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A B S T R A C T

Background: Adiposity, dysglycemia, and hypertension are metabolic drivers that have causal interactions with 
each other. However, the effect of neighborhood-level disadvantage on the intensity of interactions among these 
metabolic drivers has not been studied. The objective of this study is to determine whether the strength of the 
interplay between these drivers is affected by neighborhood-level disadvantage.
Methods: This cross-sectional study analyzed patients presenting to a multidisciplinary preventive cardiology center 
in New York City, from March 2017 to February 2021. Patients’ home addresses were mapped to the Area Depri
vation Index to determine neighborhood disadvantage. The outcomes of interest were correlation coefficients 
(range from − 1 to +1) among the various stages (0 - normal, 1 - risk, 2 - predisease, 3 - disease, and 4 - complications) 
of abnormal adiposity, dysglycemia, and hypertension at presentation, stratified by neighborhood disadvantage.
Results: The cohort consisted of 963 patients (age, median [IQR] 63.8 [49.7–72.5] years; 624 [65.1 %] female). 
The correlation among the various stages of adiposity, dysglycemia, and hypertension was weaker with 
increasing neighborhood disadvantage (P for trend <0.001). Specifically, the correlation describing adiposity, 
dysglycemia, and hypertension interaction was weaker in the high neighborhood disadvantage group compared 
to the intermediate neighborhood disadvantage group (median [IQR]: 0.34 [0.27, 0.44] vs. median [IQR]: 0.39 
[0.34, 0.45]; P < 0.001) and compared to the low neighborhood disadvantage group (median [IQR]: 0.34 [0.27, 
0.44] vs. median [IQR]: 0.54 [0.52, 0.57]; P < 0.001), as well as weaker in the intermediate neighborhood 
disadvantage group compared to the low neighborhood disadvantage group (median [IQR]: 0.39 [0.34, 0.45] vs. 
0.54 median [IQR]: 0.54 [0.52, 0.57]; P < 0.001).
Conclusions: Interactions among the various stages of abnormal adiposity, dysglycemia, and hypertension with each 
other are weaker with increasing neighborhood disadvantage. Factors related to neighborhood-level disadvantage, 
other than abnormal adiposity, might play a crucial role in the development of dysglycemia and hypertension.

Abbreviations: ABCD, adiposity-based chronic disease; ADI, area deprivation index; CMBCD, cardiometabolic-based chronic disease; CVD, cardiovascular disease; 
DBCD, dysglycemia-based chronic disease; FIPS, Federal Information Processing Standard; HBCD, hypertension-based chronic disease; LBCD, lipid-based chronic 
disease; SDOH, social determinants of health; T2D, type 2 diabetes.

☆ Short tweet: In a study including >900 patients from a preventive cardiology center, interactions among the various stages of adiposity, dysglycemia, and 
hypertension are weaker with increasing neighborhood disadvantage. #SDOH, #cvMetabolic
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1. Introduction

Disparities in cardiometabolic healthcare are significantly affected 
by socioeconomic factors and pose great challenges in the U.S [1]. 
Indeed, socioeconomic disadvantage has emerged as a unique risk fac
tor, associated with worse outcomes and reduced life expectancy well 
beyond that predicted for conventional risk factors [2]. Comprehending 
and lessening these major disparities through health equity is a growing 
focus of interest, as stated in the American Heart Association’s 2030 
Impact Goals [3].

Considerable epidemiological and mechanistic data support non- 
causal and causal relationships, respectively, among cardiometabolic 
drivers. The main causal drivers are “adiposity” (a term that refers to 
abnormal adipose tissue amount, distribution, or function) and “dys
glycemia” (a term describing a continuum that progressively ranges 
from risk for altered glucose metabolism, to insulin resistance, to pre
diabetes, to type 2 diabetes (T2D), to cardiovascular complications) [4]. 
Following this system, adiposity impels dysglycemia [5], hypertension 
[6], and dyslipidemia [7]; dysglycemia impels hypertension [8] and 
dyslipidemia [9]; and all four impel cardiovascular disease (CVD) [4]. 
Notwithstanding the well-established correlation of socioeconomic 
disadvantage with severity of individual cardiometabolic risk factors 
considered in isolation, inter-relationships among cardiometabolic 
driver stages considered in aggregate and how they are impacted by 
social determinants of health (SDOH) remain unclear.

Cardiometabolic driver inter-relationships are well represented by 
the cardiometabolic-based chronic disease (CMBCD) model [4]. This 
model exposes opportunities for early prevention and personalized 
management of cardiometabolic risks and resulting CVD [10]. The three 
dimensions of this model are: 1) drivers - primary (genetic, environ
mental, and behavioral) and secondary/metabolic (adiposity, dysgly
cemia, hypertension, and dyslipidemia); 2) stages - progression of 
secondary metabolic drivers over time (risk, predisease, disease, and 
complications); and 3) personalization - applying SDOH [11].

