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Summary
Background Deployment and access to state-of-the-art precision medicine technologies remains a fundamental
challenge in providing equitable global cancer care in low-resource settings. The expansion of digital pathology in
recent years and its potential interface with diagnostic artificial intelligence algorithms provides an opportunity to
democratize access to personalized medicine. Current digital pathology workstations, however, cost thousands to
hundreds of thousands of dollars. As cancer incidence rises in many low- and middle-income countries, the
validation and implementation of low-cost automated diagnostic tools will be crucial to helping healthcare
providers manage the growing burden of cancer.

Methods Here we describe a low-cost ($230) workstation for digital slide capture and computational analysis
composed of open-source components. We analyze the predictive performance of deep learning models when
they are used to evaluate pathology images captured using this open-source workstation versus images captured
using common, significantly more expensive hardware. Validation studies assessed model performance on three
distinct datasets and predictive models: head and neck squamous cell carcinoma (HPV positive versus HPV
negative), lung cancer (adenocarcinoma versus squamous cell carcinoma), and breast cancer (invasive ductal
carcinoma versus invasive lobular carcinoma).

Findings When compared to traditional pathology image capture methods, low-cost digital slide capture and analysis
with the open-source workstation, including the low-cost microscope device, was associated with model performance
of comparable accuracy for breast, lung, and HNSCC classification. At the patient level of analysis, AUROC was 0.84
for HNSCC HPV status prediction, 1.0 for lung cancer subtype prediction, and 0.80 for breast cancer classification.

Interpretation Our ability to maintain model performance despite decreased image quality and low-power
computational hardware demonstrates that it is feasible to massively reduce costs associated with deploying deep
learning models for digital pathology applications. Improving access to cutting-edge diagnostic tools may provide
an avenue for reducing disparities in cancer care between high- and low-income regions.
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Research in context

Evidence before this study
We searched PubMed and Google Scholar with the terms:
(“low cost” OR “mobile” OR “portable”) AND (“microscope”)
AND/OR (“digital pathology” OR “machine learning” OR “deep
learning”) on June 24, 2022 and repeated this search on Aug
29, 2023. Papers published in English that discussed low-cost
microscopy with or without machine learning or deep
learning modules were identified. There is significant
literature that involves the development of deep learning-
based diagnostic and clinical tools more generally, and several
papers describe devices for mobile and lower cost microscopy.
A small number of papers discuss using deep learning with
low-cost microscopy however no papers were found that
validate existing deep learning models for histopathologic
cancer subtyping on low cost and open-source hardware and
software.

Added value of this study
This work intends to show that it is possible to combine
existing deep learning methods with exclusively low-cost,
open-source tools while preserving model accuracy. Our
findings serve as a proof of concept that lower resolution
pathology images can be used for deep learning models and
that high-performing deep learning models can be run
successfully on low-cost computational hardware.

Implications of all the available evidence
We show that it is possible to use deep learning models with
digital pathology image capture workstations one thousand
times less expensive than some institutional slide scanners.
Given the potential for automation to increase diagnostic
bandwidth in a wide range of clinical settings, more resources
should be devoted to careful analysis and eventual
implementation of methods that reduce cost and improve
access to precision cancer care.
Introduction
The global burden of cancer is increasing as mortality
associated with communicable diseases, starvation, and
war declines. In the past, most cancer cases and cancer-
related deaths occurred in higher income countries.
However, the demographics of cancer are shifting.
Incidence of cancer in low Human Development Index
(HDI) countries is projected to double between 2008
and 2030 and increase by 81% in middle HDI coun-
tries.1 Advances in cancer care disproportionately
benefit people in high HDI countries: fewer cancer-
related gains in life expectancy are seen in low versus
high HDI countries.1 Adapting advanced cancer di-
agnostics currently used in high-resource settings for
broader application may help address some of the in-
equities perpetually seen in cancer care. Cancer di-
agnostics and treatment decision-making worldwide
rely on pathological analysis with hematoxylin and eosin
(H&E) stained tumor biopsy sections and molecular
tests, but access to extensive molecular testing remains
limited by cost. As the demographics of disease change
and a growing number of people are diagnosed with
cancers that could be better treated with advanced di-
agnostics, failure to close the gap in diagnostic precision
will result in significant mortality.2

