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Tumour immune characterisation 
of primary triple‑negative 
breast cancer using automated 
image quantification 
of immunohistochemistry‑stained 
immune cells
Suze Roostee 1,2,4, Daniel Ehinger 1,3,4, Mats Jönsson 1,4, Bengt Phung 1,4, Göran Jönsson 1,4, 
Gottfrid Sjödahl 3,4, Johan Staaf 1,2,4,5* & Mattias Aine 1,4,5*

The tumour immune microenvironment (TIME) in breast cancer is acknowledged with an increasing 
role in treatment response and prognosis. With a growing number of immune markers analysed, 
digital image analysis may facilitate broader TIME understanding, even in single‑plex IHC data. To 
facilitate analyses of the latter an open‑source image analysis pipeline, Tissue microarray MArker 
Quantification (TMArQ), was developed and applied to single‑plex stainings for p53, CD3, CD4, 
CD8, CD20, CD68, FOXP3, and PD‑L1 (SP142 antibody) in a 218‑patient triple negative breast 
cancer (TNBC) cohort with complementary pathology scorings, clinicopathological, whole genome 
sequencing, and RNA‑sequencing data. TMArQ’s cell counts for analysed immune markers were on 
par with results from alternative methods and consistent with both estimates from human pathology 
review, different quantifications and classifications derived from RNA‑sequencing as well as known 
prognostic patterns of immune response in TNBC. The digital cell counts demonstrated how immune 
markers are coexpressed in the TIME when considering TNBC molecular subtypes and DNA repair 
deficiency, and how combination of immune status with DNA repair deficiency status can improve the 
prognostic stratification in chemotherapy treated patients. These results underscore the value and 
potential of integrating TIME and specific tumour intrinsic alterations/phenotypes for the molecular 
understanding of TNBC.

Breast cancer is the most common malignancy in women  worldwide1. Triple-negative breast cancer (TNBC), 
a subtype that lacks the expression of the oestrogen receptor, progesterone receptor and amplification of the 
ERBB2/HER2 gene, is a particularly aggressive form that presents a unique clinical challenge. TNBC patients 
often face poor outcomes due to the lack of targeted  therapies2.

TNBC accounts for about 10% of all breast cancer cases, often affecting younger individuals and leading to 
early relapses. TNBC tumours are characterised by highly rearranged genomes and closely linked to mutations 
in high-risk breast cancer genes like BRCA1 and BRCA2. The latter links TNBC with DNA repair deficiency, 
such as homologous recombination deficiency (HRD), which has been associated with improved prognosis 
after adjuvant  chemotherapy3,4. Recent research has highlighted the importance of the immune response in 
determining the outcomes of early-stage TNBC patients, regardless of whether they receive  chemotherapy5–7. 
Here, the infiltration of different immune cell types in the tumour immune microenvironment (TIME) may 

OPEN

1Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381 Lund, 
Sweden. 2Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 
Medicon Village, 22381 Lund, Sweden. 3Department of Genetics, Pathology, and Molecular Diagnostics, 
Skåne University Hospital, Lund, Sweden. 4Department of Translational Medicine, Lund University, Malmö, 
Sweden. 5These authors contributed equally: Johan Staaf and Mattias Aine. *email: Johan.staaf@med.lu.se; 
Mattias.aine@med.lu.se

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-72306-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:21417  | https://doi.org/10.1038/s41598-024-72306-1

www.nature.com/scientificreports/

represent the systemic anticancer immune response towards tumour characteristics that are yet not fully under-
stood. The composition and density of different immune cell populations in the TIME likely influence tumour 
progression and success of anti-cancer therapies profoundly, although our understanding of these processes is 
still incomplete. Different methods exist to measure the immune response in tumour tissue samples, including 
the morphological assessment of the level of stromal tumour infiltrating lymphocytes (sTILs) on H&E-slides5, 
IHC-staining of cell type specific markers, immune cell type directed flow cytometry, or genomic methods such 
as mRNA expression  analyses8. Within TNBC exists a large heterogeneity in the level of immune response across 
individual  tumours9,10. This immune heterogeneity has also been recognized in proposed transcriptional TNBC 
subtypes through an immunomodulatory (IM) subtype/phenotype reported in 2011 by Lehmann et al.11. While 
the IM subtype was considered as one of six intrinsic TNBC subtypes, this subtyping scheme was later refined 
to comprise four subtypes (BL1, BL2, M, LAR) where the IM subtype can be superimposed on the former as an 
independent feature of the  tumour12.

To better understand interactions between somatic tumour alterations and the TIME, improvements in 
methods for the characterization of the TIME cell composition and cell type interactions are needed. Ideally, 
this involves both a quantitative identification of cell types using e.g., cell type specific markers, but also the 
ability to target the interrelationship between different markers expressed both in malignant and non-malignant 
cells based on their spatial organisation. Technological advancements have made it possible to analyse multiple 
markers simultaneously in a single FFPE section, but also through flow cytometry, mass spectrometry, or even 
more complex spatial profiling methods based on nucleic acid or protein  detection8,13. While these technologies 
provide improved resolution and multiplex capability, they are often costly, can have specific tissue requirements, 
and have a limited throughput. As a result, single-marker immunohistochemistry (IHC) on FFPE whole slide 
sections or tissue microarray (TMA) sections remain the standard in routine breast cancer diagnostics and 
research. This means a wealth of archival slides and scanned image data is available for retrospective analysis, 
while many cutting-edge technologies rely on fresh sectioning, and analysis pipelines built around these are 
often not amenable to archival image data.

While throughput of both single-plex and multiplex methods are increasing, data analysis remains a bot-
tleneck, especially when human interpretation or grading is needed. Despite standardisation efforts, human 
interpretation often requires subjective assessments to be made which in turn introduce  bias14,15. To address 
this limitation digital image analysis tools have been developed, some incorporating deep-learning for different 
classification and scoring applications such as TIL-estimation16,17 and PD-L1  scoring18. Yet, challenges remain, 
such as accurately identifying individual cells and transferability of trained deep learning (DL) models to other 
IHC data. For the former, advancements in convolutional neural networks have improved the extraction of cel-
lular metrics that are essential for definition of the spatial tissue architecture, like the shape, size, position, and 
count of individual  cells19.

To facilitate TIME analysis an open-source digital image analysis pipeline, Tissue microarray MArker Quan-
tification (TMArQ), was assembled that can quantitatively and spatially analyse single marker IHC images with 
high-throughput and reproducibility. To target TIME interactions with specific tumour phenotypes and altera-
tions in TNBC we applied TMArQ to a large TMA data set comprising over 200 TNBCs from a molecularly very 
well-profiled, population-representative, TNBC cohort of  patients3 that were IHC stained for multiple immune 
markers. As proof of concept, we also extended our analysis to one bladder cancer and one malignant melanoma 
TMA cohort. Through comparisons with matched genomic data as well as pathologist and DL scoring, we dem-
onstrate that TMArQ generates a deterministic quantification of the TIME in TNBC and is on par with gold 
standard and more user intensive methods. In TNBC, TMArQ cell counts demonstrates how immune markers 
are coexpressed in the TIME when considering proposed molecular subtypes and DNA repair deficiency, that 
gene expression-based deconvolution methods should be interpreted with care, and how combination of immune 
status with DNA repair deficiency status can further improve the prognostic performance in adjuvant treated 
patients. These results underscore the value and potential of integrating TIME and specific tumour intrinsic 
alterations/phenotypes for enhancing our understanding of the interplay between genotype and phenotype in 
TNBC.

Results
Comparison of automated TMArQ pipeline cell counts to available pathology scores
TMArQ is an automated digital analysis pipeline based on open-source software as outlined in Fig. 1. To assess 
the pipeline’s performance and validity we applied it for automated IHC scoring of p53 and six immune cell 
antibodies as well as PD-L1 (SP142 antibody) in a large TNBC TMA cohort (n = 218) (Table 1, Supplementary 
Table 1, Supplementary Figs. 1 and  2). Following the application of the pipeline, we first compared the extracted 
log2 transformed cell counts to different marker score estimates made by breast cancer pathologists as outlined 
in our previous  study10. This included scores for PD-L1 and CD20 (B-cell marker) on TMA core level (same 
stainings as for the automated pipeline), and for TIL percentages on whole-slide H&E-stained tumour sections 
from the same FFPE tissue blocks that were used for TMA construction.

To investigate whether our automated pipeline scores could be used to capture a clinically relevant antibody 
cut-off, we compared automated PD-L1 cell counts using the Roche SP142 antibody to the established clinical 
cut-off of 1% immune cell (IC) staining for the antibody. Figure 2A shows a clear separation (albeit a degree of 
overlap) in number of PD-L1 stained cells from the pipeline for individual cores versus the binned pathology 
groups of PD-L1-low (< 1% IC) or PD-L1-high (≥ 1% IC), demonstrating that the pipeline counts are consist-
ent with pathologist scoring. We also calculated the correlation of the PD-L1 pipeline cell counts to pathologist 
estimated PD-L1 percentage scores (Fig. 2B). Here we also observed a trend of increasing pipeline counts cor-
responding to higher PD-L1 pathology scores with a Spearman correlation of 0.58.
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To evaluate our automated pipeline against human-derived scores on a semi-quantitative (ordinal) scale, 
we compared the automated pipeline counts to available pathology scores for the B-cell marker CD20. For this 
analysis CD20 antibody presence was previously scored using a four-level scale by a pathologist, where 0 corre-
sponds to no/lowest CD20  staining10. Figure 2C shows that higher pipeline cell counts correspond to increasing 
pathology scores. In particular, the increase in corresponding pipeline counts when moving from a score of 2 
to 3 is notable.

Finally, we compared pathology-estimated TIL proportions (%) to our automated CD3 (a pan-T-cell marker) 
cell counts. For every tumour we compared the mean CD3 count of the two cores to the estimated TIL percent-
age. We found a Spearman correlation of 0.55 between an increased CD3 + cell count in the TMA cores and an 
increased TIL percentage from the whole slide analysis (Fig. 2D). Taken together, these comparisons support the 
notion that the output from of our digital pipeline is in good agreement with independently derived estimates 
by a human evaluator.