While many previous studies have analyzed the role of individual- 
level SDOH on CVD, recent studies have shown that neighborhood- 
level SDOH factors are associated with CVD independent of individual 
levels of socioeconomic disadvantage and CVD risk factors [12]. From a 
practical standpoint, neighborhood-level socioeconomic disadvantage 
can be detected using data from the American Community Survey [13], 
which is a robust repository that incorporates income, employment, 
housing conditions, and educational data [14]. Previous research using 
data from this repository has linked socioeconomic disadvantage to 
negative health outcomes, such as long-term mortality after myocardial 
infarction [15], development of atherosclerotic CVD [16], and hospital 
readmission rates [1]. However, the way in which neighborhood-level 
disadvantage modifies the inter-correlations among abnormal 
adiposity, dysglycemia and hypertension has not been adequately 
studied. Thus, in this cross-sectional study of patients presenting to a 
preventive cardiology center, we explore the association between 
neighborhood disadvantage and cardiometabolic driver 
inter-correlations to gain insights about preventing CMBCD develop
ment and progression.

2. Methods

2.1. Study setting

This study was conducted in the Marie-Josée and Henry R. Kravis 
Center for Clinical Cardiovascular Health at the Mount Sinai Fuster 
Heart Hospital in New York City (the “Center”), a multidisciplinary 
preventive cardiology program integrating lifestyle medicine (healthy 
nutrition, physical activity, and healthy behaviors) with guideline- 
directed medical therapy, all in one physical structure. This work was 
approved by the Mount Sinai Institutional Review Board (STUDY 
22–01267).

2.2. Data sources and study population

The Mount Sinai Data Warehouse created a customized data mart 
cohort of all patient encounters in the Center through the Observational 
Medical Outcomes Partnership Common Data Model. Supporting 
queries that allowed advanced data searches with Microsoft SQL were 
used to develop the final database. This allowed detection of patients 
meeting inclusion criteria: patients with a first Center visit from March 
1st, 2017 (Center inception) until February 28, 2021. This cross- 
sectional information was curated according to variables that corre
sponded, reflected, or otherwise indicated specific stages for each car
diometabolic driver at first Center visit.

2.3. Cardiometabolic-based chronic disease model classification

In the CMBCD model, adiposity, dysglycemia, hypertension, and 
dyslipidemia are each considered not only as secondary/metabolic 
drivers for CVD but also as individual driver-based chronic diseases (i.e., 
adiposity-, dysglycemia-, hypertension-, and lipid-based chronic disease 
[ABCD, DBCD, HBCD, and LBCD, respectively]). These chronic diseases 
are classified as stages 0–4. Stage 0 (“normal”) is defined by the absence 
of any cardiometabolic phenotypic feature or risk factor (i.e., primary 
drivers [genetic, environmental, or behavioral], or impelling secondary/ 
metabolic drivers [adiposity and/or dysglycemia]). Stage 1 (“risk”) re
fers to the presence of risk factors but absence of any cardiometabolic 
phenotypic features. Stage 2 (“predisease”) refers to the presence of 
abnormal cardiometabolic phenotypic features that do not satisfy 
diagnostic criteria for a disease state. Stage 3 (“disease”) refers to the 
presence of abnormal cardiometabolic phenotypic features that satisfy 
diagnostic criteria for a disease state. Stage 4 (“complications”) refers to 
the presence of additional downstream cardiometabolic driver or organ 
dysfunction arising from predisease or disease states. Further descriptor 
details for ABCD, DBCD, HBCD, and LBCD stage classifications may be 
found in the Supplementary Material.

Clinical presentations to the Center may be classified as CMBCD- 
related or non-CMBCD-related. CMBCD-related diagnoses pertain to 
ABCD, DBCD, HBCD, LBCD, CVD (atherosclerosis, heart failure, or atrial 
fibrillation), metabolic syndrome, certain symptoms (e.g., chest pain, 
dyspnea, or palpitations), or abnormal cardiac tests. Non-CMBCD- 
related diagnoses pertain to the remaining patients.

3. Neighborhood disadvantage using the area deprivation index 
based on residential address

A home address and 12-digit Federal Information Processing Stan
dard (FIPS) code was used to link each patient to their corresponding 
census block group. A census block group is the smallest geographical 
unit, roughly containing 600 to 3000 people, for which the U.S. Census 
Bureau publishes sample data and approximates a typical neighborhood. 
Every census block group has a unique 12-digit FIPS code. Patients 
without a FIPS code (international or with an address that could not be 
accurately geocoded) were excluded from study. The FIPS code was 
obtained in 963 (92.2 %) out of the 1045 patients in the cohort.