Digital pathology involves the acquisition and anal-
ysis of digital histopathological images in place of con-
ventional microscopy.3,4 Specific advantages of digital
pathology in resource-limited settings include the ability
to share images for remote collaboration, the easy
acquisition of large amounts of analyzable data, faster
diagnosis, reduced burden of collecting and storing
physical glass slides, and decreased costs achieved by
lessening the amount of human pathologist review
needed to make a diagnosis.4,5 As digitized whole slide
images (WSIs) of histopathologic slides become widely
available, computer vision and machine learning
methods in digital pathology have the potential to assist
with automating diagnostic processes. Deep learning
(DL), a subdomain of machine learning that uses neural
networks to identify patterns and features in complex
datasets,6 can automate diagnostic workflows and
reduce costs while providing the same information that
human pathologists identify in histologic images.3 DL
algorithms can analyze higher-order image characteris-
tics to discern histologic and clinically actionable fea-
tures, such as survival, treatment response, and genetic
alterations.7,8

DL algorithms have the potential to automate tasks,
thereby reducing personnel needs, equipment, and
costs associated with precision cancer care. This may be
especially useful in low- and middle-income countries
where the cancer burden is growing quickly relative to
available healthcare resources. Governments and cor-
porations invest extensive resources into oncologic
research to develop advanced diagnostics and targeted
therapies, yet implementation barriers limit the ability
of these advances to reduce the global burden of cancer.
www.thelancet.com Vol 107 September, 2024
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Currently, state-of-the-art DL-based methods for
digital pathology diagnostics fail to integrate their tech-
nology with the hardware and computing resources
commonly found in lower-resource settings. As of
October 2023, only four FDA-approved commercial AI
technologies for digital pathology exist, and no open-
source technologies have gained approval.9 Purchasing
commercial software, computing resources, and WSI
scanners needed for available AI pathology tools costs
hundreds of thousands of dollars, making them inac-
cessible to low resource settings. By contrast, open-
source tools are free to use, transparent, adaptable,
and can be integrated into existing workflows. Valida-
tion of digital pathology DL methods is typically per-
formed with high-cost equipment in high-income
countries, although some work is being done to examine
how these methods might be translated to lower-
resource settings.10–14 An open-source pipeline would
allow local users to contribute to device development
and modify hardware or software components to fit
variable clinical needs.

To overcome the cost barrier in digital pathology
analysis, we compiled a fully integrated set of open-
source, low-cost hardware and software components to
compare achievable DL model performance against
high-cost methods. Several studies have shown that
digital images from diagnostic glass slides can be
captured with low-cost equipment at sufficient resolu-
tion for DL model analysis.11,14–18 We constructed a
workflow consisting of entirely open-source resources
that integrates images captured with low-cost hardware,
low-cost computing equipment, and publicly available
DL models, producing an end-to-end low-cost digital
histology deep learning analysis pipeline (Fig. 1a).19 We
developed and tested a USD$230 platform for image
capture of histopathological slides and used an open-
source DL pipeline run on a USD$55 Raspberry Pi
computer to classify tissue samples from three distinct
datasets. We show that model performance with images
captured with low-cost equipment is comparable to that
of images captured with gold standard high-cost
equipment, and we validate our pipeline for automated
digital pathology biomarker-based classification of head
and neck squamous cell carcinoma (HNSCC), lung
cancer, and breast cancer subtypes.
Methods
Data were collected to train DL models to perform a set of
distinct pathologic classification tasks. To study the feasi-
bility of leveraging existing DL methods within a low-cost,
end-to-end, open-source pipeline, we selected DL models
that mirrored published or pre-print data, including hu-
man papillomavirus (HPV) status in HNSCC as well as
lung cancer and breast cancer subtypes.20–22 We collected
publicly available histology images, which were captured
using an Aperio ScanScope or other Aperio slide scanner
www.thelancet.com Vol 107 September, 2024
and stored in SVS format from The Cancer Genome Atlas
(TCGA). Tissue samples in these TCGA datasets originate
from patients who live primarily in the United States and
Europe.23 To perform external validation on models trained
with data from TCGA, we collected WSIs from the Uni-
versity of Chicago Medical Center (UCMC), in accordance
with University of Chicago IRB protocol 20-0238. For
TCGA and UCMC datasets, pathologists identified and
annotated tumor regions of interest within eachWSI using
QuPath. Patient demographics in the UCMC dataset re-
flected those in the TCGA datasets.