Comparison of TMArQ results for CD3 to corresponding QuPath scores
We compared TMArQ against  QuPath20, a software for image analysis of histological slides, using a custom script 
for QuPath to automate the image processing. Comparison of CD3 + computed cell counts in individual cores 
from both methods demonstrated a high agreement between methods (Spearman correlation = 0.95, Fig. 2E).

Comparison of TMArQ automated pipeline results to matched bulk tissue RNA‑sequencing 
data
Gene expression profiling has been used extensively to characterise TNBC and derive proposed molecular 
subtypes (see  for11 review) but also for TIME profiling. Thus, it appears relevant to assess how actual in situ 

Fig. 1.  TMArQ Image analysis pipeline workflow. Outline of the TMArQ analysis approach based on the 
starDist cell segmentation algorithm. (1) Detection of region of interest (ROI) using Hough circle detection 
(red circle). (2) Colour deconvolution to separate out the DAB staining from the hematoxylin staining. (3) 
Thresholding signal in the DAB layer to determine DAB absence/presence on the level of individual pixels. (4) 
Cell nuclei segmentation using starDist. (5) Combining starDist detected cells with the DAB staining layer to 
count IHC-stained cells in the core.
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cell counts compare to bulk mRNA profiling data of matched tumours. To investigate how TMArQ cell counts 
matched gene expression data, we therefore compared our pipeline’s output to (1) matched bulk tissue RNA-
sequencing data for analysed marker genes (TPM-values), (2) in silico estimated cell-type proportions by CIBER-
SORT from RNA-sequencing data (representing RNA-based estimates of TIME composition), and (3) proposed 
gene expression subtypes in TNBC, including an immunomodulatory (IM) class derived from mRNA expres-
sion. Figure 3A shows the automated cell counts from the TMA core versus corresponding RNA-sequencing 
TPM values for the analysed immune markers. The strongest correlations were observed for the CD8 and CD3 
markers with Spearman correlations of 0.59 and 0.51, respectively. This indicates that cell counts, and bulk gene 
expression values are in agreement with each other. Regarding potential sources of confounding, we note that 
the RNA-sequencing and TMA data was generated from different pieces of the same tumour sample and are 
therefore sampled several millimetres apart.

Next, we compared the automated cell counts to the abundance of in silico estimated cell types (B-cells, T-cells, 
macrophages) by the CIBERSORT deconvolution method applied to the bulk RNA-sequencing data. Notably, 
Fig. 3B shows a positive Spearman correlation of only approximately 0.3 between the in silico CIBERSORT cell 

Table 1.  Sample and patient characteristics for the SCAN-B TNBC cohort.

Samples Unique samples

TMA marker

 CD3 436 218

 CD4 436 218

 CD8 436 218

 CD20 436 218

 CD68 436 218

 PD-L1 (SP142) 436 218

 FOXP3 436 218

 p53 436 218

TMA block

 1 104 52

 2 96 48

 3 96 48

 4 50 25

 5 90 45

Grade

 2 50 25

 3 376 188

 NA 10 5

HRD status

 High 256 128

 Low/inter 176 88

 NA 4 2

TNBCtype (Lehmann-4)

 BL1 158 79

 BL2 88 44

 LAR 78 39

 M 104 52

 NA 8 4

Lymph node status

 Negative 270 135

 Positive 162 81

NA 4 2

PAM50 subtype

Basal 344 172

Her2 64 32

LumA 8 4

LumB 2 1

Normal 12 6

unclassified 2 1

NA 4 2
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Fig. 2.  Comparison of TMArQ cell counts to pathologist scoring and QuPath scores in TNBC. (A) Violin plots 
showing the distribution of TMArQ cell counts of PD-L1 (SP142) to pathologist scores of PD-L1 low (< 1% 
IC) or PD-L1 high (≥ 1% IC). (B) Scatterplot showing the correlation of PD-L1 pipeline counts for each core to 
corresponding pathology estimated SP142 PD-L1 scores in %. (C) Violin plots showing the distribution of CD20 
pipeline counts to binned pathologist CD20 scores. (D) Scatterplot showing the correlation of CD3 pipeline 
counts from TMA cores to pathology TIL percentages estimated from matched H&E-stained whole slide 
sections. (E) Scatterplot showing the comparison of TMArQ core CD3 counts to QuPath CD3 core counts. Log 
transformation of TMArQ counts was performed before analyses.
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Fig. 3.  Correlation of TMArQ cell counts to RNA-sequencing data in TNBC. (A) Scatterplots of matched RNA-sequencing 
TPM-values compared to TMArQ cell counts. mRNA expression for CD3 was based on the CD3G gene, for CD8 on the 
CD8A gene, for CD20 on the MS4A1 gene. (B) CIBERSORT immune cell proportions compared to matched cell type specific 
TMArQ cell counts for CD20 (B-cell marker), CD8 (T-cell marker), and CD68 (macrophage marker). In addition, a scatter 
plot of the summarized CIBERSORT fraction of B-cells, T-cells, and macrophages versus CD8 cell counts are shown. (C) 
Top panel shows a Spearman correlation heatmap of analysed IHC markers versus individual CIBERSORT immune types, 
as well as the summarized fraction of the latter. Bottom panel shows the specific Spearman correlations of the analysed IHC 
markers versus the summarized CIBERSORT immune faction. (D) Spearman correlation of rank scores for a gene expression 
immune  metagene21 versus TMArQ mean cell counts (mean counts of both cores/sample). (E) TMArQ CD3 cell counts 
versus the Lehmann IM subgroup definition (left) and the Lehmann mRNA subtypes (TNBCtype-412) stratified by IM status 
(right). Pair-wise p-values were computed using Wilcoxon’s test. Log transformation of TMArQ counts was performed before 
analyses.
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type fractions computed from bulk tumour tissue and matched TMArQ in situ cell counts, a finding that extended 
to all analysed IHC markers as shown in the correlation heatmap in Fig. 3C. Similarly, we also observed low cor-
relations for all markers when using the ratio of stained cells/total number of cells per core versus CIBERSORT 
estimates (Supplementary Fig. 3). Notably, when merging the CIBERSORT cell type fractions into a combined 
sum, the correlation increased substantially compared to all in situ cell counts as exemplified for CD8 in Fig. 3B 
and for all markers in Fig. 3C. To further investigate this finding, we compared CIBERSORT B-cell, T-cell, and 
macrophage estimates versus the same RNA-sequencing data as for the cell type marker genes shown in Fig. 3A. 
Here, we observe that Spearman correlations for the RNA-sequencing TPM estimates versus individual CIB-
ERSORT estimates were at best in the same range as for antibody CD8 and CD3 cell counts versus CIBERSORT 
estimates (i.e., around 0.6 in Spearman correlation, Supplementary Fig. 3). Moreover, correlation estimates for 
individual genes (TPM) increased notably when compared to a summarized CIBERSORT cell type fraction (up to 
Spearman correlation 0.8, Supplementary Fig. 3), which is in line with the findings for the cell counts (shown in 
Fig. 3C). To further compare our automated immune marker cell counts we also correlated them to a rank-based 
general immune metagene score based on mRNA expression levels of positively correlated immune-associated 
 genes21. This comparison demonstrated a high correlation between TMArQ counts and general gene expression-
based rank-scores for particularly CD3 and CD8, equivalent to TILs (Fig. 3D).

To assess immune marker expression in proposed molecular subtypes of TNBC, we compared TMArQ CD3 
(a pan lymphocyte marker) cell counts with the Lehmann immunomodulatory (IM) classification and tumour 
classification by the four updated Lehmann TNBC subtypes (TNBCtype-4: BL1, BL2, M, and LAR)12. The IM-
positive class showed overall the highest abundance of CD3 + cells when analysed as a separate entity (Wilcoxon’s 
test p = 3.7e−9) and within the four Lehmann subtypes when used as a sub stratification (Fig. 3E). For the latter, 
we make several interesting observations. Firstly, the BL1 subtype appears to have similar CD3 + counts irrespec-
tive of IM-class, while the BL2 class is a mix of potentially immune warm and cold tumours. In contrast, the M 
(Mesenchymal) subtype appears to have an immune cold phenotype, with no IM-positive cases and correspond-
ingly low automated CD3 + counts. For the LAR subtype, which has been proposed as a more immune cold 
phenotype compared to BL1 and  BL222,23 IM-positive cases were associated with significantly higher automated 
CD3 + counts than IM-negative samples. These findings suggest that lymphocyte presence as measured by our 
pipeline and immune classification of TNBC by mRNA expression subtypes agree with each other. Importantly 
though, our in situ analysis suggests clear differences in immune cell abundance depending on the underlying 
mRNA-based TNBCtype subtypes.

Immune marker expression variability within and between TNBC tumours
To analyse intratumour variability in immune marker expression in TNBC we assessed TMArQ output for 
core-to-core variability for markers, marker-to-marker variability, and combined patterns of marker expression 
versus clinicopathological variables and molecular classifications based on matched RNA-sequencing and WGS.

The TNBC TMA used in this study contained two 1 mm cores for every sample taken from the same FFPE 
block, with each core targeting different tumour rich areas. Figure 4A illustrates analysis of core-to-core vari-
ability for the CD8 and PD-L1 (SP142) antibodies, while Fig. 4B summarises all markers. Overall, core-to-core 
Spearman correlations ranged between 0.48 and 0.66, with lower values for CD20 and FOXP3. Next, we analysed 
the correlation of automated cell counts between different markers within the same core (i.e., stack of single-
plex stains). Here, we observed a comparably higher Spearman correlation between different antibodies within 
the same core. Figure 4C illustrates the correlation of CD8 to CD4 and PD-L1 cell counts within the same core, 
while Fig. 4D summarizes this for all marker combinations.

