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This report presents challenging psychopharmacotherapy 
management of a psychotic disorder in a patient with a 
delicate pharmacogenetic profile and drug-drug interac-
tions. A 31-year old woman diagnosed with schizophrenia 
in 2017 was referred by her psychiatrist to a clinical phar-
macologist for interpretation of a pharmacogenetic test 
and advice regarding optimal psychopharmacotherapy. In 
spite of adherence to aripiprazole, olanzapine, risperidone, 
and levomepromazine, and rational anxiolytic therapy, 
she still experienced anxiety, anhedonia, loss of appetite, 
sleeping problems, and auditory hallucinations with com-
mands to harm herself. Due to a lack of alternative thera-
peutic steps, low aripiprazole serum concentrations, and 
a lack of explanation for pharmacotherapy unresponsive-
ness, pharmacogenetic testing was performed. The pa-
tient was defined as CYP2D6 *1/*1, CYP1A2 *1F/*1F, CYP3A4 
*1/*1B, CYP3A5 *1/*3, and having increased activity of the 
enzymes UGT1A4 and UGT2B7, intermediate activity of AB-
CB1 transporter, and low activity of COMT. Carbamazepine 
was discontinued, aripiprazole was increased to a maxi-
mum of 30 mg/day orally with long-acting injection (400 
mg monthly), and olanzapine was increased to a daily dose 
of 35 mg orally. These changes led to an optimal therapeu-
tic drug concentration and improved clinical status. At the 
last follow-up, the patient was without severe auditory hal-
lucinations, became more engaged in daily life, had more 
interaction with others, had found a job, and even had 
started an emotional relationship. In psychiatry, pharmaco-
genetic testing is an important tool for guiding pharmaco-
logical therapy, particularly in patients with an unsatisfac-
tory clinical response and a lack of alternative therapeutic 
steps for pharmacotherapy unresponsiveness.
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Personalized medicine is a steadily growing field whose 
value lies in the prediction of individual responses to drugs 
regarding effectiveness, safety profile, and pharmacoki-
netics. Yet, there are still disagreements on its therapeutic 
applicability. As 25%-50% of people do not respond nor-
mally to drug treatment and standard dosage, personal-
ized medicine calls for the development of resources for 
clinicians and pharmacogenetic (PGx) dosing guidelines 
for medicines. This is especially important since about 90% 
of patients undergoing PGx testing are likely to achieve a 
clinically actionable result (1).

PGx may be particularly important in mental health. The 
Food and Drug Administration (FDA) identified approxi-
mately 20% of the 121 pharmacogenetics markers as use-
ful for clinical practice concerning psychiatric medicines 
(2). Implementation of PGx helps the selected patients and 
their referring clinicians to attain therapeutic drug con-
centrations more quickly, which ensures a safe, efficacious, 
proactive, and cost-effective approach (3,4). In psychiatry, 
a prompt clinical response is highly preferred since those 
patients in acute states are mostly uncooperative and in-
capable of everyday functioning on their own. Most an-
tipsychotics/antidepressants are metabolized by CYP3A4, 
CYP2D6, and CYP2C19 enzymes in the liver (5). Genetic 
variants that affect the functioning of these enzymes are 
widespread (62% of people across the globe), and are 
strongly interconnected with enzymatic activity. Therefore, 
CYP2D6 and CYP2C19 have been the focus of Clinical Phar-
macogenetics Implementation Consortium (CPIC) guide-
lines on the clinical use of PGx in psychiatry (6-8).

Antipsychotic medications per se do not cure schizophre-
nia, but they can alleviate its symptoms and improve the 
patient’s quality of life. Before optimal antipsychotic medi-
cines and doses are found, many patients frequently expe-
rience a trial-and-error phase marked by poorly managed 
symptoms and/or severe drug reactions (9,10). Antipsy-
chotic medication response varies substantially between 
patients; hence, multiple trials are often required to identify 
the medication that is most effective and tolerable for each 
individual. Thus, PGx may serve as a valuable tool, espe-
cially in treatment-resistant schizophrenia (present in up to 
30% of people with schizophrenia) or in cases complicated 
by unexplained adverse drug reactions (ADRs) (10-12).

