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a b s t r a c t 

Detecting and screening clouds is the first step in most op- 

tical remote sensing analyses. Cloud formation is diverse, 

presenting many shapes, thicknesses, and altitudes. This va- 

riety poses a significant challenge to the development of 
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effective cloud detection algorithms, as most datasets lack 

an unbiased representation. To address this issue, we have 

built CloudSEN12 + , a significant expansion of the Cloud- 

SEN12 dataset. This new dataset doubles the expert-labeled 

annotations, making it the largest cloud and cloud shadow 

detection dataset for Sentinel-2 imagery up to date. We have 

carefully reviewed and refined our previous annotations to 

ensure maximum trustworthiness. We expect CloudSEN12 + 

will be a valuable resource for the cloud detection research 

community. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Computers in Earth Sciences. 

Specific subject area Cloud detection in optical remote sensing data. 

Type of data GeoTIFF imagery 

CSV Table 

Data collection The dataset comprises Sentinel-2 Level 1C (S2) imagery associated with 

hand-crafted labels. The S2 images are retrieved from Google Earth Engine [ 9 ] 

using the R client interface [ 3 ]. Sixteen experts generated the labels following 

a strict cloud detection protocol. Additionally, we have incorporated cloud 

detection predictions generated by the CloudSEN12 UnetMobV2 model [ 1 ] into 

each image. 

Data source location 50,249 Sentinel-2 L1C image patches distributed around all the continents 

except Antarctica. This represents a total extent of 1,283,256 km ². Primary 

data: https://developers.google.com/earth-engine/datasets/catalog/ 

COPERNICUS_S2_HARMONIZED 

Data accessibility Repository name: Science Data Bank 

Data identification number: 10.57760/sciencedb.17702 

Direct URL to data: https: 

//www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08 

Related research article Aybar, C., Ysuhuaylas, L., Loja, J. et al. CloudSEN12, a global dataset for semantic 

understanding of cloud and cloud shadow in Sentinel-2. Sci Data 9, 782 (2022). 

https://doi.org/10.1038/s41597- 022- 01878- 2 

. Value of the Data 

• The collection consists of more than 50,0 0 0 S2 image patches ( Fig. 1 ). It covers diverse

cloud scenes with varying shapes, thicknesses, sizes, and altitudes, providing a comprehen-

sive dataset for training and testing cloud detection algorithms. 

• It includes images from various regions worldwide, providing a geographically diverse dataset

that can help improving the generalization of trained cloud detection algorithms. 

• It provides high-quality expert-labeled annotations using a consistent and well-defined label-

ing protocol in two patch sizes: 509 ×509 and 20 0 0 ×20 0 0 10 m pixels. As part of the legacy

of version 1 (CloudSEN12 dataset), it also provides scribble expert-labeled annotations and

no-label patches. 

• It can serve as a foundation for other remote sensing (RS) sensors, enabling researchers to

transfer the knowledge gained from S2 to similar sensors, such as Landsat or multiple of

small-size RGBNIR optical satellites. 

• This dataset is licensed under CC0, which puts it in the public domain and allows anyone to

use, modify, and distribute it without permission or attribution. 

https://www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08
http://creativecommons.org/licenses/by/4.0/
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED
https://doi.org/10.57760/sciencedb.17702
https://www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08
https://doi.org/10.1038/s41597-022-01878-2
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Fig. 1. CloudSEN12 + spatial coverage. The terms p509 and p20 0 0 denote the patch size 509 × 509 and 20 0 0 × 20 0 0, 

respectively. ‘high’, ‘scribble’, and ‘nolabel’ refer to the types of expert-labeled annotations. 