Next, we applied hierarchical clustering to average cell counts to explore between-sample and marker asso-
ciations. Figure 4E shows the resulting two main clusters. Here we observed a general co-expression of immune 
markers in samples, consistent with the high within-core correlations between antibodies (Fig. 4D). Moreover, 
we observe a higher proportion of lymph node-positive tumours and mRNA-classified IM-positive tumours in 
the sample cluster with generally higher cell counts (Fig. 4E, left cluster) (Fisher’s exact test p = 0.02 for lymph 
node status, and p = 7e−8 for IM-status). For genetic tumour characteristics such as TP53 mutation status, HRD-
status, BRCA1-deficiency due to biallelic inactivation by mutations (somatic/germline and LOH) or promoter 
hypermethylation it is evident in Fig. 4E that substantial proportions of tumours are found in both immune 
groups. For HRD-positive cases (HRD-high), proportions between heatmap clusters in Fig. 4E were 54% and 
46% respectively, despite a similar tumour mutational burden between groups (Wilcoxon’s test p = 0.21, Supple-
mentary Fig. 4A). Thus, while HRD-positive TNBCs have a generally higher in situ cell count than HRD-negative 
tumours, considerable heterogeneity in immune cell infiltration levels exists within the HRD-positive tumour 
group (Supplementary Fig. 4B).

Non‑immune cell quantification and in silico merged antigen expression patterns
The first step of TMArQ for analysing TMA cores involves circle detection and coordinate normalization. This 
step enables us to place all subsequently detected cell objects on a common coordinate grid, which allowed us 
to test the concept of creating in silico merged multiplexed images of separate IHC stains for our single-plex 
markers. For studying tumour-immune interactions, it is essential to distinguish cancer cells from normal epi-
thelial cells and immune cells. In addition to using epithelial cell markers, somatic alterations may infer protein 
expression that can be used to identify malignant cells. An example of the latter is mutational inactivation of the 
tumour suppressor gene TP53, a frequent event in TNBC, which can confer protein overexpression in mutated 
 cells24,25. The type of mutation can conceivably influence the expression pattern. As mutational inactivation 
occurs only in the malignant cell, p53 protein expression could be used to identify and distinguish malignant 
cells across the core surface. We stained our TMAs for p53 and quantified positive cells using our automated 
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Fig. 4.  Comparison of TMA core-to-core, marker-to-marker, and marker co-expression patterns for immune markers in TNBC. (A) 
Core-to-core variability for TMArQ cell counts across 218 cases in the TMA for CD8 (left), and PD-L1 (SP142 antibody) (right). (B) 
Summarized Spearman core-to-core correlations for cell counts across all samples and markers. (C) Marker-to-marker correlation 
within cores (stacks of single-plex stains) for TMArQ cell counts from CD4 vs CD8 (left) and CD8 vs PD-L1 (SP142 antibody) (right) 
for all cases and cores. Spearman correlation is calculated on the merged set of data from both cores. (D) Spearman correlation 
heatmap of all marker-to-marker correlations within cores. Correlation is calculated based on the merged set of data from both cores. 
(E) Clustered co-expression matrix of average TMArQ cell counts (mean of cores/sample) for all markers and samples. Clustering was 
performed using Euclidian distance and complete linkage and samples were divided into two main clusters. Sample annotation track 
include tumour status by tumour grade, lymph node status (N0/N +), PAM50 molecular subtypes, proposed TNBC gene expression 
subtypes (TNBCtype-4 and TNBCtype-6), mRNA derived immunomodulatory subtype (IM) status, and WGS determined tumour cell 
content percentage by ASCAT, TP53 mutation status, BRCA1-deficiency status (mutation or promoter hypermethylation inactivation), 
and HRD-status. Log transformation of TMArQ counts was performed before analyses.
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pipeline for comparison versus TP53 mutational status determined by WGS. Figure 5A (left panel) shows an 
example for a TP53 mutated tumour with high p53 antibody staining expression displaying a clear separation 
between the malignant and non-malignant cells. TP53 mutated tumours indeed had higher stained cell counts 
across the cohort (Fig. 5B), although protein expression in the TP53 mutated subset was highly heterogenous 
compared to the TP53 wildtype tumours. This heterogeneity may be because not all TP53 mutations result in 
high p53 protein staining, as evident for another TP53 mutated tumour shown in Fig. 5A (right panel). Stratifica-
tion by TP53 mutation consequence and affected p53 protein domain illustrated how the in situ p53 cell counts 
varied depending on the variants’ consequences and positions (Fig. 5C). For instance, TP53 deletions and TP53 
nonsense and frameshift mutations result in a typically lower p53 IHC-based cell count as these variant types 
would typically not generate an expressed protein. Notably, p53 cell counts were especially low for tumours with 
nonsense mutations within the DNA binding domain (DBD) of the protein (Fig. 5C). Illustrating our findings, 
heterogeneous p53 staining in both TP53 mutants, but also TP53 wildtype cases, is a well-known phenomenon 
in gynaecological cancers like high grade serous  carcinomas26,27.

Given that epithelial cells can be demarked by either pan-cytokeratin stainings, or somatic alterations like 
TP53 when present, this may allow for exploration of tumour-immune interactions using image overlays. We 
tested this by overlaying immune cell markers with p53 stains as a proof of concept of an in silico merged multi-
marker application of the pipeline. As illustrated in Fig. 5D and E, this approach enables the analysis of spatial 
interactions between markers of different cell types in TNBC based on TMArQ output.

Immune cell counts and patient outcome in TNBC
The TIME, as measured by for example TILs or mRNA expression of immune-related genes has repeatedly 
been associated with improved outcome in early-stage TNBC patients treated with and without (neo)adju-
vant  chemotherapy5–7,28. Considering the correlation of TMArQ cell counts with different pathology scores and 
RNA-sequencing estimates we analysed whether the automated cell counts also carried prognostic information 
for TNBC patients in our cohort treated with adjuvant chemotherapy. As seen in Fig. 6A for the CD3 marker, 
dividing the automated CD3 cell counts into two groups (low/high) based on the median observed cell count was 
associated with a difference in invasive disease-free survival (IDFS), with the CD3-high group showing improved 
patient outcome. This difference was also statistically borderline nonsignificant in multivariate analysis using 
patient age, tumour size, lymph node status, and tumour grade as covariates (CD3 hazard ratio (HR) 0.49, 95% 
confidence interval (CI) 0.24–1.013, p = 0.054). To expand this analysis, we performed univariate Cox regression 
analyses for all seven immune markers, using cell counts as continuous values in the Cox models (Fig. 6B). In 
agreement with the overall aspect of an immune response being associated with improved outcome in TNBC, 
we observed hazard ratios < 1 for the group of high versus low cell counts for all markers, with statistically sig-
nificant results for the CD3, CD4, CD8, and PD-L1 markers, but not FOXP3, CD68, and CD20. In comparison, 
univariate Cox regression for pathologist-estimated whole slide TILs (with TILs as continuous values) showed 
a hazard ratio of 0.963 with a 95% CI 0.941–0.985 and a p-value of p = 0.001. Moreover, a median split of TIL 
scores (binary low/high groups using all cases) was significantly associated with IDFS in chemotherapy-treated 
patients with the high group having superior IDFS (log-rank p = 0.0001). Together, this demonstrates that output 
from the automatic pipeline is consistent with a general prognostic theme of immune response in TNBC and 
suggests that the signal of a clinically relevant immunological tumour response in TNBC may be captured in a 
small sample such as a 1 mm TMA core.

In TNBC, HRD-status has also been proposed as a prognostic factor in addition to immune  response3. 
Based on the marker co-expression analysis shown in Fig. 4E, which revealed that HRD-positive tumours (by 
WGS) were present in both the immune-high and immune-low clusters, we constructed a 4-tier classification 
based on genetic HRD-status and CD3-low/high cell counts. We then evaluated the association between this 
stratification and IDFS in adjuvant chemotherapy-treated patients (Fig. 6C). Notably, an excellent outcome was 
observed for the HRD + /CD3-high combination, while HRD + /CD3-low cases had a similar (worse) prognosis 
as HRD-/CD3-high cases. The poorest outcome was observed for HRD-/CD3-low cases, with a long-term IDFS 
of approximately 50%. Together, this analysis demonstrates how quantitative measures of cell abundance can 
be combined with other molecular or clinicopathological variables to explore novel associations and identify 
subsets of patients with different outcomes following therapy.

TMArQ immune cell counts versus genetic alterations in the context of potential drivers of 
immunogenicity in TNBC
Based on available WGS data for the SCAN-B TNBC cohort we analysed pathologist-derived TIL-estimates and 
TMArQ immune cell counts for the seven immune markers versus aggregated genetic alterations (single substi-
tution classes, indel types, mutational load), and mutational and structural rearrangement signature exposures 
to explore correlations with immune TME status (Supplementary Fig. 5). Overall, only weak correlations were 
observed in the total cohort (Supplementary Fig. 5A–E), with the strongest correlations observed for mutational 
signature SBS3 (associated with BRCAness) and SBS5 (Supplementary Fig. 5D). Considering that SBS3 is associ-
ated with HRD, and that HRD-high cases displayed generally slightly higher immune scores (Supplementary 
Fig. 4) we performed the same analysis for mutational signatures only in HRD-high TNBCs. In this analysis, 
the positive correlation of SBS3 disappeared and the negative correlations of SBS5 with different immune counts 
were drastically reduced (Supplementary Fig. 5F).

Application of TMArQ in other malignancies
To illustrate TMArQ’s use outside of the TNBC cohort we applied the pipeline to existing CD3 IHC data from 
one reported bladder cancer study (n = 289 patients)29 and one malignant melanoma cohort (n = 259 patients)30.
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For the bladder cancer cohort, we first compared TMArQ cell counts to an available pathology grading score 
of 1–5, with 5 indicating the highest infiltration of CD3 + cells (Fig. 7A). Similar to the CD20 comparison in 
TNBC, a good separation and agreement between pathology scores and automated cell counts were observed. 