Neighborhood-level socioeconomic disadvantage was categorized 
using the Area Deprivation Index (ADI), which is a systematized score 
based on census variables [17]. The ADI combines measures of 
employment, income, education, and housing quality obtained from the 
American Community Survey for each census block group in the United 
States [14]. The ADI is publicly available and allows for rankings of 
neighborhoods (census blocks) by socioeconomic disadvantage relative 
to the state (scale from 1 to 10). An ADI rank of 1 represents the lowest 
level of neighborhood disadvantage, whereas a rank of 10 indicates the 
highest level of neighborhood disadvantage. ADI ranks 1 through 3 were 
categorized into the low ADI group – low neighborhood disadvantage, 
middle ADI – intermediate neighborhood disadvantage, and high ADI – 
high neighborhood disadvantage [15].
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4. Outcomes of interest

The objective of this study was to determine if inter-correlations 
among cardiometabolic drivers are affected by neighborhood-level 
disadvantage (SDOH). This objective was fulfilled by obtaining the 
following outcomes: the composite classification of patients by specific 
CMBCD drivers and their respective stages, cross-correlations among 
drivers/stages to represent inter-relationships (using polychoric corre
lations), and the calculated average correlation stratified by ADI group.

4.1. Statistical analysis

Analyses were performed with R (version 4.3.1; R Foundation for 
Statistical Computing; Vienna, Austria; including polychoric 

correlations from the “psych” package [version 2.3.9]) [18,19] and 
STATA (version 16; StataCorp; 4905 Lakeway Drive, College Station, 
Texas 77845). Categorical variables were reported as frequencies and 
proportions, tested for differences using the chi-squared or Fisher exact 
tests, and for trends using the Cochran-Armitage test. Continuous vari
ables were reported as medians (interquartile range [IQR]), tested for 
differences using the Kruskal-Wallis test, and for trends using the 
Spearman’s rank test.

Polychoric correlation coefficients [20] for the four cardiometabolic 
drivers (ABCD, DBCD, HBCD, and LBCD) were calculated as a measure of 
the inter-relationships among paired cardiometabolic drivers and then 
compared across the three ADI groups, race, and sex. The polychoric 
correlation is a measure of association between two ordinal variables 
such as a staged CMBCD driver vs. another staged CMBCD driver. 

Table 1 
Baseline characteristics stratified by area deprivation index.a

Characteristic Low ADI Group Middle ADI Group High ADI Group P-value for difference P-value for trend

n 718 181 64
Demographics

Age (median [IQR]), y 64.2 (49.4–73.0) 61.9 (50.0–70.4) 65.4 (54.5–72.5) 0.252 0.381
Female sex 456 (63.9) 122 (67.4) 46 (71.9) 0.334
Race <0.001

White 445 (62.0) 60 (33.2) 20 (31.3)
Black 44 (6.1) 35 (19.3) 18 (28.1)
Hispanic 51 (7.1) 35 (19.3) 7 (10.9)
Asian 20 (2.8) 3 (1.7) 1 (1.6)
Other or unknown 157 (21.9) 47 (26.0) 18 (28.1)

Insurance category 0.196
Commercial 234 (33.5) 65 (36.3) 16 (25.4)
Public (Medicare or Medicaid) 356 (50.9) 95 (53.1) 37 (58.7)
Other 109 (15.6) 19 (10.6) 10 (15.9)

Cardiovascular disease 86 (12.0) 32 (17.7) 6 (9.4) 0.085 0.494
Coronary artery disease 41 (5.7) 18 (9.9) 3 (4.7) 0.098 0.363
Heart failure 36 (5.0) 12 (6.6) 3 (4.7) 0.669 0.691
Atrial fibrillation 35 (4.9) 12 (6.6) 1 (1.6) 0.268 0.723
Cerebrovascular disease 46 (6.4) 10 (5.5) 3 (4.7) 0.802 0.506
Peripheral artery disease 18 (2.5) 9 (5.0) 3 (4.7) 0.176 0.092

Risk factors
Overweight 229 (32.6) 63 (35.4) 17 (26.6) 0.431 0.713
Obesity 186 (26.5) 77 (43.3) 27 (42.2) <0.001 <0.001
Prediabetes 175 (24.4) 45 (24.9) 12 (18.8) 0.580 0.489
Type 2 diabetes 159 (28.4) 63 (41.2) 23 (43.4) 0.002 <0.001
Prehypertension 60 (8.4) 13 (7.2) 4 (6.3) 0.758 0.457
Hypertension 515 (71.7) 143 (79.0) 49 (76.6) 0.118 0.082
Abnormal lipoproteins 147 (20.5) 47 (25.6) 9 (14.1) 0.098 0.985
Dyslipidemia 217 (57.6) 70 (58.3) 27 (75) 0.126 0.113

BMI (median [IQR]) 26.1 (22.8–30.2) 29.0 (25.8–35.0) 28.0 (24.1–33.4) <0.001 <0.001
Systolic blood pressure (median [IQR]), mmHg 131 (119–148) 134 (121–149) 134 (120.5–148.5) 0.422 0.251
Diastolic blood pressure (median [IQR]), mmHg 78 (72–84) 80 (74–85.5) 77 (71–83.5) 0.118 0.306
Laboratory values (median [IQR])