 

 

 

 

 

 

2. Background 

Accurately detecting clouds in optical RS imagery is critical for various environmental and

Earth observation studies [ 5 , 10 , 13 ]. Clouds obstruct and contaminate surface reflectance signal,

causing inaccuracies when retrieving land and ocean parameters [ 15 ]. To tackle this challenge,

there has been a growing interest in creating robust algorithms for cloud screening from RS im-

agery. From a data-driven perspective, the first step in developing cloud detection algorithms is

to create a training dataset. Several datasets ( Fig. 2 ) have been created for this purpose [ 4 , 8 , 6 , 11 ].
Fig. 2. Comparison of CloudSEN12 + with other Landsat and S2 cloud detection datasets. 
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Table 1 

Summary of image patch distribution across CloudSEN12 + subfolders. 

patch size label type train val test 

p509 High 8490 535 975 

Scribble 8785 560 655 

Nolabel 29400 0 0 

p20 0 0 High 687 77 85 
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owever, they have limitations and particularly they lack diversity across cloud types and ge-

graphies [ 14 ]. The CloudSEN12 dataset [ 1 ] was designed to address these issues, nevertheless

odels trained in CloudSEN12 are still not exempt of errors [ 2 ]. The novel CloudSEN12 + tackles

hese errors by extending CloudSEN12 with more labels in challenging areas, increasing the size

f the patches to improve shadow detection, and curating several of the original labels follow-

ng extra quality control procedures. With these improvements, we expect to push forward the

ccuracy of cloud detection models. 

. Data Description 

Table 1 presents the number of image patches in each subfolder. The dataset is divided into

wo main collections, p509 and p20 0 0, as shown in Fig. 3 A. These numbers correspond to the

mage patch sizes of 509 ×509 and 20 0 0 ×20 0 0 pixels, respectively. 
ig. 3. The CloudSEN12 + dataset is structured hierarchically, with the top level (A) dividing the dataset into two main 

ategories: p509 and p20 0 0 image patches, represented by gray folders. Moving to the next level (B), the images are 

urther organized based on the label type, with each label type having a different folder. Within each label type, an 

dditional level (C) groups the images based on a block of random data splitting, represented by blue folders. Moreover, 

ithin the p509 category, there is an additional division based on geographic location, highlighted by yellow folders (D). 

ach yellow folder contains a set of five distinct images with cloud cover ranging from 0 % (cloud-free) to near 100% 

cloudy). 
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Table 2 

Cloud semantic categories considered in CloudSEN12 + . Lower priority levels indicate greater relevance. Some classes 

have a greater impact on the overall quality of the image. To measure this impact fairly, we have introduced a ’Pri- 

ority’ column to indicate the classes that require greater attention from labelers. Lower priority levels indicate higher 

relevance. 

Code Class Description Priority 

0 Clear Pixels without cloud and cloud shadow contamination. They are primarily 

identified using bands B4- B3-B2, B1-B12-B13, and the cirrus band. 

4 

1 Thick 

Cloud 

Opaque clouds that block all the reflected light from the Earth’s surface. We 

identify them by assuming clouds exhibit distinctive shapes and maintain 

higher reflectance values in bands B4-B3-B2, B1-B12-B13, and the cirrus band. 

1 

2 Thin 

Cloud 

Semitransparent clouds that alter the surface spectral signal but still allow to 

recognize the background. This is the hardest class to identify. We utilize 

CloudApp [ 1 ] to better understand the background, both with and without 

cloud cover. 

3 

3 Cloud 

Shadow 

Dark pixels where light is occluded by thick or thin clouds. Cloud shadows 

depend on clouds presence and, by considering the solar position, we can 

identify and map these shadows through a reasoned projection of the cloud 

shape. 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial p509 folder is further divided into three groups depending on the manual la-

bel type: ‘high’, ‘scribble’, and ‘nolabel’ ( Fig. 3 B). S2 images labeled as ‘high’ indicate that each

pixel within the image (i.e., 509 ×509) is associated with a cloud semantic category described in

Table 2 . This subset is ideal for training machine learning models since they require pixel-level

accuracy to learn complex patterns and distinctions in cloud formations. Using the Intelligently