Fig. 5.  In silico merged composite images of single-plex IHC stains and application to p53 expression. (A) Left 
panel shows high p53 protein expression in a TMA core for tumour PD36004a with an c.644G > T missense 
TP53 mutation. Right panel shows the low p53 protein staining in a TMA core for tumour PD31129a with a 
c.586C > T nonsense TP53 mutation. (B) TMArQ cell counts for p53 versus WGS TP53 mutation status (wild 
type/mutated). (C) Left panel shows cell counts for p53 versus TP53 mutation consequence. Right panel shows 
the p53 cell counts for the combination of mutation consequence and p53 protein domain (obtained  from62). In 
both panels, the TP53 wildtype (wt) group is shown in white for reference. In panels B and C, the average p53 
counts of both TMA cores are shown. DBD: DNA binding domain, NTD: N-terminal transactivation domain, 
OD: oligomerization domain, PR: proline-rich domain. (D) In silico merged composite stains for CD20, CD3, 
and p53 for tumour PD35968a. This tumour is HRD-positive by WGS and has a CD20 pathology score of 
3 + (highest score). Cell objects for each marker are assigned a specific colour as indicated in the legend. E) In 
silico merged composite stains for CD3, CD20, and p53 for tumour PD36063a which is HRD-positive by WGS 
and has a CD20 pathology score of 0 (lowest score).
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Fig. 6.  Association of TMArQ cell counts with patient outcome after adjuvant chemotherapy in TNBC. (A) 
Kaplan–Meier plot of IDFS as clinical endpoint for log2-transformed TMArQ CD3 cell counts (mean value of 
both cores) stratified into two groups (low/high) based on the median cell count in TNBC patients treated with 
adjuvant chemotherapy. The p-value was calculated using the log-rank test. (B) Forest plot illustrating hazard 
ratios with 95% confidence intervals from univariate Cox regression analysis of log2-transformed TMArQ 
cell counts as continuous values for each immune marker. Each tumour was represented by its average cell 
count of the two cores. (C) Kaplan–Meier plot of IDFS as clinical endpoint for patients treated with adjuvant 
chemotherapy stratified by TMArQ CD3-low/high and WGS-based HRD-status (positive/negative). The p-value 
was calculated using the log-rank test.
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Moreover, TMArQ cell counts were well correlated with CD3 mRNA expression in the bladder cohort (Spear-
man correlation of 0.52, Fig. 7B). Next, we tested whether the TMArQ CD3 counts also carried prognostic 
information in the whole patient cohort. As seen in Fig. 7C, dividing the TMArQ CD3 cell counts for all cases 
into two groups (low/high) based on the median observed cell count was not significantly associated with better 
recurrence-free survival, consistent with findings in the original study in which a prognostic association was 
found only in a tumour  subset31.

For the melanoma cohort we first compared TMArQ cell counts to three pathology classes: (1) brisk, (2) 
non-brisk, and (3) few/absent, which respectively indicate the presence of TILs across the entire tumour base, 
only focally, or not infiltrating to not at all present in the  sample32. Consistent with TNBC and bladder cancer 
we observed a good separation of CD3 cell counts for the different brisk scores and overall higher cell counts in 
the brisk vs. the non-brisk samples (Fig. 7D). The few-absent score has the lowest cell counts of all categories, 
which is in line with expectations. Correlation of TMArQ CD3 cell counts to normalised CD3 mRNA expression 
showed a high correlation in the melanoma cohort (Spearman correlation of 0.77, Fig. 7E). Finally, we performed 
a survival analysis based on TMArQ cell counts in the melanoma cohort and found a strong association of higher 
counts with better cancer-specific survival in line with the original  report30 (Fig. 7F).

Discussion
In the current study we developed an open-source, automated digital analysis pipeline (TMArQ) for stained 
cell scoring of tumour tissues using image data from single-plex IHC stains. TMArQ cell count scoring was 
validated versus e.g., pathological estimates, gene expression data, TP53 mutational status, and patient outcome 
in three TMA tumour cohorts, but also compared to output from a commonly used digital image analysis soft-
ware (QuPath). Moreover, we used TMArQ to more deeply illustrate how the immune TME in TNBC could 
be analysed versus different molecular classifications based on mRNA subtypes, HRD-status, mutational types 
and mutational signatures using a unique multi-omics TNBC cohort. Together, these analyses demonstrate how 
automated cell counts on individual TMA cores can facilitate a reproducible, quantitative, and accessible way to 
generate and test hypotheses and perform integrative multi-omics analyses on large data sets.

Most of our analyses are based on multiple immune marker stainings from a TMA constructed from a 
molecularly very well-characterised cohort of population-representative early-stage TNBC from South Swe-
den 2010–20153,10. While this cohort allows for in-depth comparisons versus molecular data from both RNA-
sequencing and WGS, we note that the cores in the used TMA were aimed to target tumour-rich areas in the 
corresponding FFPE tumour tissue blocks (similar to the bladder and melanoma cohorts). As such, the TMA 
cores may not necessarily capture the full immune phenotype of the TME in their respective tumour. This could 
in part explain some of the observed differences between pipeline and pathology estimates for TILs in TNBC. In 
line with this, in silico sampling of TMA equivalent cores from whole slide images for Ki67 estimation in breast 
cancer has showed that optimal tissue sampling for IHC biomarker evaluation is dependent on the heterogeneity 
of the studied tissue, which may require a substantial number of TMA cores to be sampled to achieve a low error 
in heterogenous  tumours33. Moreover, for each tumour case in the TNBC TMA there were two 1 mm cores and 
the averages of these have been used in most analyses. As demonstrated in Fig. 4, core-to-core variability exists 
and may in part account for discrepancies compared with estimates obtained using other methods. Interestingly, 
we observed a general trend towards higher marker-to-marker correlation within a core for the analysed immune 
markers (Fig. 4). A general trend towards higher co-occurrence of all immune cell types within a given tumour 
was also observed (Fig. 4E). This is not surprising considering that many of the analysed immune cell types may 
act together in mounting a tumour immune response. Our combined analysis of different stains from the same 
core (stack) for a tumour emphasizes the value of a pre-planned staining order of the TMA to facilitate in silico 
merging of single-plex IHC stains, to avoid issues arising from images to be merged being several micrometres 
physically apart in a tissue core.

To evaluate the validity of the automated IHC-based cell counts we compared TMArQ quantifications to 
several pathologist-derived and human grading estimates of the same stainings in TNBC (CD20 and PD-L1 
SP142) as well as TIL-estimates from whole slide H&E-stains taken before TMA construction from the same 
FFPE block. We also evaluated CD3 staining in one bladder cancer and one malignant melanoma cohort to 
assess generalizability. For TILs, we observed a clear correlation between automated cell counts for the CD3 pan 
lymphocyte marker and pathologist estimates of TILs. As a caveat we note that IHC staining was performed 
on cores from tumour-rich areas that may not capture the full range of the TIME response in certain cases. In 
comparison, for TIL-estimations, full sections are typically recommended over biopsies in  guidelines34, and TIL-
estimates from whole slide evaluations have been reported to be higher than in matched TMA core  analysis35. 
Moreover, TIL scoring based on H&E-stained specimens does not consider the various origins and functions 
of immune  cells36, and like other pathology-estimated scores human TIL-scoring is associated with inter- and 
intra-observer  variability35–37. In support of the validity of our approach, a notable finding is that the correlation 
of our automated CD3 cell counts derived from TMA cores to TIL estimates generated on the corresponding 
whole-slide sections by an expert pathologist was close in strength to the correlation obtained when an AI-trained 
TIL predictor based on deep learning methodology was applied to the same whole section H&E-stains used by the 
pathologist (Spearman’s rho of 0.55 vs. best AI predictor correlation of 0.63) in the study by Bai et al.16. Moreo-
ver, based on data from Bai et al.16 we note that for the same set of chemotherapy-treated patients as in Fig. 6A, 
our automated cell counts outperformed the AI-trained eTILs estimates in survival association. The latter was 
not significantly associated with IDFS when patients were split into low/high groups based on the median eTIL 
(log-rank p = 0.24, Supplementary Fig. 4C). This may indicate that simple estimates such as automated leukocyte 
counts on dual 1 mm TMA cores can be used to probe relevant clinical correlations in a high-throughput fashion.
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Fig. 7.  Application of TMArQ to single-plex CD3 IHC data from bladder cancer and malignant melanoma. (A) TMArQ CD3 
counts versus human grading of CD3 expression into five bins in TMA data (n = 360 cores) from 289 bladder cancers. (B) 
TMArQ CD3 mean counts for 211 patients with matched CD3 (CD3G) mRNA expression levels. (C) Kaplan–Meier plot of 
bladder cancer patients without adjuvant chemotherapy stratified by their median TMArQ CD3 counts (average core score per 
patient) into high and low groups using recurrence free survival as endpoint. P-value calculated using the log-rank test. (D) 
TMArQ CD3 mean counts versus Brisk pathology grades in 176 cores. (E) TMArQ CD3 mean counts versus matched CD3 
mRNA expression levels in the malignant melanoma cohort for tumours with available mRNA data. (F) Kaplan–Meier plot of 
malignant melanoma patients stratified by their median TMArQ CD3 counts into high and low groups using cancer specific 
survival as endpoint. The stratification was based on the median of the average CD3 count per patient (i.e. the average count 
across cores per patient) using the entire cohort of patients. P-value calculated using the log-rank test. Log transformation of 
TMArQ counts was performed before analyses.
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Estimation of PD-L1 status has become important in cancer therapy following the introduction of immune 
checkpoint inhibitors (ICIs) in patient care. A problematic issue in this context is that usage of an ICI is often 
associated with the requirement to use a specific PD-L1 antibody as an accompanying diagnostic assay to guide 
 treatment38. The SP142 PD-L1 antibody is the accompanying diagnostic assay for the PD-L1 inhibitor atezoli-
zumab, which was first reported effective in combination with nab-paclitaxel in patients with unresectable, 
locally advanced, or metastatic triple-negative breast cancer in the phase 3 IMpassion130  trial39. This trial led 
to an accelerated FDA approval for atezolizumab that however was later revoked based on negative results from 
the IMpassion131  trial40. Irrespectively, for digital pipeline assessment, the SP142 assay serves as an excellent 
example, with a positive staining call of PD-L1-positivity set as low as 1% staining of tumour-infiltrating immune 
cells (ICs), compared to the scoring of PD-L1 expressing tumour cells (TCs). Figures 2A and B demonstrate that 
automated cell counts correspond well with pathology-derived binary classes of PD-L1-low/PD-L1-high, but 
also that there is a strong correlation to actual SP142 grading in percent. Here, the full dynamic range of digital 
analysis pipeline counts could enhance scoring and reproducibility at low expression levels compared to the chal-
lenging assessment of whether more or less than 1% staining of IC exists by the human eye. PD-L1 IC scoring is 
challenging for several reasons as discussed  in38 that together may explain discrepancies observed both for the 
discrete class analysis and the overall correlation analysis in this study. In the near future, it is conceivable that 
computer image analysis algorithms could function as an orthogonal method for PD-L1 IC scoring particularly 
for borderline and challenging  cases38. Finally, we also compared automated cell counts to pathology scores 
for CD20 in TNBC (classified into four expression bins) and for CD3 in bladder and melanoma (Figs. 2C, 7A, 
and D, respectively). For CD20 we observed a good agreement between cell counts and score groups, but also a 
particularly sharp increase for the highest score bin. This sharp increase may indicate either a potential manual 
bias in the scoring of the highest CD20-expressing tumours, or a biological aspect of large numbers of infiltrating 
CD20 + cells (e.g., as tertiary lymphoid structures) connected to some specific tumour feature. Regarding the 
latter hypothesis, the highest CD20 pathology group (group 3) contained 80% HRD-positive tumours, compared 
to 66% for group 2, 60% for group 1, and 44% for group 0. Whether this observation represents a direct conse-
quence of a specifically rearranged tumour genome, or merely a correlative association remains to be determined 
through deeper molecular analyses.