Hemoglobin 
A1c, %

5.8 (5.4–6.5) 6.2 (5.7–6.9) 5.9 (5.4–7.4) <0.001 <0.001

Triglycerides, mg/dL 118 (82–166) 116 (82–178) 108.5 (75–163) 0.741 0.702
HDL cholesterol, mg/dL 56 (45–70) 51 (42–64) 52.3 (46.5–63.5) 0.144 0.055
LDL cholesterol, mg/dL 96 (75–122) 95 (70–122) 92 (75–132) 0.955 0.928
eGFR, 
mL/min/1.73 m2

90.3 (27.1) 87.0 (27.6) 88.9 (27.2) 0.748 0.457

Medical therapy
Metformin 69 (9.6) 21 (11.6) 9 (14.1) 0.431 0.195
GLP-1 RA 15 (2.1) 6 (3.3) 1 (1.6) 0.567 0.732
DPP4i 12 (1.7) 4 (2.2) 1 (1.6) 0.827 0.879
SGLT2i 15 (2.1) 6 (3.3) 4 (6.3) 0.086 0.095
Insulin 34 (4.7 %) 8 (4.4) 2 (3.1) 0.835 0.581
Sulfonylurea 7 (1.0 %) 4 (2.2 %) 1 (1.6 %) 0.397 0.292
ACE inhibitor/ARB 90 (12.5) 33 (18.2) 10 (15.6) 0.127 0.104
β-blocker 77 (10.7) 23 (12.7) 5 (7.8) 0.533 0.904
Calcium channel blocker 48 (6.7) 24 (13.3) 6 (9.4) 0.014 0.029
Diuretic 59 (8.2) 27 (14.9) 5 (7.8) 0.026 0.147
Statin 135 (18.8) 34 (18.8) 14 (21.9) 0.832 0.649

a Data are presented as n (%) or median (IQR). Statistically significant differences or trends are indicated in bold. Abbreviations: ACE, angiotensin-converting 
enzyme; ARB, angiotensin receptor blocker; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); CMBCD, 
cardiometabolic-based chronic disease; DPP4i, dipeptidyl peptidase 4 inhibitors; eGFR, estimated glomerular filtration rate; GLP-1 RA, glucagon-like peptide 1 re
ceptor agonist; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-density lipoprotein; SGLT2i, sodium-glucose cotransporter-2 inhibitors.
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Similar to Pearson’s and Spearman’s correlation which measure the 
association of continuous variables, a positive polychoric correlation 
coefficient indicates a positive relationship, a negative polychoric cor
relation coefficient indicates a negative relationship, and 0 indicates no 
relationship between two variables. For example, if two CMBCD drivers 
(e.g., ABCD and DBCD) had a positive polychoric correlation coefficient, 
patients with a higher ABCD stage would have a higher DBCD stage, 
while patients with a lower ABCD stage would have a lower DBCD stage. 
Polychoric correlation coefficients range from − 1 to 1, where an abso
lute value < 0.2 indicates a very weak association, 0.2–0.4 indicates a 
weak association, 0.4–0.6 indicates a moderate association, 0.6–0.8 in
dicates a strong association, and >0.8 indicates a very strong 
association.

A mean correlation coefficient to represent a simpler, overall mea
sure of inter-relationships was calculated by averaging the polychoric 
correlation coefficients. Then, a sampling method was used to test 
whether these averaged correlation coefficients were significantly 
different across the three ADI groups. Specifically, each ADI group was 
randomly sampled to generate a new set of averaged polychoric corre
lation coefficients. This process was repeated a pre-specified 1000 times 
and then compared to determine whether the averaged correlation co
efficients were significantly different (using Wilcoxon Rank Sum Test) 
and if there was a trend across the three ADI groups (using Spearman’s 
rank test).

5. Results

The study cohort consisted of 1045 patients, of whom 963 (92.2 %) 
had geocodable addresses with an associated ADI ranking. Among the 
963 patients, median (IQR) age was 63.8 [49.7–72.5] years and 624 
(65.1 %) were female. Patients were mostly congregated in the lower 
ADI group (718 [74.6 %]), compared with 181 (18.8 %) in the middle 
ADI group and 64 (6.7 %) in the higher ADI group. Across ADI clusters, 

those in the middle and high ADI groups were more likely to be Black or 
Hispanic, to have higher rates of traditional cardiovascular risk factors 
such as obesity and T2D, and to have higher body mass index (BMI) and 
hemoglobin A1c (A1C) values, compared to patients in the low ADI 
group. Initial presentation of patients was more frequently CMBCD- 
related among patients in the middle and high ADI groups, compared 
to patients in the low ADI group. Calcium channel blocker use was more 
frequent among patients in the middle and high ADI groups, compared 
to patients in the low ADI group. Diuretic use was substantially more 
frequent in the middle ADI group. There were no significant differences 
in the other medical therapies across the three ADI groups. Baseline 
characteristics are summarized in Table 1.

5.1. Cardiometabolic driver stages, stratified by area deprivation index

Classification of patients according to the CMBCD model showed 
weak but statistically significant trend associations between ADI groups 
and CMBCD drivers (Table 2). Specifically, higher ADI (higher neigh
borhood disadvantage) was significantly associated with higher ABCD 
(Spearman’s ρ = 0.142, P < 0.001), DBCD (Spearman’s ρ = 0.101, P =
0.005), and HBCD (Spearman’s ρ = 0.077, P = 0.017) stages, but this 
association was null for LBCD (Spearman’s ρ = 0.037, P = 0.372).