Lung cancer dataset preparation
941 digitized WSIs of H&E tissue samples from patients
with lung cancer of known subtype were collected in
SVS format from TCGA for model training. 472 sam-
ples from this training dataset were classified as lung
adenocarcinoma and 469 were classified as squamous
cell carcinoma. We performed external validation of the
lung classification model using a UCMC dataset with
ten lung cancer histopathology slides. Of the patients in
the validation cohort, five had known lung adenocarci-
noma and five had known squamous cell carcinoma.

Breast cancer dataset preparation
852 digitized WSIs of H&E tissue samples from patients
with breast cancer of known subtype were collected in
SVS format from TCGA for model training. 187 tissue
samples from this training dataset were known invasive
lobular carcinoma and 665 were known invasive ductal
carcinoma. We performed external validation of the
breast cancer classification model using a UCMC data-
set consisting of ten breast cancer histopathology slides.
Within this validation dataset, five patients had known
invasive lobular carcinoma and five had known invasive
ductal carcinoma.

HPV status HNSCC dataset preparation
For DL model training using retrospective data, 472
digitized WSIs of H&E tissue samples from patients
with HNSCC and a known HPV status were collected in
SVS format from TCGA. Among the TCGA training
cohort, 52 patients were classified as HPV positive and
407 were classified as HPV negative. For model testing,
we used a UCMC external validation dataset consisting
of ten histopathology glass slides collected from patients
with HNSCC and a known HPV status. Of these pa-
tients, five had known HPV positive and five had known
HPV negative cancers.

Current standard imaging hardware and acquisition
For baseline “gold standard” image capture in the vali-
dation dataset, we used an Aperio AT2 ($250,000) digital
pathology microscope slide scanner for image acquisi-
tion at 40× magnification in SVS format. As part of slide
processing, 299 × 299 pixel image tiles are extracted
from WSIs at 10× magnification (0.5 microns-per-pixel).
3
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Fig. 1: Open-source workflow. (a) Low-cost, open-source digital pathology workstation. All hardware (OpenFlexure Microscope, Raspberry Pi 4
Model B, Raspberry Pi camera module, monitor) and software (OpenFlexure Connect, Raspberry Pi OS, Slideflow) components with their costs
and licenses are shown. (b) Open-source user interface for interactive visualization and generation of model predictions. Slideflow can be used
to deploy a variety of trained models for digital pathology image classification, generating predictions for both partial-slide and whole-slide
images. Predictions can be rendered for whole slides (rendered as a heatmap, as shown) or focal areas (rendered as individual tiles, as shown in
the bottom right corner). The Slideflow user interface has been optimized for both x86 and low-power ARM-based devices. The above
screenshot displays a heatmap of a WSI prediction, captured on the Raspberry Pi 4B. (c) Effects of computational stain normalization. Stain
normalization increases visual similarity between the images captured by the Aperio AT2 slide scanner and the low-cost OpenFlexure device.
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Open-source microscopy manufacture and image
acquisition
To assess a cost-efficient alternative to professional
grade microscopes, we modified the open-source
OpenFlexure Microscope v6 design and assembled it
with a fused deposition modeling 3D-printer (Creality
CR-10s). The device includes optics, illumination, and
stage modules (Supplementary Fig. S1). Our model of
the device differs from the published OpenFlexure
design in that it excludes the motorized stage. We used
manual rather than motorized stage actuators to maxi-
mize stage mobility and attached the optics and illu-
mination modules to the stage piece with the system of
rails in the OpenFlexure design, securing the parts with
M3 hex head screws. This microscope was then paired
with a low-cost Raspberry Pi Model 3 (USD$55) and
associated Camera Module 2 (USD$15) for image
capture.19,24
After manual calibration, effective optical magnifi-
cation was determined to be 0.4284 microns per pixel.
The Raspbian-OpenFlexure operating system provided
the software needed to visualize the glass slide on a
monitor as well as capture and save images. Visual
landmarks were used to locate the region of tissue for
image capture, and images from the low-cost micro-
scope were saved in JPEG format on-device and used for
subsequent deep learning predictions. As a part of im-
age preprocessing, these partial-slide images were
segmented into individual tiles and resized to 299 × 299
pixels at 10× magnification (0.5 microns-per-pixel).