In addition to comparisons to matched pathology estimates we also compared how automated IHC-based 
cell counts match to different outputs from matched bulk tissue RNA-sequencing, as RNA-sequencing data is 
often used in cancer studies to infer TIME characteristics when matched in situ data is missing (e.g. through 
deconvolution methods like CIBERSORT). Despite that these comparisons are: (1) made on different tumour 
pieces, and (2) made on selected tumour rich areas for the IHC stainings versus RNA extracted from bulk tissue 
without specific regard for tumour cell content, we observed strong correlations between TMArQ cell counts 
and matched gene expression for particularly CD3 and CD8 (Fig. 3A, 7B, and E). Notably, for these markers, 
Locy et al.41 also reported the highest agreement between TIL pathology scores and mRNA expression estimates 
based on NanoString analysis. Overall, a good correlation between estimates by IHC or flow cytometry and bulk 
mRNA expression levels (in similar ranges that we observe) has been reported for certain cell types (including 
T-cells, cytotoxic cells, mast cells, and macrophages) in different  malignancies42. Bulk mRNA expression however 
cannot provide insights into the spatial distribution of cell types as in situ analyses can.

Several transcriptome-based cell-type quantification methods for immuno-oncology have to date been 
reported, of which CIBERSORT is one of the most commonly  used43. When CIBERSORT estimated cell type 
proportions were compared to in situ cell counts we found an intermediate correlation for macrophages, B-cells, 
and T-cells between the methods for analysed antibodies (Figs. 3B and C). The correlation increased somewhat 
when CIBERSORT cell type fractions were summed into a more general immune cell score. Collectively, these 
findings imply that CIBERSORT deconvolution predominantly identifies a general trend of immune cells rather 
than specific cell subsets in TNBC, except for outlier cases that score highly using any method. Notably, when 
comparing CIBERSORT B-cell proportions versus the CD20 pathology classifications we observed increasing 
fractions for CIBERSORT up until the highest score category, which had a lower average CIBERSORT B-cell 
fraction than the second highest group (Supplementary Fig. 3). This contrasts with the pattern seen for the cell 
counts (Fig. 2C), suggesting that the in situ derived counts are in better agreement with manual scoring than the 
deconvolution method. Moreover, it should be noted that observed correlations between automated cell counts 
and bulk mRNA deconvolution cell estimates are likely in line with what might be expected in heterogeneous 
breast cancer tissue. This assertion is consistent with observations using  xCell44 (a deconvolution algorithm 
similar to CIBERSORT), which showed correlations between 0.5 and 0.7 when estimated cell proportions were 
compared to cell sorted blood proportions. Together, this illustrates the difficulties in using in silico deconvolu-
tion methods for precise assessments of the TIME in individual tumours.

When we compared TMArQ CD3 cell counts to a more general immune classification in TNBC, the IM-
class12, we observed a consistent pattern overall with higher CD3 quantifications in IM + tumours. The IM 
classification is based on a general set of immune response associated genes considering the general pathway 
enrichments reported by Lehmann et al.45. As such, the IM-signature may be less associated with the expression 
of a specific cell type, and more with a general immune cell load. While patients with LAR-classified tumours have 
been associated with both a generally immune cold TME (together with the TNBCtype M  class11) and a generally 
poorer response to conventional systemic  therapy12,46, it remains to be determined if the observation of a subset 
of TNBC LAR patients with high lymphocyte infiltration (reflected by high automated CD3 cell counts, Fig. 3E) 
translates to a difference in patient outcome. Considering the high marker-to-marker cell count co-expression 
we observed for individual marker pairs, we also clustered TMArQ cell counts for all analysed immune markers 
(Fig. 4), a possibility associated with the quantitative data generated by tools like TMArQ. This analysis revealed 
that most markers appeared correlated with regard to cell count levels, defining at one end an immune cold subset 
of TNBC tumours and at the other end an immune warm tumour subset, as reported  previously9,11. Consistent 
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with the established prognostic role of immune response in TNBC and the general immune marker-to-marker 
co-expression in TMA cores, patient stratification based on automated cell counts subdivided patients in our 
cohort with adjuvant systemic therapy into groups with differing prognosis in terms of IDFS (Fig. 6). This associa-
tion was also observed for pathologist-derived TIL scores, but not for AI-estimated  eTILs16. As for PD-L1 scoring, 
the continuous counts produced by digital analysis tools could be useful for considering threshold selection for 
the definition of prognosis or risk groups in a discovery-validation cohort approach.

Another observation made in our TNBC cohort based on linking the cell count co-expression analysis with 
genomic data was that a highly rearranged tumour genome is not equivalent to an immune warm phenotype 
in situ. This is exemplified by WGS-classified HRD-positive tumours in our cohort, that bear highly rearranged 
genomes and a high mutational  load3. In our analyses, these tumours with similarly complex genomes display 
variable automated immune cell counts across all investigated immune markers (Fig. 4). Similar findings, albeit 
using more limited sequencing data, have also been noted by other  studies9. Therefore, one can infer a complex 
interplay between DNA repair deficiency status and the immune phenotype of the TIME that may have consid-
erable prognostic relevance. Indeed, a simple 4-tier grouping of HRD-status and dichotomized CD3 cell counts 
showed that patients with HRD-positive tumours with higher CD3 counts have a better IDFS after adjuvant 
chemotherapy compared to the other HRD/CD3 groups (Fig. 6).

Studies have reported tumour mutational burden to be associated with response to ICI based on the hypoth-
esis that somatic variants are able to generate tumour-specific neoantigens. While the vast majority of mutations 
appear to have little or no immunogenic  effect47, it has been suggested that specific types of alterations, like 
frameshift insertion/deletions, may represent more immunogenic variant  subsets48. To test this, we performed 
a comprehensive analysis of single base pair substitutions, indels, and mutational and rearrangement signa-
tures versus TMArQ counts of the seven immune markers in the WGS-matched TNBC cohort (Supplementary 
Fig. 5). In TNBC, these analyses showed only weak correlations that do not support that total numbers, specific 
mutation types, or mutational signatures (representative of mutational processes) are strongly correlated with 
total immune cell counts. The analyses demonstrated also that when considering the HRD genetic phenotype, 
correlations weakened further. The latter observation emphasizes that the genetic/molecular background of 
samples and cohort compositions needs to be considered when evaluating associations of molecular alterations 
to proposed immune cell subgroups of TNBC like reported in the study by Hammerl et al.9. Together with the 
analysis of p53 staining versus the presence of pathogenic TP53 mutations (Fig. 5), these examples illustrate how 
somatic tumour features from other platforms can be combined with in situ TIME estimates in breast cancer to 
add nuance to analyses and explore novel hypotheses.

The proposed pipeline has its limitations. We did not validate the pipeline for the use on individual patients. 
Curation of input images still requires a human inspection to avoid technical artefacts that may affect cores with 
tissue folding, considerable gaps, poor staining quality or other artefacts. However, TMArQ can be easily adapted 
to flag potential outliers and spot cores that appear different in quality. Apart from that, the current definition 
of a stained cell is based on CD3 staining and may be tailored to specific markers by identifying marker specific 
threshold values and potentially also improved by use of Gaussian mixture models as proposed  by49. Regarding 
in silico merging of different stains we note that combining stains from a stack of sections (the z-axis of a core) 
may result in positional shifts when transitioning across different cell layers. To some extent, careful planning of 
the IHC staining order in single-plex studies may mitigate this issue. Future pipeline development could include 
the differentiation between detection of fully positive and partially stained cells, and alternative segmentation 
methods to starDist for general cell segmentation. While currently applied exclusively to TMA cores TMArQ 
could also be expanded for use on whole-slide images, including scoring of virtual TMA cores from whole-slide 
sections. Additionally, applying this framework to multiplex stainings on e.g., the PhenoImager-platform could 
allow for an even greater potential for analysing cell–cell interactions.