Classification of patients according to the CMBCD model also showed 
statistically significant differences in stage distribution across ADI 
groups for ABCD (P < 0.001), DBCD (P = 0.03), and HBCD (P = 0.007) 
drivers (Table 2). In addition to these differences, there were also sig
nificant trends in stage progression for ABCD, DBCD, and HBCD, but not 
LBCD. Specifically, among patients with ABCD: 287 (40.9 %) were 
stages 0/1 in the lowest ADI group, compared with 38 (21.3 %) in the 
middle group, and 20 (31.2 %) in the highest group (P for trend <0.001); 
400 (57.0 %) patients were stage 4 in the lowest ADI group, compared 
with 135 (75.8 %) in the middle group and 42 (65.6 %) in the highest 
group (P for trend <0.001). Similarly, among patients with DBCD: 111 

Table 2 
Classification of patients according to the cardiometabolic-based chronic disease model stratified by area deprivation index.a

Low ADI Group Middle ADI Group High ADI Group P-value for difference P-value for trend

n 718 181 64

ABCD <0.001 <0.001
Stage 0/stage 1a 287 (40.9) 38 (21.3) 20 (31.2) <0.001
Stage 2 13 (1.9) 5 (2.8) 2 (3.1) 0.340
Stage 3 2 (0.3) 0 (0.0) 0 (0.0) 0.441
Stage 4 400 (57.0) 135 (75.8) 42 (65.6) <0.001

DBCD 0.03 0.005
Stage 0 111 (19.9) 13 (8.5) 5 (9.4) <0.001
Stage 1 114 (20.4) 32 (20.9) 13 (24.5) 0.537
Stage 2 5 (0.9) 1 (0.7) 1 (1.9) 0.691
Stage 3 6 (1.1) 4 (2.6) 0 (0.0) 0.745
Stage 4 323 (57.8) 103 (67.3) 34 (64.2) 0.061

HBCD 0.007 0.017
Stage 0 88 (12.3) 6 (3.3) 2 (3.1) <0.001
Stage 1 55 (7.7) 19 (10.5) 9 (14.1) 0.044
Stage 2 51 (7.1) 12 (6.6) 3 (4.7) 0.494
Stage 3 388 (54.0) 101 (55.8) 36 (56.2) 0.620
Stage 4 136 (18.9) 43 (23.8) 14 (21.9) 0.218

LBCD 0.817 0.372
Stage 0 2 (0.5) 0 (0.0) 0 (0.0) 0.399
Stage 1 11 (2.9) 3 (2.5) 0 (0.0) 0.360
Stage 2 137 (36.3) 41 (34.2) 9 (25.0) 0.209
Stage 3 172 (45.6) 58 (48.3) 21 (58.3) 0.169
Stage 4 55 (14.6) 18 (15.0) 6 (16.7) 0.756

a Data are presented as n (%). Percentages pertain to the number of patients at a specified stage for the respective driver-ADI group. Statistically significant dif
ferences or trends are indicated in bold. Chi-squared test or Fisher exact test were used to test the differences of each CMBCD driver among the three ADI groups (p- 
value for difference), Spearman’s rank test was used to test the trend of each CMBCD driver across the three ADI groups (p-value for trend), and Cochran-Armitage test 
was used to test each stage of each CMBCD driver across the three ADI groups (p-value for trend). ABCD stage 0 and stage 1 are combined since, at this time, there is no 
clear parameter to differentiate “normal” patients from patients with “risk.” Abbreviations: ABCD - adiposity-based chronic disease; DBCD - dysglycemia-based chronic 
disease; HBCD - hypertension-based chronic disease; LBCD - lipid-based chronic disease.

J. Hernandez Sevillano et al.                                                                                                                                                                                                                 International Journal of Cardiology Cardiovascular Risk and Prevention 23 (2024) 200322 

4 



(19.9 %) were stage 0 in the lowest ADI group, compared to 13 (8.5 %) 
in the middle group and 5 (9.4 %) in the highest group (P for trend 
<0.001). Also similarly, among patients with HBCD: 88 (12.3 %) were 
stage 0 in the lowest ADI group, compared to 6 (3.3 %) in the middle 
group and 2 (3.1 %) in the highest group (P for trend <0.001); 55 (7.7 
%) were stage 1 in the lowest ADI group, compared with 19 (10.5 %) in 
the middle group and 9 (14.1 %) in the highest group (P for trend 0.044).