Histopathologic image processing
To assess the impact of low-versus high-cost image
capture methods, we produced two sets of scanned
histopathologic images for the UCMC validation co-
horts: 1) WSIs from a clinical-grade microscope, and
www.thelancet.com Vol 107 September, 2024

http://www.thelancet.com


Articles
2) partial-slide images from the low-cost microscope.
Slides from the validation dataset were first scanned
as WSIs with the clinical-grade microscope. Partial-
slide images from this same dataset were then
captured using the low-cost microscope, as the low-
cost microscope is not yet capable of automated WSI
capture. Regions of interest containing strongly pre-
dictive morphological features were selected based on
predictive heatmap images generated by Slideflow.
This partial-slide, proof-of-concept data capture
method enabled us to demonstrate that histopatho-
logical images acquired using low-cost equipment can
be accurately classified with open-source deep
learning algorithms. We captured 150 images of
morphologically informative regions at 10× magnifi-
cation using OpenFlexure Connect software on the
Raspberry Pi, which also accommodates a 40× lens for
digital pathology tasks requiring higher optical
magnification.19 From each of the slides in our vali-
dation datasets (10 HNSCC slides, 10 lung cancer
slides, 10 breast cancer slides), we captured five
partial-slide images. For both whole-slide (Aperio
AT2) and partial-slide (low-cost microscope) images,
DL predictions were generated on smaller image tiles
(tile width 299 × pixels and 10 × magnification), and
final slide-level predictions were calculated by aver-
aging tile predictions. For the HNSCC dataset, we
also carried out image capture of unguided, randomly
chosen tissue regions with the low-cost microscope to
further characterize the concordance between the low-
and high-cost predictions. All image processing,
including Reinhard-Fast stain normalization (Fig. 1b),
was performed using Slideflow version 1.2.3.25

Deep learning models
Prior work has shown successful DL classification of
H&E stained WSIs of lung cancer as adenocarcinoma
versus squamous cell carcinoma, breast cancer as inva-
sive ductal or invasive lobular carcinoma, and HNSCC
as HPV positive or negative.5,21,22 For this study, we
trained DL classification models for HPV positive versus
negative status in TCGA HNSCC cases, lung adeno-
carcinoma versus squamous cell carcinoma from TCGA
lung cancer cases, and breast lobular versus ductal car-
cinoma in the TCGA breast cancer cohort. A validation
set of ten slides from UCMC (five from each class) was
then used for validation of each model.

Weakly-supervised, tile-based DL model training was
performed using a convolutional neural network with an
Xception-based architecture, ImageNet pretrained
weights, and two hidden layers of width 1024 with
dropout of 0.1 after each hidden layer, using the package
Slideflow as previously described.26 In this training
schema, tiles are extracted from whole-slide images and
receive a ground-truth label inherited from the corre-
sponding slide. Slide-level predictions are aggregated
across tiles via average pooling. During training, tiles
www.thelancet.com Vol 107 September, 2024
received data augmentation with flipping, rotating,
JPEG compression, and Gaussian blur. Model training
was performed with 1 epoch and 3-fold cross-validation,
using the Adam optimizer, with a learning rate of 10−4.
Models were trained using Slideflow version 1.2.3 with
the Tensorflow backend (version 2.8.2) in Python 3.8.25

All hyperparameters are listed in Supplementary
Table S1. For the lung cancer subtyping endpoint, the
publicly available “lung-adeno-squam-v1” model was
used, with its training strategy and validation perfor-
mance previously reported.27,28

Computational resources
DL models often require central processing units
(CPUs) and graphical processing units (GPUs) with
sufficient computational power to generate predictions.
DL classification of the images captured using the
Aperio AT2 microscope with Slideflow was carried out
with an NVIDIA Titan RTX GPU (USD$3000) that is
representative of the high-cost computational resources
currently used for automated analysis of WSIs. To
demonstrate the feasibility of using low-cost computa-
tional hardware to generate DL predictions, the images
captured using the low-cost microscope were classified
using Slideflow hosted on a USD$55 Raspberry Pi 4B
computer with a Broadcom BCM2711, Quad core
Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz processor
and 4 GB of RAM.