In summary, application of an open-source, automated pipeline for IHC-based cell detection and quantifica-
tion, to a molecularly well profiled primary TNBC cohort provided multiple examples of how digital analysis of 
multiple single-plex IHC stains can be used to target the TIME in TNBC alone but also combined with genomic 
data. Examples includes the known association of a general immune response with favourable prognosis in 
TNBC, but also an exemplification of how merging an in situ TME readout such as CD3 + cell infiltration can be 
combined with a genetic classification of HRD to, in an exploratory context, further identify a good-prognosis 
subgroup of patients. While TMArQ currently provides cell counts, the method also allows for the spatial 
positioning and reporting of identified cell objects, which can be used to align and merge single-plex staining 
experiments into composite images for potential cell–cell interaction analysis by e.g. recently reported software 
 tools50. Overall, digital image analysis tools will likely facilitate the next step in TME characterization of breast 
cancer and other malignancies. Using a more quantitative approach to TME profiling allows for more precise 
and detailed integrations with omics data such as DNA methylation, gene expression profiling, and WGS, in 
addition to allowing unsupervised and supervised methods typically used in omics studies to be employed in 
multi-layered IHC data as well. In the end, such improvements to conventional IHC data can further facilitate 
the next step in phenotypic and integrative cancer studies.

Methods
TNBC patient cohort
All included patients with primary TNBC were enrolled in the Sweden Cancerome Analysis Network—Breast 
(SCAN-B) study (ClinicalTrials.gov ID NCT02306096)51,52. Ethical approval was given for the SCAN-B study 
(Registration numbers 2009/658, 2010/383, 2012/58, 2016/742, 2018/267 and 2019/01,252) by the Regional 
Ethical Review Board in Lund, Sweden, governed by the Swedish Ethical Review Authority, Box 2110, 750 02 
Uppsala, Sweden as previously  described3. All patients provided written informed consent prior to enrolment. All 
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methods were carried out in accordance with relevant guidelines and regulations. Clinicopathological data were 
obtained from Staaf et al.3, with updated patient outcome data for IDFS of 6.51 years for censored patients. Based 
on the original TNBC cohort reported by Staaf et al.3 we identified 218 patients with available TMA data. Patients 
without available TMA data were excluded. Patient specific details are provided in Supplementary Table 1.

Bladder cancer and malignant melanoma validation cohorts
Scanned single-plex CD3 IHC stains were obtained from a previously reported bladder cancer TMA study 
(n = 289 tumours)29 and one malignant melanoma TMA study (n = 259 tumours)30 along with matched CD3 
mRNA expression values, and patient outcome. Full details on TMA construction, IHC experiments including 
imaging, gene expression analysis, patient inclusion and exclusion criteria, ethical consents, and patient charac-
teristics are available online from the original  studies29,30. For both the bladder cancer and malignant melanoma 
cohorts the primary inclusion criteria for this study was available TMA IHC data with matched clinicopathologi-
cal and molecular data. Patient specific details for both cohorts are provided in Supplementary Table 1.

TNBC TMA construction, IHC staining and human evaluator grading
For 218 patients from the cohort reported by Staaf et al.3 TMAs (five blocks) were constructed with two 1 mm 
cores/tumour as previously  described10. The TMAs were stained for p53 and a set of immune markers: CD3, 
CD4, CD8, CD20, CD68, FOXP3, and PD-L1 (SP142 antibody, Roche). TIL scoring on whole section H&E-slides, 
CD20 IHC staining on TMA slides, and PD-L1 IHC staining on TMA slides and associated pathology scorings 
have been reported  previously10. Pathology scorings for CD20 and PD-L1 were performed on the same TMA 
stainings used for the automated pipeline, while the TIL scoring was performed on a whole slide section taken 
from the same FFPE tissue block prior to TMA core sampling. For PD-L1, 1% staining in tumour-infiltrating 
immune cells (termed IC) was used as cut-off for PD-L1 positivity in line with guidelines for the SP142 antibody. 
Remaining IHC stainings were performed as outlined in Supplementary Table 2. Slides were imaged using a 
Hamamatsu NanoZoomer S210 scanner with 20X resolution.

TNBC RNA‑sequencing and whole genome sequencing data
RNA-sequencing data, including reported PAM50 molecular subtypes by nearest centroid correlation, for 
included cases was obtained from Staaf et al.53. Expression values were summarized to transcripts per mil-
lion (TPM) estimates for this study. Entrez ID from the Gencode27 metadata was used as gene identifiers. 
 CIBERSORT54 immune cell deconvolution scores and Lehmann TNBCtype-4 mRNA subtypes (BL1, BL2, M, 
and LAR)12 were obtained from the study by Aine et al.10 for matching samples. The Lehmann IM class (negative/
positive) was defined using a cut-off in correlation of 0.17 to the original IM-centroid correlation. Computed 
gene expression-based rank scores for an immune metagene originally defined by Fredlund et al.21 were obtained 
for matching TNBC samples included in the study by Nacer et al.55. In Nacer et al. rank scores were computed 
individually for each tumour without any normalization or data centering (i.e., single sample scores). Matched 
whole genome sequencing (WGS) data for analysed cases were obtained from Staaf et al.3, and included besides 
somatic alterations also mutational signature exposures (by the SigFit algorithm reported  in10), structural rear-
rangement signature exposures, and HRD predictions by the HRDetect  algorithm4.

Quantification of immune antibodies in IHC
Single-plex IHC stains for p53 and a set of seven immune cell antibodies were analysed using the TMArQ pipeline 
(Fig. 1) for the TNBC cohort. In the bladder and melanoma cohorts only the CD3 marker was analysed. TMArQ 
allows users to specify which images should be analysed via a configuration file. Input data currently consists of 
png images in RGB format of individual cores extracted using standard dearraying methods. TMArQ detects the 
core area using Hough circle detection as implemented in scikit-image version 0.19.256 (http:// scikit- image. org)
(which could be computationally intense). The detected diameter and centre of the core are recorded in a text 
file, which is used to centre the core in the image for downstream analysis. If no circle is detected the image is 
considered empty or the tissue of too poor quality (containing e.g. heavy folding or large gaps, see Supplementary 
Fig. 1 for examples) and is flagged, allowing it to be excluded from further analysis.

Next, hematoxylin and DAB stains are separated using colour deconvolution, as described  in57 and imple-
mented in scikit-image56 (http:// scikit- image. org). For cell detection the pipeline uses starDist segmentation 
version 0.8.1 (https:// pypi. org/ proje ct/ stard ist/) for general cell detection in the hematoxylin  layer58,59. starDist 
has shown value as a cell segmentation method in independent  studies60 and is freely available as both Python 
and ImageJ versions (https:// pypi. org/ proje ct/ stard ist/ and https:// imagej. net/ plugi ns/ stard ist). TMArQ then 
determines the presence of DAB stains by thresholding the DAB layer using triangle thresholding on an image-
by-image basis to reduce the effects of non-uniform staining across cores and TMAs. It then combines the 
coordinates of the cells detected by starDist and the thresholded DAB-layer for positive/negative cell detection. 
TMArQ places every cell at the centre of a 16 × 16 pixel grid. If the grid in the thresholded layer contains more 
than 10% positive pixels we consider the cell to be positive for the specific marker. This cut-off is based on the 
CD3 marker (Supplementary Fig. 1), showing that cut-off variations between 5 and 25% conferred little cor-
relation differences compared to CD3 TPM expression values from RNA-sequencing or pathology estimated 
TIL percentages. For further detailed information on the pipeline, please refer to the project’s website listed in 
the Code Availability statement. The automated TMArQ IHC-based cell counts used in this study for included 
cohorts are available in Supplementary Table 1.

http://scikit-image.org
http://scikit-image.org
https://pypi.org/project/stardist/
https://pypi.org/project/stardist/
https://imagej.net/plugins/stardist
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QuPath analysis of CD3 IHC images
For comparative purposes, CD3 IHC data from the TNBC cohort was analysed using  QuPath20 (https:// qupath. 
github. io). To extract semi-automated cell counts on a TMA core level, a groovy script was created that captured 
the manually selected steps of colour deconvolution, region (core) classification, and positive cell count detec-
tion. Obtained QuPath cell counts were compared to TMArQ extracted cell counts using Spearman correlation.

Integration of IHC quantifications with additional data
All statistical analyses were carried out in R, version 4.4 (www.r- proje ct. org). Automated IHC-based cell counts 
were log2 transformed before analyses. Correlation analyses were performed using the Spearman correlation as 
a measure of agreement. Survival analyses were performed using the survival (version 3.5.8, www.r- proje ct. org) 
and survminer (version 0.4.9, www.r- proje ct. org) R packages with IDFS defined according to the STEEP  criteria61 
as the clinical endpoint for TNBC patients treated with adjuvant chemotherapy. For the bladder tumour cohort 
recurrence free survival (RFS) was used as clinical endpoint and for the melanoma cohort cancer specific survival 
(CSS), based on data from the original publications. Survival curves were estimated using the Kaplan–Meier 
method and compared using the log-rank test. Hazard ratios were calculated through univariable or multivari-
ate Cox regression using the coxph R function in R version 4.4 (www.r- proje ct. org). In multivariate analysis for 
the TNBC cohort standard prognostic variables in breast cancer such as patient age (years), tumour size (mm), 
lymph node status (N0/N +), and tumour grade (NHG) were included as covariates. Full details concerning 
relevant patient inclusion and exclusion criteria, endpoint definitions, and CONSORT diagram relevant for the 
survival analysis of the SCAN-B TNBC cohort, the bladder cohort, and the melanoma cohort are available from 
original  publications3,29,30.

Data availability
Genomic data for the TNBC cohort supporting the conclusions of this article are available in an open repository 
as described in the original study (see https:// data. mende ley. com/ datas ets/ 2mn4c tdpxp/3). Data for the bladder 
cancer and malignant melanoma cohorts can be retrieved through the respective online journal  versions29,30. 
The TMArQ IHC-based cell counts supporting the conclusions of this article are included within the article as 
Supplementary Table 1.

Code availability
All analyses were performed using open-source software such as the R statistical language and Python. The 
TMArQ pipeline is publicly available at https:// github. com/ Staaf Lab/ TMArQ.