5.2. Cross-correlations among cardiometabolic driver stages, stratified by 
area deprivation index

A series of cross-correlations was performed to quantitate the inter- 
relationships among paired cardiometabolic drivers and ADI groups 
(Table 3; Fig. 1). The correlation between ABCD and DBCD was stronger 
in the lowest vs. highest ADI group (0.61 vs. 0.32, respectively; P =

0.012). In other words, the correlation between higher stages of ABCD 
with higher stages of DBCD and lower stages of ABCD with lower stages 
of DBCD was stronger in the lowest ADI group. The correlation between 
ABCD and HBCD was stronger in the lowest vs. middle group (0.48 vs. 
0.33, respectively; P = 0.037) and it was also stronger in the lowest vs. 
highest group (0.48 vs. 0.10, respectively; P = 0.002). The correlation 
between DBCD and HBCD was also stronger in the lowest group vs. 
middle group (0.52 vs. 0.34, respectively; P = 0.017). However, con
trary to the above pattern, the correlation between DBCD and HBCD was 
weaker in the middle vs. highest group (0.34 and 0.61, respectively; P =
0.031). No significant correlations were observed with paired cross- 
correlations involving LBCD.

Averaged correlation coefficients were only calculated among car
diometabolic drivers harboring significant differences in pairwise cross- 
correlations (ABCD, DBCD, and HBCD, but not LBCD) by ADI group. 
Averaged correlation coefficients were median [IQR]: 0.54 [0.52, 0.57] 
in the lowest ADI group; median [IQR]: 0.39 [0.34, 0.45] in the middle 
ADI group; and median [IQR]: 0.34 [0.27, 0.44] in the highest ADI 
group. Patients in the lowest ADI group had significantly stronger 
averaged correlation compared with the middle and highest ADI groups 
(P < 0.001), with the effect sizes being 0.15 and 0.20, respectively, and 
the middle ADI group had significantly stronger averaged correlation 
than the highest ADI group (P < 0.001), with the effect size being 0.05 (P 
for trend <0.001) (Central illustration and Fig. 2).

These differences could partly be related to demographic differences 
in cardiometabolic driver correlations, such as sex and race/ethnicity. In 
terms of sex, averaged correlation coefficients were median [IQR]: 0.54 
[0.52, 0.56) in females and 0.32 [0.27, 0.37] in males (P < 0.001) 
(Supplementary Fig. 1). In terms of race/ethnicity, averaged correlation 
coefficients were median [IQR]: 0.50 [0.48, 0.52) in Whites and median 
[IQR]: 0.42 [0.38, 0.46] in Blacks or African Americans (P < 0.001) 
(Supplementary Fig. 2).

Table 3 
Significant comparisons of polychoric correlations of cardiometabolic drivers 
stratified by area deprivation index.a

CMBCD driver 
combination

Statistically significant correlations 
among driver combinations according to 
ADI group

P-value for 
difference

Low ADI 
Group

Middle ADI 
Group

High ADI 
Group

ABCD-DBCD 0.61 0.32 0.012
ABCD-HBCD 0.48 0.33 0.037
ABCD-HBCD 0.48 0.10 0.002
DBCD-HBCD 0.52 0.34 0.017
DBCD-HBCD 0.34 0.61 0.031

a Statistically significant polychoric correlations are depicted in Fig. 1. Sta
tistically significant p-values are indicated in bold. Abbreviations: ABCD - 
adiposity-based chronic disease; DBCD - dysglycemia-based chronic disease; 
HBCD - hypertension-based chronic disease.

Fig. 1. Polychoric cross-correlations among paired cardiometabolic drivers stratified by area deprivation index group. 
Pairwise CMBCD driver polychoric correlations stratified by ADI group are shown in each square. Pairwise polychoric correlations that are significantly different to 
their counterpart in another ADI group are encircled, with a curved line connecting them and a p-value midway at the flexion of the curve. See text for explanation of 
polychoric correlations. The average of pairwise polychoric correlations for each ADI group are depicted in Fig. 2. Abbreviations: ADI - area deprivation index; ABCD 
- adiposity-based chronic disease; DBCD - dysglycemia-based chronic disease; HBCD - hypertension-based chronic disease; LBCD - lipid-based chronic disease.
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6. Discussion

To the best of our knowledge, this is the first study to explore the 
relationships among cardiometabolic drivers stratified by SDOH using 
the CMBCD model. Patients were classified by CMBCD driver and stage 
at presentation to a preventive cardiology center, and then stratified by 
neighborhood-level disadvantage using the ADI metric. Our findings 
clearly affirm established results that the intermediate and high neigh
borhood disadvantage groups are associated with later stages of ABCD 
and DBCD on presentation than the low neighborhood disadvantage 
group. However, we also describe a new finding that the magnitude of 
inter-correlations among ABCD, DBCD, and HBCD drivers are inversely 
related to neighborhood disadvantage. In other words, adiposity, dys
glycemia, and hypertension are not as related to each other in higher 
disadvantage populations as they are in lower disadvantage populations.