User interface
Slideflow includes an open-source graphical user inter-
face (GUI) that allows for interactive visualization of
model predictions from histopathological images
(Fig. 1c, Supplementary Video S1). Slideflow Studio, the
Slideflow GUI, can flexibly accommodate a variety of
trained models for digital pathology image classification
and can generate predictions from both Raspberry Pi
camera capture, partial-slide images, and whole-slide
images. We optimized this interface for deployment
on low-memory, ARM-based edge devices including the
Raspberry Pi, and used the interface to generate pre-
dictions for all images captured on the low-cost micro-
scope. The user interface utilizes a Python wrapper of
Dear Imgui for GUI rendering, pyimgui.29,30 The inter-
face supports displaying and navigating both partial-
slide and whole-slide images (JPEG, SVS, NDPI,
MRXS, TIFF) with panning and zooming. Slide images
are read using VIPS and rendered using OpenGL.31

Loading and navigating a WSI utilizes <2 GB of RAM
and provides a smooth experience, rendering slides at
an average of 18 frames per second while actively
panning and zooming. Models trained in both PyTorch
and Tensorflow can be loaded, allowing focal pre-
dictions of specific areas of a slide or whole-slide pre-
dictions and heatmaps of an entire image. All necessary
preprocessing, including optional stain normalization,
is encoded in model metadata and performed on-the-fly.
5
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Predictions can also be generated for WSIs, rendering a
final slide-level prediction, and displaying tile-level pre-
dictions as a heatmap. We implemented and optimized
a low-memory mode for this interface to support future
whole-slide predictions on Raspberry Pi hardware to
ensure flexibility such that new versions of the device
can capture WSIs. In low memory mode, partial-slide
and whole-slide predictions are generated using a
batch size of 4 without multiprocessing. Active CPU
cooling is recommended for systems generating WSI
predictions due to high thermal load associated with
persistent CPU utilization.

Statistical analysis
Deep learning model performance was assessed at pa-
tient- and tile-level using confusion matrices and area
under the receiver operating curve (AUROC). Chi-
squared tests were used to determine whether the
differences between low- and high-cost AUROC were
statistically significant. Additionally, for each classifica-
tion model, a correlation coefficient was calculated to
assess the degree of concordance between model
output-based numerical prediction values for images
captured with low-cost microscope versus those
captured with Aperio AT2. A strong association between
the numerical prediction values generated by the two
pipelines for each tissue sample supports the proof-of-
concept that our DL algorithms can feasibly be imple-
mented using less expensive image capture methods.
Results
Benchmarking DL predictions on the Raspberry Pi
We benchmarked DL inference speed on the low-cost
microscope using 24 model architectures, four
different tile sizes (71 × 71, 128 × 128, 256 × 256, and
299 × 299 pixels), and a variety of batch sizes
(Supplementary Table S2). Deep learning benchmarks
were performed using the Tensorflow backend of Sli-
deflow. A recognizable, Xception-based architecture
(Xception at 299 × 299 pixels) allowed predictions at 1.04
images/second. At all tile sizes, the fastest architecture
was MobileNet, allowing 4.64 img/sec at 299 × 299
pixels, 6.30 img/sec at 256 × 256 pixels, 16.72 img/sec at
128 × 128 pixels, and 28.50 img/sec at 71 × 71 pixels.

All raw images captured at 10× magnification using
the low-cost microscope exhibited some degree of blur,
color distortion, and/or spherical aberration. Using the
whole-slide user interface, focal predictions from a
model trained on 299 × 299 pixel images could be
generated at approximately 1 image per second, utilizing
2.2 GB of RAM on average. WSI predictions at 10×
magnification required an average of 15 min for a
typical slide with ∼0.8 cm2 tumor area and utilized all
4 GB of RAM. The swap file size needed to be increased
to 1 GB to generate WSI predictions. Thermal throttling
was observed during WSI predictions when using
standard passive CPU cooling, suggesting that predic-
tion speed might improve with active cooling.