As various prescribed or over-the-counter medicines, or 
dietary sources, and their interactions may act as inhibi-

tors or inducers of cytochrome P450 gene, in psycho-
tropic medication management a thorough medical 

history-taking is necessary. In the upcoming years, patients’ 
pharmacogenetics data are going to become more widely 
integrated into clinical practice and electronic health. Also, 
psychiatric-pharmacogeneticist-clinical pharmacologist 
multidisciplinarity is going to become even more essential 
(1), particularly in psychiatry, where patients are frequently 
managed by numerous medicines.

Here, we report on a challenging psychopharmacothera-
py management of a psychotic disorder in a patient who, 
in spite of adherence to high doses of four concomitant 
antipsychotics, at first did not achieve clinical response (in 
terms of auditory hallucinations control) due to pharmaco-
genetic predisposition and class-D drug-drug interactions. 
This article highlights the importance of pharmacogenet-
ics and multidisciplinarity in psychiatry.

Case description

A 31-year old female patient, diagnosed with schizophrenia 
in 2017, was referred by her psychiatrist to a clinical phar-
macologist for interpretation of a pharmacogenetic test 
and advice regarding optimal psychopharmacotherapy. At 
the outpatient visit (November 2021), her chronic pharma-
cotherapy consisted of a long-acting injection of aripipra-
zole (400 mg i.m. monthly), aripiprazole (10 mg/day orally), 
olanzapine (10 + 0 + 15 mg/day orally), risperidone (2 + 0 + 2 
mg/day orally), levomepromazine (25 mg/day per need 
orally), carbamazepine (400 mg in the morning orally), ox-
azepam (15-15-30 mg/day orally), alprazolam (0.5 mg in the 
morning orally), biperiden (per need orally), bisoprolol (5 
mg in the morning orally), and metoclopramide (10 mg in 
the morning orally). Before this antipsychotic regimen (af-
ter non-response to two antipsychotics), an attempt with 
clozapine was also made; however, it had to be terminated 
due to side effects (predominantly tachycardia).

In spite of adherence to four antipsychotics and anxiolyt-
ic medications, she still experienced anxiety, anhedonia, 
loss of appetite, sleep problems, and auditory hallucina-
tions with imperative commands to harm herself. Due to 
a lack of alternative therapeutic steps, low aripiprazole 
serum concentrations (190 nmol/L; reference range: 334-
1115 nmol/L), and a lack of explanations for pharmaco-
therapy unresponsiveness, pharmacogenetic testing 
was performed. We tested polymorphisms in the genes 
of metabolic enzymes and drug transporters involved 
in the metabolism of drugs listed in the patient’s phar-
macotherapy. They were primarily selected according to 
pharmacogenetic guidelines. Also, they were selected 
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based on the literature data for variants that may have 
functionally significant effects on enzyme or transporter 
function, or had been investigated for association with 
interindividual variability in drug response, drug pharma-
cokinetics, or adverse drug reactions. Pharmacogenet-
ic polymorphisms ABCB1 c.3435C>T (rs1045642), ABCG2 
c.421C>A (rs2231142), COMT c.472G>A (rs4680), CYP1A2*1F 
(rs762551), CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910), 
CYP2C19*2 (rs4244285), CYP2C19*17 (rs12248560), 
CYP2D6*3 (rs35742686), CYP2D6*4 (rs3892097), 
CYP2D6*6 (rs5030655), CYP2D6*9 (rs5030656), CYP2D6*10 
(rs1065852), CYP2D6 *41 (rs28371725), CYP3A4*1B 
(rs2740574), CYP3A4*22 (rs35599367), CYP3A5*3 
(rs776746), UGT1A4*2 (rs6755571), and UGT2B7 c.-161C>T 
(rs7668258) were genotyped with TaqMan SNP Genotyp-
ing Assays (Applied Biosystems, Foster City, CA, USA) on 

a 7500 Real-Time PCR System (Applied Biosystems), ac-
cording to the manufacturer’s instructions. UGT1A4*3 
(rs2011425) was genotyped with Custom TaqMan SNP 
Genotyping Assay (Applied Biosystems), as previously 
published (13). CYP2D6*5 gene deletion and CYP2D6 du-
plications were genotyped by long-range polymerase 
chain reaction (14), and confirmed with TaqMan CNV as-
says for exon 9 (Hs00010001_cn), intron 2 (Hs04083572_
cn), and intron 6 (Hs04502391_cn) (Applied Biosystems), 
on a 7500 Real-Time PCR System (Applied Biosystems), 
according to the manufacturer’s instructions.

