developed a model for EOC patients, our future research will
focus on investigating deep learning prognostic methods for various
subtypes of EOC. Additional validation through prospective clinical
trials is necessary to confirm the effectiveness and consistency of our
model in various clinical environments.

Methods
Data collection
This retrospective study was conducted in accordance with the ethical
guidelines set forth in the Helsinki Declaration. Ethical approval was
obtained from the Medical Ethics Committees of the First Affiliated Hos-
pital of Anhui Medical University, the First Affiliated Hospital of Anhui
Medical University High Branch and the Institutional Review Board of the
Second People’s Hospital of Hefei. Given the retrospective design of the
study, the need for informed consent was waived.

This retrospective study aimed to gather data on inoperable and
recurrent EOC patients receiving bevacizumab treatment between January
2013 and January 2024 at three different medical institutions. Inclusion
criteria comprised individuals meeting the following stipulations: (1) age
≥18years; (2)histologically confirmeddiagnosis of epithelial ovariancancer;
(3) FIGO stage II-IV classification; (4) Eastern Cooperative Oncology
Group (ECOG) performance status ≤2; (5) absence of prior malignant
neoplasms; (6) absence of concurrent severe chronic internal medical
conditions; and (7) availability of clear and comprehensiveCT imaging data
acquired within a 2-week interval preceding the initiation of treatment.

Conversely, exclusion criteria were defined as follows: (1) age <18
years; (2) histologically confirmed non-EOC malignancies; (3) ECOG
performance status >2; (4) concomitant presence of othermalignancies; (5)
concurrent severe chronic internal medical conditions; and (6) discernible
artifacts, blurring, errors, or disordered slices evident within CT imaging.
Within the initial group of 712 EOC patients receiving bevacizumab
treatment, 127 individuals were eliminated from the study due to the
absence of preprocessed CT plain images or suboptimal image quality, in
addition to 60 patients with incomplete survival data. As a result, a total of
525 EOC patients from the designated institutions were included in the

Fig. 5 | Kaplan–Meier curves showed LightGBM model’s risk score.
a Kaplan–Meier curves for PFS in training set; b Kaplan–Meier curves for PFS in
internal test set; c Kaplan–Meier curves for PFS in external test set.
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study, with 484 patients diagnosed with high-grade serous carcinoma, 21
patients with low-grade serous carcinoma, and 20 patients with clear cell
carcinoma. Prior to the initiation of treatment, baseline assessments,
including physical examinations, tumor marker evaluations, and CT scans,
were carried out for all participants. Data collection for this investigation
persisted until January 2024. The patient cohort for this study was visually
represented in Figs. 7 and8a,with a total of 400 cases from institutions 1 and

2 included in the training set, 97 cases from institutions 1 and 2 included in
the internal test set, and 28 cases from institution 3 included in the external
test set.

Patient cohorts
A total of 525 EOC patients receiving bevacizumab treatment between
January 2013 and January 2024 were retrospectively analyzed. As shown in

Fig. 6 | Discrimination and reclassification of patients by LightGBM model’s
risk score. a Density plot of the FIGO staging model among training set; b Density
plot of the LightGBM model among training set; c Density plot of the FIGO stage
model among internal test set; d Density plot of the LightGBM model among
internal test set; e Density plot of the FIGO stage model among external test set;

f Density plot of the FIGO stage model among external test set. The horizontal axis
represents the Risk Score values, while the vertical axis represents the corresponding
population density. The integral of all probability density functions equals the total
number of patients.
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Fig. 8a, regular monitoring of tumor markers was implemented during the
treatment phase, with follow-up assessments conducted within 2 months
post-treatment culmination. During these follow-up evaluations, compre-
hensive blood analyses including routine hematology, biochemical profil-
ing, and tumor marker assessments were performed. Furthermore, efficacy
evaluation entailed physical examinations and computed tomography (CT)
scanning, adhering to the Response Evaluation Criteria in Solid Tumors
(RECIST) guidelines (version 1.1)38. Tumor response on CT scans was
adjudicated based on the vertical length andmaximum transverse thickness
of the lesion. Complete response (CR) was characterized by the absence of
discernible primary tumor areas, while partial response (PR) was defined as
a reduction of ≥30% in the sumof diameters of allmeasurable target lesions,
sustained for a minimum of 4 weeks relative to baseline measurements.
Progressive disease (PD) was delineated by either a ≥20% increase from
baseline in the sum of target lesion diameters, an absolute increase of
≥5mm, or the emergence of new lesions. Stable disease (SD) was identified
by fluctuations in lesion volume and number, exhibiting characteristics
between partial response and disease progression. Post-treatment, follow-
up appointments were scheduled bi-monthly in the initial year, tri-monthly
in the subsequent two years, and semi-annually thereafter. Disease pro-
gression was ascertained utilizing RECIST criteria, incorporating clinical
manifestations, imaging modalities, or escalating levels of CA12539.

Data preprocessing
The study systematically documented patient demographics, including
variables such as age, height, weight, body mass index (BMI), ECOG per-
formance status, pre-treatment FIGO stage, and pre-treatment blood tumor
markers, as clinical attributes. The target variable of interest was PFS data.
CT plain imaging data acquired prior to treatment initiation were retained
for analysis. Two experienced clinicians, each with more than ten years of
clinical experience, manually outlined the boundaries of the tumor on each
CT slice corresponding to the EOC tumor region. Following this, a senior

clinician with over twenty years of expertise reviewed and modified these
outlines. For original DICOM images, we apply a windowing technique
usingWindowWidth (WW) andWindow Level (WL) parameters tailored
to themediastinumwindow. Grayscale processed CT images undergomin-
max normalization to scale pixel values to 0-1 range, followed by histogram
equalization with a contrast threshold of 2.0 and a grid size of 8 × 8. This is
succeeded by another round of min-max normalization before inputting
data into the network. Regarding CA125 data from blood tests, values like
‘>1000’ and ‘>500’ are replaced with their respective numeric values of 1000
and 500. During model training, min-max normalization is applied to
CA125 values across all cases, mapping them to the 0-1 range. The CT slice
containing the largest tumor region was selected as the input for further
modeling efforts (Fig. 8a).