Lung cancer subtype model performance with
open-source pipeline
With tumor samples from ten patients in the lung
cancer validation dataset, the patient-level and tile-level
AUROCs for the model tested on images captured
with the high-cost Aperio AT2 were 0.7 and 0.89,
respectively. The model tested on images captured by
the low-cost microscope performed with a patient-level
and tile-level AUROC of 1.0 and 0.95 (Fig. 2). A chi-
squared test showed no statistically significant differ-
ence in the proportion of correctly predicted tiles
extracted from images captured and analyzed by the
low-versus high-cost workstations (X2 (1, Nlow-cost = 595,
Nhigh-cost = 29,532) = 0.363, p = 0.5468). Confusion
matrices of model predictions on images captured with
Aperio AT2 and the low-cost microscope are shown in
Fig. 3a. Predictions made on images from the UCMC
external validation cohort captured by the Aperio AT2
and the low-cost microscopes had a correlation coeffi-
cient of 0.85 (Fig. 3b).

Breast cancer subtype model performance with
open-source pipeline
With the ten patients’ slides in the breast cancer valida-
tion dataset, the patient-level and tile-level AUROCs for the
classification model tested on images captured with Aperio
AT2 were 0.84 and 0.84 respectively, and the model tested
on images captured by low-cost microscope performed
with a patient-level and tile-level AUROC of 0.80 and 0.74
(Fig. 2). A chi-squared test showed no statistically signifi-
cant difference in the proportion of correctly predicted tiles
extracted from images captured and analyzed by the low-
versus high-cost workstations ((X2 (1, Nlow-cost = 360,
Nhigh-cost = 1947) = 0.286, p = 0.5929)). Confusion matrices
of DL model predictions on images captured with Aperio
AT2 and low-cost microscope are shown in Fig. 3a. For the
breast cancer dataset, predictions made on images from
the UCMC external validation cohort captured by the
Aperio AT2 and the low-cost microscopes had a correlation
coefficient of 0.85 (Fig. 3b).

HNSCC HPV status model performance with open-
source pipeline
With one slide from each of the ten patients in our
HNSCC validation dataset, the AUROC for the model
tested with images captured by Aperio AT2 and low-cost
microscopes were 0.84 and 0.88 at the patient-level and
0.63 and 0.75 at the tile-level, respectively (Fig. 2). A chi-
squared test showed no statistically significant differ-
ence in the proportion of correctly predicted tiles
extracted from images captured and analyzed by the
low-versus high-cost workstations (X2 (1, Nlow-cost = 587,
Nhigh-cost = 5932) = 0.629, p = 0.4276). Fig. 3A shows
confusion matrices of predictions made when images
www.thelancet.com Vol 107 September, 2024
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Fig. 2: AUROC of model performance for images captured on high- versus low-cost image acquisition and computational hardware.
AUROC compares tile-level accuracy between high-cost Aperio AT2 and low-cost OpenFlexure image acquisition hardware. Model accuracy in
terms of AUROC was maintained when the low-cost OpenFlexure device was used for image capture instead of the gold standard Aperio AT2
slide scanner, with chi-squared tests showing no statistically significant differences in model performance between low- and high-cost methods
for any of the cancer subtypes (Lung cancer: X2 (1, Nlow-cost = 595, Nhigh-cost = 29532) = 0.363, p = 0.5468; Breast cancer: X

2 (1, Nlow-cost = 360,
Nhigh-cost = 1947) = 0.286, p = 0.5929; HNSCC: X2 (1, Nlow-cost = 587, Nhigh-cost = 5932) = 0.629, p = 0.4276).

Articles
were captured using the Aperio AT2 or the low-cost
microscope. When comparing predictions made on
images from the UCMC external validation cohort
captured by the Aperio AT2 versus low-cost micro-
scopes, the HNSCC HPV status model predictions had a
correlation coefficient of 0.95 (Fig. 3b). For the HNSCC
dataset, we analyzed an alternative method for image
capture with the low-cost device, in which model pre-
dictions were made from unguided, randomly chosen
tissue regions. These results how high-concordance
between model predictions for the images captured on
the low-and high-cost devices and are reported in
Supplementary Fig. S3.
Discussion
Open-source technology ensures access to artificial
intelligence-based diagnostic tools among a wider range
of providers and communities. It also allows users
globally to contribute to the development of clinical tools
that serve the needs of their patient populations. Our
results serve as proof-of-concept that it is possible to
preserve model accuracy while dramatically reducing
the cost of image acquisition and computational
hardware. We show the feasibility of using low-cost,
open-source hardware for the image acquisition and
www.thelancet.com Vol 107 September, 2024
computational steps required to apply machine learning
methods to digital pathology and cancer diagnostics.