Therapeutic drug monitoring (TDM) analysis of aripip-
razole, carbamazepine, olanzapine, and risperidone was 
performed by high-performance liquid chromatography 
(Shimadzu Corporation, Kyoto, Japan). Genotyping and 

Table 1. Pharmacogenetic analysis report and pharmacotherapy

Gene - allele Genotype Phenotype Substrate Inducer Inhibitor

Enzymes
COMT c.472G>A A/A poor enzyme activity
CYP1A2 *1F *1F/*1F increased inducibility, 

which can result in 
ultrarapid metabolism in 
the presence of inducer

carbamazepine
metoclopramide 
olanzapine

carbamazepine

CYP2C9 *2, *3 *1/*1 normal metabolizer alprazolam carbamazepine
CYP2C19 *2, *17 *1/*1 normal metabolizer carbamazepine
CYP2D6 xN, *3, *4, *5, 
*6, *9, *10, *41

*1/*1 normal metabolizer aripiprazole
fluphenazine
levomepromazine
metoclopramide
olanzapine
risperidone

fluphenazine 
metoclopramide 
levomepromazine

CYP3A4 *1B, *22 *1/*1B normal metabolizer alprazolam
aripiprazole
bisoprolol
carbamazepine
metoclopramide
olanzapine
risperidone

carbamazepine

CYP3A5 *3 *1/*3 CYP3A5 expressor
(intermediate metabolizer)

alprazolam
aripiprazole
carbamazepine
olanzapine
risperidone

carbamazepine

UGT1A4 *2, *3 *3/*3 high enzyme activity olanzapine carbamazepine
UGT2B7 c.-161C>T T/T substrate specific enzyme 

activity
carbamazepine carbamazepine

Transporters
ABCB1 c.3435C>T C/T intermediate function bisoprolol

metoclopramide
olanzapine
risperidone

carbamazepine aripiprazole
bisoprolol

ABCG2 c.421C>A C/C normal function risperidone aripiprazole
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TDM methods were implemented and validated for rou-
tine testing in an accredited laboratory at the University 
Hospital Centre Zagreb. Genotyping results and their cor-
responding phenotypes are shown in Table 1.

The patient was defined as normal CYP2C19 (CYP2C19 
*1/*1), CYP2D6 (CYP2D6 *1/*1), and CYP3A4 (CYP3A4 
*1/*1B) metabolizer; CYP3A5 (CYP3A5 *1/*3) exspressor; 
and ultrarapid CYP1A2 (CYP1A2 *1F/*1F) metabolizer. She 
had also high activity of the enzyme UGT1A4 (UGT1A4 
*3/*3) and of the UGT2B7 for some substrates (UGT1A4 c.-
161TT), intermediate activity of the ABCB1 transporter AB-
CB1 c.3435CT, and poor activity of COMT (COMT c.472AA). 
Based on these results, carbamazepine (strong CYP3A4 
inducer) and risperidone were discontinued, and aripip-
razole (substrate of CYP2D6 and CYP3A4) was increased 
to a maximum of 30 mg/day orally (with a long-acting in-
jection of aripiprazole 400 mg monthly), and olanzapine 
was increased to a daily dose of 35 mg orally (75% high-
er than the approved daily dose). This regimen finally re-
sulted in optimal therapeutic drug concentrations and an 
improved clinical status (Figure 1). At her last ambulatory 

check-up (two years after carbamazepine discontinua-
tion), the patient was without severe auditory hallucina-
tions, had become more engaged in daily life, had more 
interaction with others, had obtained a job, and even 
had started an emotional relationship. The antipsychot-
ic therapy consisted of aripiprazole long-acting injection 
(400 mg i.m. monthly), aripiprazole (30 mg/day orally), 
olanzapine (15 + 0 + 20 mg/day orally), and fluphenazine 
(7.5 + 0 + 5 mg/day orally). The most recent Positive and 
Negative Syndrome Scale score was 67, specifically com-
prising positive 17/negative 17/cognitive or general psy-
chopathology 33; while she was deemed moderately ill 
on the Clinical Global Impression scale (15).

Discussion

Here, we report on a patient with schizophrenia who did 
not adequately respond to applied pharmacotherapy and 
experienced side effects (Figure 1). In order to determine 
the influence of gene polymorphisms relevant to the me-
tabolism and transport of the applied drugs, a pharmaco-
genetic analysis was performed.