Reinforced Image Segmentation (IRIS) [ 12 ] brush tool, S2 images within the ‘scribble’ subset

cover only a small percentage of pixels with annotations (less than 5%). These labels are par-

ticularly useful for validation, offering a balanced representation of pixels far and near to edges

—areas where cloud detection algorithms commonly fail [ 1 ]. Finally, S2 images in the ‘nolabel’

subset do not have human annotations. However, we include in all patches the accurate cloud

masks generated by the CloudSEN12 UnetMobV2 model, which can serve as a basis for training

a cloud detection model before performing a fine-tuning with the ‘high’ quality human labels.

Both the ‘high’ and ‘scribble’ categories are segmented into three subfolders (train, val, and test),

while ‘nolabel’ only contains the train subfolder ( Fig. 3 C). 

The final level ( Fig. 3 D) represents the geographic diversity, with each ROI illustrating a dis-

tinct area. Within each ROI, there are five images categorized by different levels (%) of cloud

coverage: cloud-free (0%), almost-clear (0–25%), low-cloudy (25–65%), mid-cloudy (45–65%), and

cloudy ( > 65%). 

The p20 0 0 collection exclusively contains ‘high’ quality human annotations and is system-

atically organized into the train, val, and test subfolders. In both cases, p509 and p20 0 0, the

human annotators had the option to generate the labels with the initial support of a machine

learning model assistant (see section Cloud detection protocol). In contrast to p509, the p20 0 0

subset includes only one image per location. The p20 0 0 collection is designed to enhance the

performance of models initially trained on the p509 dataset by leveraging larger image patches.

The models trained in p20 0 0 patches should better capture the spatial autocorrelation between

cloud and cloud shadow classes thanks to the wider receptive field. 

Each image patch in p509 and p20 0 0 comprises fifteen bands: thirteen corresponding to S2,

one for the manual label (filled with NA for no label subset), and one for the automatic labels

generated by CloudSEN12 UnetMobV2. 

4. Experimental Design, Materials and Methods 

CloudSEN12 + is an extension of the CloudSEN12 dataset which adds a set of new manually

labeled images with a larger patch size (see subsection Large patch size collection) and improves
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he labels of 452 images identified by a label quality protocol (see subsection Semi-automatic

abel quality). 

.1. Sentinel-2 data 

The S2 mission currently comprises two nearly identical satellites, Sentinel-2A and Sentinel-

B, launched in June 2015 and March 2017, respectively. These satellite products offer estimates

f reflectance values across 13 spectral channels, covering the entire globe every five days [ 7 ].

he S2 imagery is freely distributed under an open data policy. In the CloudSEN12 + dataset,

e use the L1C products that provide Top-of-Atmosphere surface reflectance. All image bands

t 20m and 60m are unsampled to 10-meter resolution using nearest neighbor interpolation to

ave a uniform resolution across bands. 

.2. Large patch size collection 

One of the most significant challenges in cloud semantic segmentation is accurately identi-

ying cloud shadows [ 16 ]. Neural network models often struggle to differentiate between cloud

hadows and other types of shadows, such as those originating from terrain or other objects. To

ddress this problem, larger patches were added to make it easier for the networks to learn the

patial relationship between clouds and their shadows. Our selection process involved manually

hoosing images with high potential error for cloud shadows (see section Semi-automatic label

uality). Furthermore, more bright regions like deserts and snow were included. Ultimately, 849

mages were labeled. The final spatial distribution of the dataset can be seen in Fig. 1 . 