The DL models used to classify lung cancer, breast
cancer, and HNSCC images in this study were trained
with similar methods used in previously published an-
alyses.32,33 Model performance was maintained with an
open-source, 3D-printed microscope for image acquisi-
tion despite it costing orders of magnitude less than the
clinical-grade microscopes currently used. Despite the
presence of color distortion and blur prior to image
normalization and lower resolution, images captured
using the low-cost microscope and the Raspberry Pi
camera were classified by our DL model as accurately as
images captured on a clinical-grade microscope. Model
accuracy was maintained whether the task involved
predicting breast cancer subtype, lung cancer subtype,
or HNSCC HPV status, supporting the idea that sig-
nificant reduction in resolution associated with reduced
hardware costs does not hinder model performance and
can be applied to histopathologic cancer diagnostics
more broadly.

Model accuracy can be optimized by exploring stra-
tegies to computationally augment lower-quality images
or modify the training dataset such that the model can
be trained on images whose quality reflects those
captured by low-cost devices. We used established
7

http://www.thelancet.com


Fig. 3: Comparing model accuracy for high- versus low-cost image acquisition and computational hardware. (a) Confusion matrices
showing patient-level accuracy when predictions were made using images captured with the Aperio AT2 or OpenFlexure device. Model accuracy
at the patient level with the low-cost image capture and analysis pipeline was equal to or greater than accuracy with the high-cost hardware for
image capture and analysis. (b) Correlation between DL numerical predictions made on images captured by Aperio AT2 versus OpenFlexure
device. Strong and very strong correlation coefficients (Lung cancer R = 0.85; Breast cancer R = 0.85; HNSCC R = 0.95) imply that the underlying
analyses involved in model prediction are similar whether the images are captured by the Aperio AT2 slide scanner or by the OpenFlexure device.
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algorithms and training paradigms, but significant gains
in accuracy and computational efficiency may be possible
through further model development. Emerging methods
for computational image normalization, including
CycleGAN and other generative algorithms, could be
useful in this context. In addition, Slideflow not only
applies stain normalization to images prior to analysis,
but also computationally alters the training dataset by
introducing random blur and JPEG compression
augmentation. It will be important to determine the
influence of these techniques on model performance.

There are several limitations to this study, including
the small quantity of validation data, the limited number
of models tested, and the intentional selection of highly
informative regions of tissue for image capture to test
the low-cost device. We have not accounted for site or
batch effects, out of distribution data, or domain shift.
We chose a limited number of outcomes to evaluate in
this analysis, and subsequent studies are planned to
explore whether other common clinical biomarkers,
such as breast cancer receptor status and microsatellite
instability, can be identified and used to make accurate
predictions with lower-resolution images such as those
captured by the low-cost device.8 Further testing should
be performed to validate this process for multiclass
models, which are highly relevant for many digital pa-
thology applications. Additionally, it is crucial that DL
models are trained on datasets that are representative of
the intended patient populations.9 Since the TCGA data
used for model training came primarily from patients in
the United States and Europe, exploring how dataset
demographics affect model performance prior to the
www.thelancet.com Vol 107 September, 2024

http://www.thelancet.com


Articles
deployment of these technologies in clinical settings is
essential. Further open-source software and support for
biorepositories in low- and middle-income countries is
essential to building more robust, diverse, and globally
representative datasets.34,35

Design improvements in the low-cost microscope to
improve image quality, reduce costs, and ease con-
struction and transport are ongoing. Parts of the device
are currently 3D printed, which might limit accessibility
and ease of assembly. In resource-constrained areas,
designs that adapt existing equipment to accommodate
digital pathology and DL technologies may be preferable
to an additional piece of distinct equipment that would
need to be purchased. In general, the development of
low-cost equipment for image capture in low-resource
clinical settings expands the collaborative potential
associated with telepathology such that providers in low-
and high-resource settings can consult with each other
when there is diagnostic uncertainty.

The success of this open-source workstation dem-
onstrates that there are opportunities to reduce hard-
ware costs while maintaining predictive accuracy.
Although this analysis is limited in scope, the results are
promising. Successful implementation of low-cost
digital pathology and DL pipelines will increase access
to precision cancer care in lower-resource clinical
settings.
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