Figure 1. Therapeutic drug monitoring (TDM) and clinical responses to pharmacogenetic-guided pharmacotherapy management.
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The patient’s treatment was not effective despite the use 
of several antipsychotics. Among the possible causes are 
lower-than-expected concentrations of the administered 
drugs (primarily aripiprazole, olanzapine, and risperidone) 
due to, at least in part, pharmacogenetic predisposition 
and drug-drug-gene interactions. Pharmacogenetic analy-
sis showed that the patient had normal or increased ac-
tivity of phase-I (CYPs) and phase-II metabolic enzymes 
(UGTs), intermediate activity of the ABCB1 transporter, and 
low activity of COMT. In addition, her therapy included 
carbamazepine, a strong inducer of several enzymes and 
transporters. All of these factors contributed to treatment 
failure. The patient’s condition improved after discontinu-
ing carbamazepine, replacing risperidone, and adjusting 
the dose according to the available guidelines and rele-
vant literature.

Several points need to be discussed for a better under-
standing of this case. By translating the analyzed geno-
types into phenotypes, we tried to clarify the background 
for treatment failure. Treatment personalization for pa-
tients experiencing treatment failure or ADRs requires an 
accurate estimation of enzyme activity.

Aripiprazole

The main enzymes involved in the metabolism of aripip-
razole are CYP2D6 and CYP3A4, and their gene variants 
can modulate its pharmacokinetics and eventually dos-
ing (16,17). Aripiprazole’s main metabolite, dehydro-arip-
iprazole (D-ARI), has similar properties as the parent drug 
but, according to some authors, even more potent effects 
(18,19).

The DPWG’s guidelines listed relevant interactions of the 
CYP2D6, CYP3A4, and CYP1A2 genes and antipsychotic 
drugs (20). Medications requiring dose adjustment in pat-
ents with the CYP2D6 genotype included aripiprazole and 
risperidone, among others (brexpiprazole, haloperidol, 
pimozide, and zuclopenthixol).

The FDA and DPWG issued recommendations to reduce 
the doses of aripiprazole and risperidone in CYP2D6 poor 
metabolizers. In CYP2D6 ultrarapid metabolizers, better op-
tions are treatment with an alternative drug instead of ris-
peridone or dose titration by measuring concentrations of 
the active metabolite paliperidone (9-hydroxyrisperidone) 
(20-24). Additionally, an adjustment and re-evaluation of 
the applied dose are recommended in cases of polyther-
apy with interacting drugs (22,23,25-27). For example, in 

cases of concomitant administration of aripiprazole and 
CYP3A4 inhibitors, the dose should be a quarter of the nor-
mal dose. DPWG also pointed out that pre-emptive testing 
for CYP2D6 is not necessary for all patients, but the decision 
should be made on an individual basis.

Pharmacogenetic analysis showed that our patient was a 
CYP2D6 normal metabolizer, and this genotype did not re-
quire dose adjustment. However, a gene variant that may 
contribute to faster metabolism via CYP2D6 (rs5758550) 
was not included in our diagnostic panel (28,29). For a bet-
ter prediction of enhanced CYP2D6 enzyme activity, vari-
ants rs5758550 and *2 should be included in the test panel 
(29). Haplotype-based (rs5758550 and rs16947) prediction 
of CYP2D6 activity was more accurate than the prediction 
based on variant CYP2D6*2A alone. However, according to 
Dinh et al (28), the “enhancer” single nucleotide polymor-
phism (SNP) played a modest role in the prediction of the 
CYP2D6 phenotype. It had a more pronounced effect on 
atomoxetine than on dextromethorphan, which suggest-
ed potential substrate dependency (28). According to in 
vitro data, CYP2D6*2 alleles and the “enhancer” SNP, taken 
together, predispose for a modestly higher formation of 
metabolites (28). This observation was not confirmed in 
vivo, and no enhanced effect was observed for the combi-
nation of CYP2D6*1 and the enhancer SNP (28).

Another enzyme significant for the metabolism of aripipra-
zole is CYP3A4. CYP3A4, in addition to CYP2D6, is included 
in the dehydrogenation pathway involved in the formation 
of metabolites. The relevance of the gene variants coding 
for metabolic enzymes (CYP2D6, CYP3A4, and CYP3A5) 
and the ABCB1 drug transporter for aripiprazole pharma-
cokinetics was confirmed in healthy volunteers (30).