Stage 0 ABCD, DBCD, and HBCD were more frequent in the low 
neighborhood disadvantage group in comparison with the intermediate 
and the high disadvantage groups. Patients in the high and intermediate 
neighborhood disadvantage groups also had a greater probability than 
patients in the low disadvantage group of being in more advanced stages 
for ABCD, DBCD, and HBCD at presentation. Consistent with this, later 
stages such as obesity and T2D were significantly more frequent in the 
intermediate and high neighborhood disadvantage groups than in the 
low disadvantage group. Also, BMI and A1C were greater in the inter
mediate and high disadvantage groups, compared with the low disad
vantage group. This is in agreement with previous research showing that 
the prevalence of cardiometabolic drivers is higher in populations with 
higher disadvantage [21]. Specifically, it has been well established that 
individual and neighborhood-level SDOH related to reduced access to 
healthy foods, reduced access to safe walking spaces, and increased 
exposure to violence and crime, contribute to higher rates of cardio
vascular risk factors and CVD [22]. These findings underscore the need 
to improve health promotion strategies, CVD screening campaigns, and 
access to preventive programs in underserved communities [23].

Although CMBCD driver development is a complex process with 
many biological and non-biological factors coexisting and clustering, the 
dominant nature of adiposity as an impelling driver for dysglycemia, 
hypertension, dyslipidemia, and CVD has been demonstrated in many 
epidemiological and mechanistic studies [5–7,24,25]. Moreover, dys
glycemia, with or without abnormal adiposity, is a significant impelling 

driver for hypertension, dyslipidemia, and CVD [8,9,25–28]. Our novel 
findings that these CMBCD drivers harbor less intense inter-relationships 
with higher disadvantage suggest the presence of hidden variables. In 
fact, these hidden variables may be part of the “biology of adversity.” 
[22].

The biology of adversity refers to the biological effects of adverse 
SDOH. Social determinants of health can act as long-term psychosocial 
or environmental stressors, which have the capacity to alter normal 
physiology. The main mechanisms by which the biology of adversity is 
known to work are through sympathetic nervous system and 
hypothalamic-pituitary-adrenal axis activation, immune system alter
ation, inflammation related to glucocorticoid resistance and certain in
flammatory cytokines, and epigenetic regulation [29]. In FAMILIA trial 
participants, the presence of subclinical atherosclerosis was observed to 
be higher in socioeconomically vulnerable Black adults of non-Hispanic 
origin, compared to those of Hispanic origin, across all Framingham 
cardiovascular risk score categories [30]. It was suggested that nontra
ditional or hidden risk factors could potentially exert this effect through 
recognizable epigenetic trajectories [31].

Less intense correlations among cardiometabolic drivers could 
indirectly suggest a higher susceptibility to developing T2D or hyper
tension, even in the absence of abnormal adiposity [32]. In our study 
population, higher polychoric correlations were observed in the lower 
neighborhood-level disadvantage group and lower polychoric correla
tions were observed in the intermediate and high neighborhood-level 
disadvantage groups. This suggests that dysglycemia and hypertension 
are more dependent on abnormal adiposity levels with lower disad
vantage, whereas development of dysglycemia and hypertension have a 
higher degree of independence from abnormal adiposity with interme
diate and high disadvantage. Importantly, less intense correlations 
among cardiometabolic drivers have been associated with worse out
comes in previous research [32]. For example, both T2D [33] and hy
pertension [34,35] in patients with normal weight have been associated 
with increased CVD and mortality than in their obese counterparts. In 
another study with a larger sample size and optimal control for smoking 
and preexisting chronic conditions, a direct linear relationship was 
observed between BMI and mortality among those who had never 
smoked and a J-shaped relationship among those who smoked, as well as 
all participants [36]. Even if this relationship is mediated by tobacco 
consumption, these findings insinuate a high-risk population that needs 
further investigation.

Indeed, our results could partially be confounded by racial/ethnic 
differences. Racial/ethnic differences can impact adiposity, dysglyce
mia, and hypertension cross-correlations. The lower correlation, or 
higher discordance, between adiposity and dysglycemia, has been pre
viously described in Black subjects that have developed T2D at lower 
BMI values than White subjects [37]. In another study, including 4,906, 
238 individuals, racial/ethnic minorities reached a given prevalence of 
T2D at a much lower BMI than whites, suggesting that factors other than 
BMI may play more important roles in the risk of T2D among racia
l/ethnic minorities [38]. Moreover, ethnic differences in the crude 
prevalence of T2D, even in those characterized as normal weight by BMI, 
has been reported [39]. Correlations between adiposity and hyperten
sion have also been described to be modulated by race/ethnicity. In a 
study among 4,060,585 adults with overweight or obesity, hypertension 
prevalence rates were significantly greater for Blacks and other race
s/ethnicities than for Whites even in similar weight categories and 
neighborhood-level disadvantage categories, suggesting that other fac
tors might be driving racial/ethnic disparities [40]. In another study 
comparing cardiometabolic risk factors, larger proportional increases in 
risk factor prevalence with increasing BMI were observed in Whites, 
while higher prevalence rates of cardiometabolic risk factors at nearly 
all levels of BMI were observed in African Americans, suggesting that 
additional factors contribute to the burden of CVD risk in African 
Americans [41]. Furthermore, another study showed that compared 
with whites, racial ethnic minority groups (Chinese Americans, African 