DLmodel construction
A deep learning architecture, specifically Residual Network (ResNet18)40

pretrained on imagenet-1k (ImageNet: A large-scale hierarchical image
database) was developed to predict PFS predicated on tumor volume seg-
mented from preprocessed CT plain images. Patients from two different
institutions were randomly divided into training and internal test subsets at
an 8:2 ratio. Among them, 188 patients from institution one and 212
patients from institution two were assigned to the training set, while 45
patients from institution one and 52 patients from institution two were
assigned to the internal test set (Fig. 8a). Patients from the third institution
were gathered to form an external test set. The study involved conducting
comparative experiments usingpre-traineddeep learningmodels, including
ResNet18, ResNet50, DenseNet, andViT, all trained on ImageNet-1K. Each
experiment was repeated ten times for each model, with the model para-
meters saved for analysis. The ResNet18 deep learning model with the
highest overall C-index was selected for further analysis. This model was
then used to develop a predictive model aimed at estimating patient risk
scores directly from preprocessed CT plain images depicting segmented

Table 3 | Reclassification by the LightGBM model’s risk score of patients in overall cohort

Overall cohort Low risk score Median risk score High risk score NRI P

FIGO staging model 21 325 169 0.06 <0.001

LightGBM model 103 215 197

Fig. 7 | Screening of enrolled cases based on
inclusion and exclusion criteria. Flowchart shows
patients inclusion for the groups with epithelial
ovarian cancer, which composed training set
(N = 400), internal test set (N = 97) and external test
set (N = 28).
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tumors (Fig. 8b). These images encompassed a region of interest (ROI)
centeredon the tumor, alongwith a 3-pixelmargin surrounding the tumor’s
periphery. During the optimization phase, a customized loss function based
on the Cox partial likelihood41 was utilized to address the diverse levels of
survival risk among patients. This loss function enabled iterative adjust-
ments to themodel parameters with the goal of reducing overall loss. Figure
8b illustrated a schematic representation of the ResNet18 deep learning
model for clarification.

Statistical analysis
The primary methodologies utilized for assessing the prognostic efficacy of
the developed model were Harrell’s C-index and Kaplan–Meier survival
analysis. Patients were categorized into different risk groups based on dis-
ease progression, andKaplan–Meier survival curveswere generated for each
group.Disparities in survival prognosis among these groupswere quantified
through the calculation of P values, where P < 0.05 indicates a significant
difference in survival prognosis. Kaplan–Meier survival analysis was
employed to examine prognostic differences between these risk groups.

Furthermore, post-hoc analyses were undertaken to discern potential
associations between variables such as age, FIGO stage, CA125 levels, and
various patient groups and subgroups.

As shown in Fig. 8c, a light gradient boosting machine (LightGBM)42

learning model was developed using CA125 and ResNet18 risk scores as
input variables. TheLightGBMmodelwas further processedwithweights to
integrate multimodal data and derive a progression risk score tailored to
EOCpatients receivingbevacizumab treatment. Subsequently, patientswere
categorized into different risk groups based on disease progression, and
Kaplan–Meier survival curves were generated for each group. Disparities in
survival prognosis among these groups were quantified through the cal-
culation of P values, where P < 0.05 indicates a significant difference in
survival prognosis.

The comparative analysis of thesemodels included an evaluation of the
C-index of the ResNet18 DL model, the LightGBM model, and the con-
ventional FIGO staging model, each utilized independently for prognosis
prediction. This evaluation was enhanced by the incorporation of the Net
Reclassification Improvement (NRI)metric43, whichmeasured the extent to

Fig. 8 |Workflowof this study. aPatient cohorts anddata preprocessing.Workflow
shows the development and validation of our model. b schematic diagram of the
ResNet18 DL model. Diagram shows the model structure. c model validation.

Flowchart shows the overall grouping and statistical analysis process, including the
assessment of risk scores according to Kaplan-Meier (KM) survival analysis, Cox
regression analysis and Harrell C-index.
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which a newmodel correctly or incorrectly reclassifiedpatients compared to
an existing model. The overarching objective was to assess the degree to
which the model with the highest C-index in the internal test set improved
the classification of patient progression risk compared to the traditional
FIGO staging model. A significance threshold of p < 0.05 was employed to
determine if the new model significantly enhanced the accuracy of patient
progression risk classification.

Statistical analyses were performed using R 3.4.0 software. Continuous
variableswere assessed using t-tests, while categorical variableswere analyzed
using either the χ2 test or Fisher’s exact test, as deemed appropriate. The
primary endpoint of interest in this study was PFS, defined as the duration
from the initiation of bevacizumab treatment to either tumor progression or
tumor-related death, or until the date of the last follow-up. All statistical tests
were two-tailed, with significance set at a threshold of p < 0.05.

Data availability
All data generated or analyzed during this study are included in this article.
Further inquiries can be directed to the corresponding authors.

Code availability
The code can be used only for non-commercial purpose and under the
permission of the corresponding authors. Source code used in this study can
be found at https://github.com/phaeton2017/PredictionEOC.
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