The human CYP3A enzyme subfamily is involved in the 
metabolism of approximately 50% of drugs used in clini-
cal practice. CYP3A4 is expressed in the liver and intestine, 
while CYP3A5 is found dominantly in extrahepatic tissues. 
Both enzymes often have the same substrates and exhibit 
significant variability in their activity. Moreover, variability 
in populations is very high (31). Their drug substrates also 
include some psychotropic drugs. Because they have simi-
lar structure, function, and substrates, the relative involve-
ment of CYP3A4 and CYP3A5 in drug biotransformation is 
hard to distinguish (32).

Since CYP3A4 is highly inducible, the relevance of genetic 
analysis is controversial. Environmental factors such as 
food, smoking, and other concurrently administered 
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drugs, such as azole compounds, antibiotics, antiepileptics, 
and cyclosporine, have a stronger role than genetic poly-
morphisms. For example, citrus fruits, especially grapefruit 
juice, significantly inhibit CYP3A4 already at the intestinal 
level, but also on the drug transporter, P-glycoprotein, all of 
which can increase the bioavailability of drug-substrates.

An active CYP3A5 enzyme is present in only 10% of white 
people. People who have at least one active CYP3A5*1 al-
lele are called expressors. Most of the population are non-
expressors due to a frequent mutation within intron 3 
(rs776746) that predisposes to a splicing defect and forma-
tion of a protein with no enzyme activity. The prevalence 
of nonexpressors differs across populations (33). Guide-
lines on dosing according to CYP3A5 have been published 
only for tacrolimus (34,35).

Data on the influence of CYP3A4 gene polymorphisms 
on the expression and function of the enzyme are in-
consistent. Some studies associate the variant CYP3A4*1B 
(–392A>G, rs2740574) in the promoter region with in-
creased CYP3A4 activity, which influences substrate drug 
metabolism. Others argue that increased CYP3A activity is 
the result of the presence of the CYP3A5*1 functional allele 
with which CYP3A4*1B is in strong linkage disequilibrium 
(LD). It is complex to distinguish which variant is more im-
portant for accelerated metabolism (36). A meta-analysis 
(37) found that kidney transplant patients with the CYP3A4 
*1/*1 genotype needed lower doses of tacrolimus than 
carriers of CYP3A4*1B. Also, tacrolimus trough concentra-
tions were higher in CYP3A4*1/*1 genotype carriers com-
pared with CYP3A4*1B carriers. New CYP3A4 and CYP3A5 
genotyping recommendations consider CYP3A4*1B to be 
associated with normal enzyme activity (38).

The most studied CYP3A4 polymorphisms are *20 (loss-of-
function) and *22 (reduced function) alleles, which could 
predispose to higher concentrations of drugs (39,40). Car-
riage of CYP3A4*20 can lead to a higher AUC0-t of aripip-
razole and a lower AUC0-t of D-ARI, which can result in 
increased aripiprazole concentrations (30). CYP3A4*22 af-
fects the metabolism of quetiapine (41), but a correlation 
with the pharmacokinetic parameters of aripiprazole or D-
ARI was not confirmed (30).

CYP3A5 has a less significant role in aripiprazole metabo-
lism than CYP2D6 (30). Nonexpressors with genotype CY-
P3A5 *3/*3 have higher levels of aripiprazole than expres-

sors, such as our patient, who had lower concentrations 
of substrate drugs.

The published results regarding CYP3A5 are ambiguous. 
One study in Japanese patients revealed no effect of CY-
P3A5 variability on the plasma levels of either aripiprazole 
or its active metabolite (42). Another study found lower 
values for D-ARI/aripiprazole ratio in nonexpressors (*3/*3) 
than in expressors (*1/*1 and *1/*3) (30). Besides, the au-
thors also reported the relevance of the *1 variant for the 
development of ADRs, especially nausea and vomiting, 
which were conditional on aripiprazole AUC. Dizziness 
was more common in female carriers of the CYP3A5 *1/*1 
genotype (30). The study also confirmed the relevance of 
CYP2D6 phenotype, ABCB1 C1236T gene variants, and sex 
for the pharmacokinetics of aripiprazole, and CYP2D6 and 
C1236T for D-ARI. The CYP2D6 phenotype and CYP3A5*3 
gene variant were also found to modulate the D-ARI/arip-
iprazole ratio. The authors found sex, aripiprazole exposure, 
CYP3A5*3, and the CYP2D6 phenotype relevant for the de-
velopment of ADRs (30).