Received: 25 October 2023; Accepted: 5 September 2024

References
 1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J. Clin. 71, 209–249. https:// doi. org/ 10. 3322/ caac. 21660 (2021).
 2. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948. https:// doi. org/ 10. 

1056/ NEJMr a1001 389 (2010).
 3. Staaf, J. et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25, 

1526–1533. https:// doi. org/ 10. 1038/ s41591- 019- 0582-4 (2019).
 4. Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525. 

https:// doi. org/ 10. 1038/ nm. 4292 (2017).
 5. de Jong, V. M. T. et al. Prognostic value of stromal tumor-infiltrating lymphocytes in young, node-negative, triple-negative breast 

cancer patients who did not receive (neo)adjuvant systemic therapy. J. Clin. Oncol. 40, 2361–2374. https:// doi. org/ 10. 1200/ JCO. 
21. 01536 (2022).

 6. Adams, S. et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized 
adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol. 32, 2959–2966. https:// doi. org/ 10. 1200/ JCO. 2013. 55. 
0491 (2014).

 7. Park, J. H. et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers 
(TNBC) who did not receive adjuvant chemotherapy. Ann. Oncol. 30, 1941–1949. https:// doi. org/ 10. 1093/ annonc/ mdz395 (2019).

 8. Petitprez, F. et al. Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision 
medicine. Front. Oncol. 8, 390. https:// doi. org/ 10. 3389/ fonc. 2018. 00390 (2018).

 9. Hammerl, D. et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion 
in triple negative breast cancer. Nat. Commun. 12, 5668. https:// doi. org/ 10. 1038/ s41467- 021- 25962-0 (2021).

 10. Aine, M. et al. Molecular analyses of triple-negative breast cancer in the young and elderly. Breast Cancer Res. 23, 20. https:// doi. 
org/ 10. 1186/ s13058- 021- 01392-0 (2021).

 11. Tsang, J. Y. & Tse, G. M. Update on triple-negative breast cancers—Highlighting subtyping update and treatment implication. 
Histopathology 82, 17–35. https:// doi. org/ 10. 1111/ his. 14784 (2023).

 12. Lehmann, B. D. et al. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy 
selection. PLoS One 11, e0157368. https:// doi. org/ 10. 1371/ journ al. pone. 01573 68 (2016).

 13. Hu, B., Sajid, M., Lv, R., Liu, L. & Sun, C. A review of spatial profiling technologies for characterizing the tumor microenvironment 
in immuno-oncology. Front. Immunol. 13, 996721. https:// doi. org/ 10. 3389/ fimmu. 2022. 996721 (2022).

 14. Brueffer, C. et al. Clinical value of RNA sequencing-based classifiers for prediction of the five conventional breast cancer biomark-
ers: A report from the population-based multicenter sweden cancerome analysis network-breast initiative. JCO Precis. Oncol. 
https:// doi. org/ 10. 1200/ PO. 17. 00135 (2018).

 15. Chebil, G., Bendahl, P. O., Ferno, M., South Sweden Breast Cancer, G, North Sweden Breast Cancer, G. Estrogen and progesterone 
receptor assay in paraffin-embedded breast cancer–reproducibility of assessment. Acta Oncol. 42, 43–47. https:// doi. org/ 10. 1080/ 
02841 86030 0672 (2003).

 16. Bai, Y. et al. An open-source, automated tumor-infiltrating lymphocyte algorithm for prognosis in triple-negative breast cancer. 
Clin. Cancer Res. 27, 5557–5565. https:// doi. org/ 10. 1158/ 1078- 0432. CCR- 21- 0325 (2021).

https://qupath.github.io
https://qupath.github.io
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
https://data.mendeley.com/datasets/2mn4ctdpxp/3
https://github.com/StaafLab/TMArQ
https://doi.org/10.3322/caac.21660
https://doi.org/10.1056/NEJMra1001389
https://doi.org/10.1056/NEJMra1001389
https://doi.org/10.1038/s41591-019-0582-4
https://doi.org/10.1038/nm.4292
https://doi.org/10.1200/JCO.21.01536
https://doi.org/10.1200/JCO.21.01536
https://doi.org/10.1200/JCO.2013.55.0491
https://doi.org/10.1200/JCO.2013.55.0491
https://doi.org/10.1093/annonc/mdz395
https://doi.org/10.3389/fonc.2018.00390
https://doi.org/10.1038/s41467-021-25962-0
https://doi.org/10.1186/s13058-021-01392-0
https://doi.org/10.1186/s13058-021-01392-0
https://doi.org/10.1111/his.14784
https://doi.org/10.1371/journal.pone.0157368
https://doi.org/10.3389/fimmu.2022.996721
https://doi.org/10.1200/PO.17.00135
https://doi.org/10.1080/02841860300672
https://doi.org/10.1080/02841860300672
https://doi.org/10.1158/1078-0432.CCR-21-0325


18

Vol:.(1234567890)

Scientific Reports |        (2024) 14:21417  | https://doi.org/10.1038/s41598-024-72306-1

www.nature.com/scientificreports/

 17. Rojas, F., Hernandez, S., Lazcano, R., Laberiano-Fernandez, C. & Parra, E. R. Multiplex immunofluorescence and the digital image 
analysis workflow for evaluation of the tumor immune environment in translational research. Front. Oncol. 12, 889886. https:// 
doi. org/ 10. 3389/ fonc. 2022. 889886 (2022).

 18. Shamai, G. et al. Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast 
cancer. Nat. Commun. 13, 6753. https:// doi. org/ 10. 1038/ s41467- 022- 34275-9 (2022).

 19. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863. https:// doi. org/ 10. 1038/ 
nmeth. 4397 (2017).

 20. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7, 16878. https:// doi. org/ 10. 1038/ 
s41598- 017- 17204-5 (2017).

 21. Fredlund, E. et al. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal 
transition. Breast Cancer Res. 14, R113. https:// doi. org/ 10. 1186/ bcr32 36 (2012).

 22. Harano, K. et al. Rates of immune cell infiltration in patients with triple-negative breast cancer by molecular subtype. PLoS One 
13, e0204513. https:// doi. org/ 10. 1371/ journ al. pone. 02045 13 (2018).

 23. Thompson, K. J. et al. Luminal androgen receptor breast cancer subtype and investigation of the microenvironment and neoad-
juvant chemotherapy response. NAR Cancer 4, zcac018. https:// doi. org/ 10. 1093/ narcan/ zcac0 18 (2022).

 24. Kraiss, S., Spiess, S., Reihsaus, E. & Montenarh, M. Correlation of metabolic stability and altered quaternary structure of onco-
protein p53 with cell transformation. Exp. Cell Res. 192, 157–164. https:// doi. org/ 10. 1016/ 0014- 4827(91) 90170-y (1991).

 25. Finlay, C. A. et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with 
an altered half-life. Mol. Cell Biol. 8, 531–539. https:// doi. org/ 10. 1128/ mcb.8. 2. 531- 539. 1988 (1988).

 26. Köbel, M. et al. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma. J. Pathol. 
Clin. Res. 2, 247–258. https:// doi. org/ 10. 1002/ cjp2. 53 (2016).

 27. Santandrea, G. et al. Immunohistochemical biomarkers as a surrogate of molecular analysis in ovarian carcinomas: A review of 
the literature. Diagnostics (Basel) https:// doi. org/ 10. 3390/ diagn ostic s1102 0199 (2021).

 28. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. 
Cancer Res. 14, 5158–5165 (2008).

 29. Sjodahl, G., Eriksson, P., Liedberg, F. & Hoglund, M. Molecular classification of urothelial carcinoma: Global mRNA classification 
versus tumour-cell phenotype classification. J. Pathol. 242, 113–125. https:// doi. org/ 10. 1002/ path. 4886 (2017).

 30. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565. https:// 
doi. org/ 10. 1038/ s41586- 019- 1914-8 (2020).

 31. Kollberg, P., Chebil, G., Eriksson, P., Sjodahl, G. & Liedberg, F. Molecular subtypes applied to a population-based modern cystec-
tomy series do not predict cancer-specific survival. Urol. Oncol. 37, 791–799. https:// doi. org/ 10. 1016/j. urolo nc. 2019. 04. 010 (2019).

 32. Clark, W. H. Jr., From, L., Bernardino, E. A. & Mihm, M. C. The histogenesis and biologic behavior of primary human malignant 
melanomas of the skin. Cancer Res. 29, 705–727 (1969).

 33. Besusparis, J. et al. Impact of tissue sampling on accuracy of Ki67 immunohistochemistry evaluation in breast cancer. Diagn. 
Pathol. 11, 82. https:// doi. org/ 10. 1186/ s13000- 016- 0525-z (2016).

 34. Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International 
TILs Working Group 2014. Ann. Oncol. 26, 259–271. https:// doi. org/ 10. 1093/ annonc/ mdu450 (2015).

 35. Nederlof, I. et al. Comprehensive evaluation of methods to assess overall and cell-specific immune infiltrates in breast cancer. 
Breast Cancer Res. 21, 151. https:// doi. org/ 10. 1186/ s13058- 019- 1239-4 (2019).

 36. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94. https:// 
doi. org/ 10. 1038/ nrcli nonc. 2017. 166 (2018).

 37. Buisseret, L. et al. Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. 
Mod. Pathol. 30, 1204–1212. https:// doi. org/ 10. 1038/ modpa thol. 2017. 43 (2017).

 38. Inge, L. J. & Dennis, E. Development and applications of computer image analysis algorithms for scoring of PD-L1 immunohis-
tochemistry. Immunooncol. Technol. 6, 2–8. https:// doi. org/ 10. 1016/j. iotech. 2020. 04. 001 (2020).

 39. Schmid, P. et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-
negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 
trial. Lancet Oncol. 21, 44–59. https:// doi. org/ 10. 1016/ S1470- 2045(19) 30689-8 (2020).

 40. Miles, D. et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line 
paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann. Oncol. 
32, 994–1004. https:// doi. org/ 10. 1016/j. annonc. 2021. 05. 801 (2021).