Fig. 2. Average cardiometabolic driver correlation stratified by area depriva
tion index. 
Average pairwise polychoric cardiometabolic driver correlation stratified by 
ADI group. ABCD, DBCD, and HBCD were included. Pairwise correlations 
including LBCD were excluded due to lack of significant correlations; 1′s were 
also excluded since they only depict the complete correlation of a driver with 
itself (e.g., ABCD with ABCD). Average cardiometabolic driver correlation co
efficient for the Low, Middle, and High ADI groups were 0.54, 0.39, and 0.34, 
respectively (p for trend <0.001). Effect sizes for the low-middle, low-high, and 
middle-high ADI group comparisons were 0.15, 0.20, and 0.05, respectively. 
Abbreviations: ADI - area deprivation index.
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Americans, Hispanics, and South Asians) had a statistically significant 
higher prevalence of metabolic abnormality but normal weight, which 
was not explained by demographic, behavioral, or ectopic fat measures 
[42].

A factor that might mediate differences seen between adiposity and 
dysglycemia with hypertension is sodium consumption. Individuals with 
higher disadvantage are known to consume higher amounts of sodium 
[43], and African Americans are disproportionately represented in 
disadvantaged communities. This mechanism for hypertension, which is 
independent from the presence of adiposity and dysglycemia, could 
partially explain the weaker correlation between adiposity and hyper
tension in the intermediate and high disadvantage groups and between 
dysglycemia and hypertension in the intermediate group, compared to 
the low disadvantage group.

Sex differences can also impact adiposity, dysglycemia, and hyper
tension interactions. Whereas men tend to be diagnosed with T2D at a 
lower BMI than women, associations between abnormal adiposity 
indices including BMI and T2D risk are generally stronger in women 
than in men [44–46]. Similarly, the effect of abnormal adiposity on the 
incidence of hypertension appears stronger in women than in men [47,
48].

Our study has three particular strengths. First, the detailed staging 
system of the CMBCD model facilitated characterization of metabolic 
status, assigned specific driver-stage coordinates for patient pre
sentations and SDOH, and therefore enabled more precise cross- 
correlations. Second, linking patients to neighborhoods allowed the 
use of the ADI as a comprehensive measure of SDOH in terms of 
neighborhood disadvantage. Third, the polychoric correlation made 
possible the performance of cross-correlations among staged car
diometabolic drivers, allowing us to fine-tune the detection of these 
distinct correlation patterns and associate them with different ADI tiers.

This study also has three particular limitations. First, there was 
disproportionate clustering of patients in the low neighborhood disad
vantage group, with a reduced number of patients in the intermediate 
and high disadvantage groups. This is related to the referral pattern for 
our Center, which limits its general applicability, and therefore warrants 
further study in other settings that include a more diverse population. 
Second, there were missing data mainly pertaining to LBCD, but also 
DBCD, limiting the ability to accurately classify these patients into their 
respective stages. One possible impact of the missing data is that it 
would reduce the statistical power to detect potentially significant 
findings, if the missingness is unbiased. However, this should be 
formally addressed by replicating this study using diverse databases 
with more complete data regarding LBCD in the future. Third, since most 

of the patients lived in New York City and the study population was 
obtained from a preventive cardiology center, the findings may not be 
generalizable to other areas in the U.S. or globally. Therefore, subse
quent studies should be conducted in different geographic locations and 
in different clinical or population contexts to validate our results.

7. Conclusions

In conclusion, our results suggest that greater disadvantage in life 
impacts how cardiometabolic drivers inter-correlate with each other, 
possibly due to the biology of adversity. The relevance of this finding is 
that it unmasks possibly greater susceptibilities for dysglycemia and 
hypertension development in patients with higher disadvantage in the 
absence of or at lower levels of abnormal adiposity, which is its habitual 
driving force. These results are exploratory and hypothesis-generating. 
Future research should specifically study whether dysglycemia and hy
pertension increase at lower levels of abnormal adiposity in the setting 
of disadvantage. Research and education will need to merge SDOH, 
including neighborhood-level disadvantage, with biological risk factors 
instead of considering each alone with the former often given short 
shrift.

Clinical perspectives

Competencies

Optimal cardiometabolic risk assessment requires determination of 
traditional biological drivers and neighborhood-level disadvantage.

Translational outlook

Future research studies should evaluate whether incorporating bio
logical risk factors with neighborhood-level disadvantage improves the 
performance of risk scores. Future research should also evaluate 
whether high disadvantage lean individuals are at greater risk for dys
glycemia and hypertension than low disadvantage lean individuals.
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Central Illustration. High Neighborhood Disadvantage and Cardiometabolic Drivers. 
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observed in patients in a preventive cardiology center: pattern 1 (green) - low neighborhood disadvantage associated with strong correlation among cardiometabolic 
drivers; pattern 2 (yellow) - intermediate neighborhood disadvantage associated with moderate correlation among cardiometabolic drivers; and pattern 3 (red) - high 
neighborhood disadvantage associated with weak correlation among cardiometabolic drivers.
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