CYP3A (3A4/5) gene variants may also have contributed 
to low drug concentrations of aripiprazole in our patient. 
Variants that increase CYP3A4/5/7 expression have been 
recently reported by the Collins group (43). According 
to their study (43), the expression of CYP3A4, CYP3A5, 
and CYP3A7 is controlled by a distal regulatory region 
(DRR). In addition, using reporter gene assays, variants 
rs115025140 and rs776744/rs746742 were associated 
with altered DRR transcriptional activity and higher ex-
pression of CYP3A4 and CYP3A5, respectively (43). In 
liver samples, rs115025140 variant was found to be as-
sociated with higher expression of CYP3A4 mRNA and 
protein, and rs776744/rs776742 with higher expression 
of CYP3A5 mRNA (43). Since rs115025140 is found only 
in the population of African descent, African American 
carriers of this variant who take statin therapy may have 
lower efficiency in reducing lipids, possibly due to ac-
celerated metabolism of statins via the CYP3A4 enzyme 
(43). Variants rs776744 and rs776742 were also associated 
with reduced exposure to tacrolimus in Chinese patients 
(43). These data could be clinically relevant in predicting 
CYP3A4 and CYP3A5 activity in specific populations car-
rying these variants.

The variability in drug exposure may also be attributed to 
variability in drug transporter activity. Both aripiprazole 
and D-ARI seem to be substrates of the ATP-binding cas-
sette sub-family B member 1 transporter (ABCB1), called 
P-glycoprotein (P-gp) (44). P-gp is an efflux transporter 
involved in the intestinal absorption, transfer across the 
blood-brain barrier, and excretion of several antipsychot-
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ics, modulating their disposition and bioavailability in the 
brain (14,30,45,46).

According to some studies, P-gp expression and func-
tion and, consequently, drug concentrations are modu-
lated by the gene variant ABCB1 c.3435T>C (rs1045642). 
T/T genotype carriers having less duodenal expression 
of P-gp could have higher levels of drugs (47). But there 
are also opposite claims in the literature (48,49). Besides 
3435T>C SNP, two other ABCB1 gene variants, c.2677T>G/A 
(rs2032582) and c.1236C>T (rs1128503), being in strong 
LD, have been related to aripiprazole pharmacokinetics in 
different studies. However, the results are still controver-
sial and there are no dosage guidelines. For aripiprazole, 
carriers of variant ABCB1 alleles 2677T>G/A (rs2032582) 
and 3435T>C (rs1045642) had lower plasma concentra-
tions (50). The pharmacokinetic parameters of aripipra-
zole and D-ARI were affected by the ABCB 1236C>T vari-
ants. Higher values for aripiprazole clearance, AUC0-t, and 
maximum serum concentration for D-ARI, were observed 
in C/C compared with T/T carriers (30). Others reported no 
differences between ABCB1 variants (42,51). P-gp shares 
many substrates with CYP3A enzymes and, like them, can 
be influenced by drug inducers or inhibitors. Often, com-
pounds that induce or inhibit CYP3A4 have the same ef-
fect on P-gp, additionally modulating drug bioavailability 
and effectiveness (52).

As our patient’s genotype indicated intermediate P-gp 
activity, we cannot conclude on the influence of the AB-
CB1 polymorphism. However, P-gp induction by carbam-
azepine (resulting in a stronger efflux pump) could be 
relevant for a lower absorption of aripiprazole, thereby 
contributing to its lower concentration.

Risperidone

DPWG recommended risperidone dose adjustment relat-
ed to the CYP2D6 genotype (20,21,24). A reduced dose is 
proposed for CYP2D6 poor metabolizers. For CYP2D6 ul-
trarapid metabolizers, it is recommended to choose an 
alternative drug or to titrate the dose in relation to the 
concentrations of the metabolite paliperidone (9-hydroxy-
risperidone) (20,24). Additionally, the dose is to be adjust-
ed and re-evaluated when the patient’s therapy includes 
concomitant administration of CYP3A4 inhibitors and/or 
inducers or CYP2D6 inhibitors (25-27).

In our previous research, CYP2D6 normal/ultrarapid me-
tabolizers (vs other) had lower exposure to risperidone, 

and ABCB1 “wild type” allele carriers had 4-fold lower odds 
of response (14). ABCB1 variants, c.1236C>T (rs1128503) 
and c.2677G>T/A (rs2032582), have been associated with 
the effectiveness of several antipsychotics such as risperi-
done, clozapine, and haloperidol (53).