 41. Locy, H. et al. Assessing tumor-infiltrating lymphocytes in breast cancer: A proposal for combining immunohistochemistry and 
gene expression analysis to refine scoring. Front. Immunol. 13, 794175. https:// doi. org/ 10. 3389/ fimmu. 2022. 794175 (2022).

 42. Danaher, P. et al. Gene expression markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 5, 18. https:// doi. org/ 10. 1186/ 
s40425- 017- 0215-8 (2017).

 43. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bio-
informatics 35, i436–i445. https:// doi. org/ 10. 1093/ bioin forma tics/ btz363 (2019).

 44. Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220. https:// 
doi. org/ 10. 1186/ s13059- 017- 1349-1 (2017).

 45. Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted 
therapies. J. Clin. Invest. 121, 2750–2767. https:// doi. org/ 10. 1172/ JCI45 014 (2011).

 46. Echavarria, I. et al. Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and 
docetaxel according to Lehmann’s refined classification. Clin. Cancer Res. 24, 1845–1852. https:// doi. org/ 10. 1158/ 1078- 0432. 
CCR- 17- 1912 (2018).

 47. Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-
reactive T cells. Nat. Med. 19, 747–752. https:// doi. org/ 10. 1038/ nm. 3161 (2013).

 48. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: A pan-cancer 
analysis. Lancet Oncol. 18, 1009–1021. https:// doi. org/ 10. 1016/ S1470- 2045(17) 30516-8 (2017).

 49. Elie, N. et al. Impact of automated methods for quantitative evaluation of immunostaining: Towards digital pathology. Front. 
Oncol. 12, 931035. https:// doi. org/ 10. 3389/ fonc. 2022. 931035 (2022).

 50. Feng, Y. et al. Spatial analysis with SPIAT and spaSim to characterize and simulate tissue microenvironments. Nat. Commun. 14, 
2697. https:// doi. org/ 10. 1038/ s41467- 023- 37822-0 (2023).

 51. Saal, L. H. et al. The Sweden Cancerome Analysis Network—Breast (SCAN-B) Initiative: A large-scale multicenter infrastructure 
towards implementation of breast cancer genomic analyses in the clinical routine. Genome Med. 7, 20. https:// doi. org/ 10. 1186/ 
s13073- 015- 0131-9 (2015).

 52. Ryden, L. et al. Minimizing inequality in access to precision medicine in breast cancer by real-time population-based molecular 
analysis in the SCAN-B initiative. Br. J. Surg. 105, e158–e168. https:// doi. org/ 10. 1002/ bjs. 10741 (2018).

 53. Staaf, J. et al. RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment 
of early-stage breast cancer. NPJ Breast Cancer 8, 94. https:// doi. org/ 10. 1038/ s41523- 022- 00465-3 (2022).

 54. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 
37, 773–782. https:// doi. org/ 10. 1038/ s41587- 019- 0114-2 (2019).

https://doi.org/10.3389/fonc.2022.889886
https://doi.org/10.3389/fonc.2022.889886
https://doi.org/10.1038/s41467-022-34275-9
https://doi.org/10.1038/nmeth.4397
https://doi.org/10.1038/nmeth.4397
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1186/bcr3236
https://doi.org/10.1371/journal.pone.0204513
https://doi.org/10.1093/narcan/zcac018
https://doi.org/10.1016/0014-4827(91)90170-y
https://doi.org/10.1128/mcb.8.2.531-539.1988
https://doi.org/10.1002/cjp2.53
https://doi.org/10.3390/diagnostics11020199
https://doi.org/10.1002/path.4886
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.1038/s41586-019-1914-8
https://doi.org/10.1016/j.urolonc.2019.04.010
https://doi.org/10.1186/s13000-016-0525-z
https://doi.org/10.1093/annonc/mdu450
https://doi.org/10.1186/s13058-019-1239-4
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1038/modpathol.2017.43
https://doi.org/10.1016/j.iotech.2020.04.001
https://doi.org/10.1016/S1470-2045(19)30689-8
https://doi.org/10.1016/j.annonc.2021.05.801
https://doi.org/10.3389/fimmu.2022.794175
https://doi.org/10.1186/s40425-017-0215-8
https://doi.org/10.1186/s40425-017-0215-8
https://doi.org/10.1093/bioinformatics/btz363
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1172/JCI45014
https://doi.org/10.1158/1078-0432.CCR-17-1912
https://doi.org/10.1158/1078-0432.CCR-17-1912
https://doi.org/10.1038/nm.3161
https://doi.org/10.1016/S1470-2045(17)30516-8
https://doi.org/10.3389/fonc.2022.931035
https://doi.org/10.1038/s41467-023-37822-0
https://doi.org/10.1186/s13073-015-0131-9
https://doi.org/10.1186/s13073-015-0131-9
https://doi.org/10.1002/bjs.10741
https://doi.org/10.1038/s41523-022-00465-3
https://doi.org/10.1038/s41587-019-0114-2


19

Vol.:(0123456789)

Scientific Reports |        (2024) 14:21417  | https://doi.org/10.1038/s41598-024-72306-1

www.nature.com/scientificreports/

 55. Nacer, D. F. et al. Molecular characteristics of breast tumors in patients screened for germline predisposition from a population-
based observational study. Genome Med. 15, 25. https:// doi. org/ 10. 1186/ s13073- 023- 01177-4 (2023).

 56. van der Walt, S. et al. scikit-image: Image processing in Python. PeerJ 2, e453. https:// doi. org/ 10. 7717/ peerj. 453 (2014).
 57. Ruifrok, A. C. & Johnston, D. A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 

291–299 (2001).
 58. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. In Medical Image Computing and Computer Assisted Intervention–MICCAI 

2018: 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part II 11. 265–273 (Springer).
 59. Naylor, P., Lae, M., Reyal, F. & Walter, T. Segmentation of nuclei in histopathology images by deep regression of the distance map. 

IEEE Trans. Med. Imaging 38, 448–459. https:// doi. org/ 10. 1109/ TMI. 2018. 28657 09 (2019).
 60. Stevens, M. et al. StarDist image segmentation improves circulating tumor cell detection. Cancers (Basel) https:// doi. org/ 10. 3390/ 

cance rs141 22916 (2022).
 61. Hudis, C. A. et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: The STEEP system. 

J. Clin. Oncol. 25, 2127–2132. https:// doi. org/ 10. 1200/ JCO. 2006. 10. 3523 (2007).
 62. Laptenko, O., Tong, D. R., Manfredi, J. & Prives, C. The tail that wags the dog: How the disordered c-terminal domain controls the 

transcriptional activities of the p53 tumor-suppressor protein. Trends Biochem. Sci. 41, 1022–1034. https:// doi. org/ 10. 1016/j. tibs. 
2016. 08. 011 (2016).

Acknowledgements
The authors would like to acknowledge patients and clinicians participating in the SCAN-B study, personnel at 
the central SCAN-B laboratory at the Division of Oncology and Pathology, Lund University, the Swedish national 
breast cancer quality registry (NKBC), Regional Cancer Center South, RBC Syd, and the South Sweden Breast 
Cancer Group (SSBCG). Financial support for this study was provided by the Swedish Cancer Society (CAN 
2021/1407, and a 2018 Senior Investigator Award [JS]), the Mrs Berta Kamprad Foundation (FBKS-2020-5, 
FBKS-2021-27, and FBKS-2024-14), BCF Viktoria, Magnus Bergvalls Foundation, the Swedish Breast Can-
cer Association, the Swedish Research Council (2021-01800), and Swedish governmental funding (ALF, grant 
2022/0021), the Thelma Zoégas Foundation for Medicinal Research (2022/1205), the Stig and Ragna Gorthon 
Foundation (2022-2796), as well as a clinical research internship from Region Skåne (MA). The funders had no 
role in study design, data collection and analysis, decision to publish, or preparation of the paper.

Author contributions
Conception and design: S.R., J.S., M.A., Collection and assembly of data: S.R., J.S., M.A., Provision of study mate-
rial or patients: J.S., GJ, BP, GS, Data analysis and interpretation: S.R., M.J., D.E., J.S., M.A., Financial support: 
J.S., M.A., Administrative support: S.R., J.S., M.A., Manuscript writing: S.R., J.S., and M.A. with input from all 
authors. Final approval of manuscript: All authors, Agree to be accountable for all aspects of the work: All authors.

Funding
Open access funding provided by Lund University.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 72306-1.

Correspondence and requests for materials should be addressed to J.S. or M.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1186/s13073-023-01177-4
https://doi.org/10.7717/peerj.453
https://doi.org/10.1109/TMI.2018.2865709
https://doi.org/10.3390/cancers14122916
https://doi.org/10.3390/cancers14122916
https://doi.org/10.1200/JCO.2006.10.3523
https://doi.org/10.1016/j.tibs.2016.08.011
https://doi.org/10.1016/j.tibs.2016.08.011
https://doi.org/10.1038/s41598-024-72306-1
https://doi.org/10.1038/s41598-024-72306-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Tumour immune characterisation of primary triple-negative breast cancer using automated image quantification of immunohistochemistry-stained immune cells
	Results
	Comparison of automated TMArQ pipeline cell counts to available pathology scores
	Comparison of TMArQ results for CD3 to corresponding QuPath scores
	Comparison of TMArQ automated pipeline results to matched bulk tissue RNA-sequencing data
	Immune marker expression variability within and between TNBC tumours
	Non-immune cell quantification and in silico merged antigen expression patterns
	Immune cell counts and patient outcome in TNBC
	TMArQ immune cell counts versus genetic alterations in the context of potential drivers of immunogenicity in TNBC
	Application of TMArQ in other malignancies

	Discussion
	Methods
	TNBC patient cohort
	Bladder cancer and malignant melanoma validation cohorts
	TNBC TMA construction, IHC staining and human evaluator grading
	TNBC RNA-sequencing and whole genome sequencing data
	Quantification of immune antibodies in IHC
	QuPath analysis of CD3 IHC images
	Integration of IHC quantifications with additional data

	References
	Acknowledgements