.3. Cloud detection protocol 

Creating human-generated labels for cloud detection can be a complex task, and several

actors can contribute to potential inaccuracies. Firstly, defining borders between clear and

loud-contaminated areas is challenging, as individual priors and biases influence the thresholds

nd decisions used to differentiate them. Secondly, cloud detection is an imbalanced problem.

paque and oval-shaped clouds are more commonly observed and labeled, which can result in

he under-representation of less frequent cloud types, such as semi-transparent and elongated

louds. Third, semantic classes are not always mutually exclusive. Pixels within an image can si-

ultaneously belong to multiple classes. For instance, a semi-transparent cirrus cloud may over-

ap an opaque cumulus cloud or a cloud shadow, creating mixed pixels. Finally, some classes

ave interdependence, as cloud shadows are inherently dependent on the existence of clouds. 

Recognizing and accurately labeling the complex cloud patterns requires specialized knowl-

dge. To achieve the highest label accuracy for CloudSEN12 + , we have meticulously designed

 comprehensive five-step protocol that effectively addresses the unique challenges that cloud

abeling poses ( Fig. 4 ). This protocol is not only applicable to CloudSEN12 + but can also be

dapted to enhance labeling accuracy in various remote sensing tasks. Our protocol is built

round IRIS, a semi-automatic tool designed for manual segmentation of multi-spectral and

eospatial imagery ( Fig. 5 ). This tool aids in achieving precise and consistent labeling by lever-

ging machine learning assistance while allowing for human oversight and adjustment. 

1. Sampling : Manual sampling remains the most effective approach, despite being time-

consuming. The vast array of cloud types and their unique characteristics demand careful

consideration. To address this, labelers prioritize atypical clouds, such as contrails, ice clouds,

and haze/fog, over more common varieties like cumulus and stratus. Furthermore, using a

reference model to determine which data points should be included in a dataset is helpful.



C. Aybar, L. Bautista and D. Montero et al. / Data in Brief 56 (2024) 110852 7 

Fig. 4. The image illustrates our cloud detection protocol, structured into five stages: Sampling, Agreement, Training, 

Production, and Quality Control. The IRIS graphical user interface is integral to each of these stages. The Quality Control 

section is detailed in Fig. 6 . 

Fig. 5. The IRIS (Intelligently Reinforced Image Segmentation) graphical user interface includes seven toolbars: A) Edit 

and navigation bar; B) Selection tool for drawing semantic classes; C) Drawing toolbar, with a final button to execute the 

GBDT algorithm that completes the mask using previous manual annotations; D) Testing toolbar, allowing comparison 

between human and AI annotations; E) Image contrast toolbar, which adjusts brightness and saturation; F) Image meta- 

data section, displaying a thumbnail and IP location via Google Maps; G) Machine learning summary support, showing 

GBDT performance metrics. The IRIS interface includes views of the Cirrus band, Red-Green-Blue, and Blue-SWIR1-SWIR2 

bands by default. This image corresponds to the one found in the supplementary information of [ 1 ]. 

 

 

 

 

 

 

 

 

 

Labelers make informed decisions about which samples to prioritize by comparing human

interpretation with the reference model. 

2. Agreement : Before starting the labeling process, all labelers come to a mutual agreement

on the definitions and criteria for each semantic class, creating common guidelines (refer to

Table 2 ). When ambiguity arises, and a pixel could belong to multiple classes, the priority

attribute is established to determine the final allocation based on the higher priority class.

This prioritization strategy ensures consistent labeling decisions, particularly in borderline

cases. Additionally, all labelers agree on a specific metric to optimize. For CloudSEN12 + , the

chosen metric is the F2-score, which places more emphasis on recall in the evaluation. This

prioritization highlights errors in thick clouds and cloud shadows over those in thin clouds
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and clear classes. Lastly, specific band combinations are established to aid cloud detection

(refer to Table 2 ). 

3. Training : Labelers follow a comprehensive training program designed to teach them to agree

with the labeling software and enhance their skills in ambiguous scenarios. The training be-

gins with an in- depth review of accurately labeled image examples, enabling participants to

align with the established standards and expectations for labeling. Furthermore, the training

encompasses hands-on practical sessions, during which labelers put their learning in real-

time scenarios and receive constructive feed- back to sharpen their labeling skills. The train-

ing stage is pivotal in ensuring that all contributors are thoroughly prepared and maintain

consistency in their labeling effort s. 