In our patient, CYP3A4*1B/3A5*1 variants could have also 
contributed to the accelerated metabolism of risperidone. 
Although carbamazepine was discontinued, the concen-
trations of risperidone and its active metabolite were still 
very low. Therefore, we considered that the influence of 
genetic predisposition for increased metabolism by CY-
P3A was relevant, and risperidone was switched to flu-
phenazine.

Literature data for CYP3A5 variants are controversial. While 
one study showed that CYP3A5 *3 carriers had higher lev-
els of risperidone, 9-hydroxyrisperidone, and active moiety 
than CYP3A5*1 carriers (54), two other studies did not con-
firm this for the CYP3A phenotype (14,55), possibly due to 
the small sample size.

We also analyzed the COMT polymorphism, since some 
COMT variants influence antipsychotic response. The 
rs9606186 variant was found to affect the efficacy of ris-
peridone in male patients (56), while for rs165599, the as-
sociation with risperidone’s impact on negative symptoms 
was observed (57). Our patient was homozygous for the 
variant allele COMT c.472G>A (p.Val158Met, rs4680), and 
variant allele A was found to be associated with a de-
creased response to risperidone (58).

Olanzapine

The enzymes involved in phase I of olanzapine metabo-
lism are CYP1A2, CYP2D6, and CYP3A4, and those involved 
in phase II are glucuronidation enzymes UGT1A4 and 
UGT2B10 (59,60).

Although relevant for olanzapine biotransformation, many 
studies have not demonstrated the association of CYP2D6 
activity and olanzapine plasma levels (59,61-63). This is 
probably due to the secondary role of this enzyme in olan-
zapine biotransformation. Therefore, there are no recom-
mendations for dosing based on the CYP2D6 phenotype. 
The EMA and FDA recommend that in patients treated 
with CYP1A2 inhibitors, a lower starting dose is considered 
(64,65). In cases of concomitant therapy with CYP3A4 
and ABCB1 inducers or inhibitors, an appropriate dose 
for the patient has to be determined (64). Important 
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factors that can modulate the bioavailability and efficacy of 
CYP1A2 substrates include drug-drug interactions and en-
vironmental factors such as smoking and diet (caffeine con-
sumption, cruciferous vegetables, polyamine hydrocarbons 
from grilled meat) (66). These factors have been shown to 
induce CYP1A2, while fluoroquinolone antibiotics and oral 
contraceptives have been shown to reduce it (67).

Among the genetic variants of CYP1A2, CYP1A2*1F (c. 
−163C>A, rs762551) SNP is the most well-studied. Ac-
cording to the Pharmacogenomics Knowledgebase, the 
CYP1A2*1F variant has been associated with an altered 
phenotype (68). Because of increased induction of expres-
sion, it contributes to an accelerated metabolism of sub-
strate drugs (ultrarapid metabolism). However, this effect 
is conditional on the concomitant use of an inducer such 
as smoking or heavy coffee consumption (69). In white 
smokers, carriage of the CYP1A2 -163 AA genotype predis-
posed for increased caffeine metabolism, while this effect 
was not observed in non-smokers (70). Drugs can also act 
as CYP1A2 inducers. Omeprazole taken by non-smoking 
healthy carriers of CYP1A2 *1F/*1F genotype compared 
with those with CYP1A2 *1C/*1F genotype increased the 
induction of caffeine metabolism (71). The CYP1A2*1F 
variant has been associated with increased enzyme in-
ducibility and consequently lower agomelatine (CYP1A2 
substrate) exposure (72). The latter study also observed a 
significant inter-racial difference in the frequency of CY-
P1A2 gene variants (72).

In our case, the use of carbamazepine as an inducer could 
have turned our patient, an *1F/*1F carrier, into an ultra-
rapid metabolizer. In several studies, the CYP1A2*1F vari-
ant was associated with lower olanzapine concentra-
tions (59,61,73), which implies that the presence of the 
CYP1A2*1F allele enhances the inducibility of the enzyme 
when concomitant therapy with inducers is used. Signifi-
cantly lower olanzapine concentrations and, consequently, 
the ineffectiveness of olanzapine therapy, were observed 
in *1F carriers compared with *1/*1 carriers. DPWG and 
CPIC recommend no dose adjustment for olanzapine and 
CYP1A2 genotypes.

There are no data on the accelerated metabolism of an-
tipsychotics associated with the variants CYP3A4*1B and 
CYP3A5*1, but some conflicting data are provided for olan-
zapine and non-function allele CYP3A5*3 (61,74). As dis-
cussed earlier for aripiprazole, new SNP variants in the 

DRR that alter transcriptional activity (not tested in this 
patient) could have contributed to faster metabo-

lism of olanzapine (43). However, the significance of these 
variants for the white population is still unknown.