4. Production : The labeling process is conducted in this stage. Labelers can start labeling from

a blank canvas or fine-tune the preliminary cloud mask predictions provided by the Cloud-

SEN12 UnetMobV2 model. Each labeler undertakes the task independently. 

5. Quality Control : The labels go through a double-blind quality control process that involves

all the labelers to ensure their integrity and accuracy. If more than two independent review-

ers report a label, it is sent back to the production stage. Additionally, all human-generated

labels exhibiting a Perror equal to 1 (see Semi-automatic label quality section) are subject to a

meticulous re-examination. 

.4. Semi-automatic label quality 

CloudSEN12 + employs a dual-scoring approach to detect potential human errors in semantic

egmentation [ 2 ]. The methodology is illustrated in Fig. 6 . Initially, we calculate the trustwor-

hiness index (TI), which compares the cloud mask prediction from a reference model with the

orresponding human annotations used as ground truth. We have selected the CloudSEN12 Un-

tMobV2 as the best available reference model. The TI is computed using the F2 multi-class

core, adopting a one-vs-all macro strategy: 

TI = 1 

C 

C ∑ 

c=1 

T Pc 

T Pc + 0 . 2 F Pc + 0 . 8 F Nc 

Where, FN represents false negatives, FP false positives and TP true positives; c identifies each

lass (clear, thin cloud, thick cloud and cloud shadow), and C the number of classes (C = 4). 

Annotation errors are more susceptible in challenging scenarios, such as class boundaries,

ntricate cloud shapes, or insufficient contextual information. To address this, we incorporate a

ardness Index ( HI) that considers the perceived difficulty of the labelers during the annotation
ig. 6. A high-level summary of our workflow to detect human errors. Prediction accuracy (TI) and sample difficulty 

HI) are used to identify errors in high-quality and scribble subsets. 



C. Aybar, L. Bautista and D. Montero et al. / Data in Brief 56 (2024) 110852 9 

Fig. 7. Label correction in the ‘high’ quality subset. The images come from the ROIs: 10133, 720, and 1953. 

 

 

 

 

 

 

 

process. In order to build this index, a ResNet-10 model is trained with the S2 images as input

and the labelers’ perceived difficulty as the target, which is included in the metadata of the

CloudSEN12 dataset [ 1 ]. This model effectively accounts for the complexity of the annotation

task and helps identify areas where errors are more likely to occur. 

The TI and HI indices are estimated for all the image patches in CloudSEN12 + . The potential

errors Perror are detected by considering a simple combination of these indices: 

Perror =
{

1 if TI < 0 . 3 and HI > 0 . 5 

0 Otherwise 

All the image patches flagged by Perror undergo an extra visual inspection (see Fig. 6 ). This

method flagged 17.12% of CloudSEN12 + annotations as potential errors (3,570 images). Upon vi-

sual inspection by the labeling team, 342 and 110 image patches from the high and scribble
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Fig. 8. Correcting labels in the ‘scribble’ subset. These images originate from ROIs 1909, 3472, and 3474. The varying 

shades of yellow, green, and red represent the edges (darker) and center (lighter) of the annotations. 
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ubsets were confirmed as real human errors. In Figs. 7 and 8 , we present examples of human

abeling before and after the review process. 

imitations 

As mentioned in the semi-automatic label quality section, the ground truth data relies on hu-

an interpretation, which is not infallible. While two rounds of validation have been performed

n this dataset, some errors may remain, especially in complex areas with snow, faint cloud

hadows, or thin clouds, where consensus was difficult to achieve. Nonetheless, these errors are

xpected to be minimal. After the second review, out of the 3,570 images examined (17.12 %),

nly 452 (12.6%) were found to have actual errors, with less than 1% being significant errors. 
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