The main role in glucuronidation of olanzapine is played by 
the enzymes uridine diphosphate glucuronosyltransferase, 
UGT1A4 and UGT2B10 (59). Our patient was homozygous 
for the variant UGT1A4*3, which implies accelerated me-
tabolism (46) and increased glucuronidation of olanzapine 
(75), resulting in lower concentrations of the drug.

Olanzapine is also a substrate of P-gp/ABCB1. Some au-
thors have reported on the association between ABCB1 
c.1236T>C (rs1128503) T allele and elevated exposure to 
olanzapine, resulting in a better response to treatment 
(46,76). In another study, ABCB1 rs3842 CC was associated 
with higher olanzapine exposure (61), while other gene 
variants were associated with variability in T1/2 (51). In our 
previous study in female schizophrenic patients, MDR1/AB-
CB1 G2677T carriers of the variant allele (T) had a better re-
sponse to olanzapine (77).

We can conclude that in our patient, an accelerated me-
tabolism due to CYP3A, CYP1A2, and UGT variants, together 
with the induction caused by carbamazepine, could have 
resulted in lower olanzapine concentrations.

Carbamazepine

Carbamazepine is a strong inducer of multiple enzymes 
(CYPs and UGTs) and P-gp/ABCB1 transporter (78). Car-
bamazepine may interact with psychotropic drugs (79,80). 
Enzyme induction accelerates drug metabolism, while 
induction of P-gp changes the bioavailability of drugs at 
several levels: in enterocytes, the blood-brain barrier (BBB), 
and renal tubules. Induction enhances the function of the 
efflux pump, which results in a lower bioavailability of drug 
substrates (in this case olanzapine, risperidone, and arip-
iprazole). Induction of the ABCB1 transporter by carbam-
azepine at the gastrointestinal level means an increased 
efflux pump in enterocytes, induction at the BBB means a 
weaker passage of drugs into the brain, while induction in 
the kidneys means increased excretion of the drug.

The overall effect of induction with carbamazepine is re-
duced bioavailability of substrate drugs, and reduced entry 
into the brain, resulting in ineffectiveness. The AUC of arip-
iprazole (70%-90%) significantly decreases with the use of 
carbamazepine (81-83). In patients treated with 400 mg/day 
of carbamazepine, olanzapine exposure was lower by 36%-
71% compared with patients on monotherapy (84-88).
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Carbamazepine also has an effect on risperidone. A de-
crease in risperidone active moiety by 1.4 and 1.8 was re-
ported with concomitant carbamazepine therapy (89,90). 
Risperidone active moiety doubled, resulting in ADR in a 
patient after carbamazepine discontinuation (91). On the 
other hand, a case study reported on the treatment for rap-
id reversal of long-acting risperidone by carbamazepine in 
a patient who developed extrapyramidal symptoms. The 
treatment relied on induction of CYP3A4 activity, since pa-
tients on long-acting antipsychotics need more time to 
excrete the offending drug (92). The gene variants of the 
enzymes CYP3A and UGT2B7 can also modulate the phar-
macokinetics of carbamazepine (93). In our patient, the in-
fluence of enhanced metabolism via CYP3A and UGT2B7 
was also observed. With 400 mg/day, a carbamazepine 
concentration of 10.4 μmol/L was achieved, while the ex-
pected range is 17-50 μmol/L. Physiologically based phar-
macokinetic modeling is proposed to estimate the poten-
tial of carbamazepine interactions (94).

Conclusions

We report on a complex case of a patient who had a phar-
macogenetic predisposition for accelerated metabolism by 
several drug metabolizing enzymes (CYP3A5, CYP1A2, UG-
T1A4, UGT2B7). Concomitant therapy with carbamazepine 
as a strong enzyme inducer resulted in low concentrations 
of substrate drugs aripiprazole, risperidone, and olanzap-
ine and an ineffective treatment.

The case shows that knowledge of pharmacogenetic pre-
dispositions along with careful evaluation of possible drug 
interactions can contribute to personalized and effective 
treatment of psychiatric patients. A multidisciplinary ap-
proach including a psychiatrist, clinical pharmacologist, 
and pharmacogeneticist is inevitable, especially today in 
the era of personalized and modern medicine.
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