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A B S T R A C T 

Play is an essential part of childhood, and growing attention has focused on the potential health benefits 

of ‘risky’ or ‘thrill-seeking’ play. Such play behavior is readily observed on any playground, where it can 

sometimes lead to injuries––most often from fall impacts––that require medical attention. Monkey bars 

account for ~7% of childhood arm fractures in the USA, an alarming statistic that raises difficult ques-

tions over its costs and benefits. Many authors view monkey bars as a public health hazard, but it is plau-

sible that our childhood impulse toward thrill-seeking play is a result of selective pressures throughout 

our primate evolutionary history. Indeed, emerging evidence suggests that the developmental benefits of 

thrill-seeking play extend into adulthood, outweighing the occasional costs of injury. Disparate and con-

sequential, these dueling perspectives have fueled debate among health professionals and policymakers, 

but with little attention to the work of biological anthropologists. Here we call attention to the hominin 

fossil record and play behaviors of non-human primates, providing a novel perspective that bolsters 

arguments for the adaptive significance of thrill-seeking play. The moment for such a review is timely, for 

it commemorates the centennial anniversaries of two playground icons: the jungle gym and monkey bars.

Lay summary Our paper traces the origin and history of ‘monkey bars’, an iconic playground apparatus. 

Designed to elicit thrill-seeking play, monkey bars are associated with many positive health outcomes 

during childhood, boosting physical and emotional well-being. Yet, monkey bars are also a major cause 

of upper-limb injuries among children, including bone fractures, leading to debate among public health 

professionals. Our paper shines a spotlight on this problem while also highlighting the evolutionary 

perspectives of biological anthropologists.
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INTRODUCTION

Hazards and risks are similar but distinct concepts. Hazards 
are potential sources of harm, whereas risks reflect the proba-
bility of harm [1]. It follows that risk-taking requires agency––a 
conscious decision to engage in activities with uncertain out-
comes [2, 3]. Because its calculated nature demands physical 
and emotional management, two essential life skills [3], many 
developmental psychologists view risky play as integral to 
child growth and well-being, as children typically develop risk- 
management skills through such experiences [3]. However, the 
subtle distinction between hazard and risk is often blurred on 
modern playgrounds. Childhood injuries from ‘risky’, ‘adventur-
ous’, or ‘thrill-seeking’ play in these settings has fueled parental 
anxiety and governmental regulation [4, 5]. It is plausible that risk 
mitigation efforts, although well-intentioned, have inadvertently 
harmed children’s psychological and physical development [6–8]. 
This debate over the costs and benefits of thrill-seeking play has 
far-reaching importance for child well-being and public health 
policy, but it is seldom addressed through the lens of human 
evolutionary biology, a discipline that is well-positioned to con-
textualize thrill-seeking play within a broader understanding of 
primate motor development.

Public perceptions of playground hazards are rooted in 
some alarming statistics. Monkey bars [Box 1], for instance, are 
responsible for more hospital visits and fractures during child-
hood than any other playground structure [9–12]. Most fractures 
are the result of fall impacts [13, 14], with heights of 2 m hav-
ing an odds of fracture eleven times greater than those <1 m 
[15]. In Canada, monkey bars accounted for 5% of emergency 
department (ED) visits by children, 64% of which entailed bone 
fracture [10]. Another study found that monkey bars accounted 
for 50% of playground-related extremity fractures admitted to 
EDs in the USA, and 55% of severe extremity fractures [12]. This 
same study found strong cohort differences, with the greatest 
incidence of fracture occurring among 5–9 year-olds. Fractures of 
the wrist or forearm are most common (Fig. 1) [16], accounting 
for 6–21% of all bone fractures during childhood [17–19]. Rates 
of bone fracture are comparable between boys and girls [9], but a 
statistical difference emerges with monkey bars––girls are mod-
erately more likely to suffer a fracture [9] despite similar levels of 
thrill-seeking play at ‘great heights’ [20]. Such sobering statistics 
prompted calls to reduce the height of monkey bars to <2 m, 
while also requiring deeper (~20–30 cm) and/or more compliant 
surface materials such as sand, bark chips or rubber [21–24].

In light of these injuries, the US Consumer Product Safety 
Commission published a Public Playground Safety Handbook 
[25, 26] with height guidelines for monkey bars (described as 
horizontal overhead ladders). Devoid of anthropometric or kine-
matic data, the handbook leans heavily on the word ‘hazard’ 

to recommend maximum inter-rung distances of 12 inches 
(30.5 cm) and 15 inches (38.1 cm), with maximum heights of 
60 inches (152 cm) and 84 inches (213 cm), for preschool- and 
school-aged children, respectively. These guidelines are not 
requirements, but seven states have codified them into law [4]. 
Compliance with these parameters has proven difficult, leading 
many municipalities and schools to remove monkey bars from 
their playgrounds. For example, the New York City Department 
of Parks and Recreation removed monkey bars from a majority of 
its 862 playgrounds during the 1980s and 90s [27] (Fig. 2). Still, 
a recent survey of 49 playgrounds in New Jersey, USA found that 
100% of monkey bars exceeded 1.5 m and 37% exceeded 2 m in 
height [28]. At one primary school, the vertical height exceeded 
2.5 m, which begs the question: at what height do monkey bars 
become a hazard?

Many public health professionals view monkey bars as unac-
ceptably risky [29], a perspective with scant evidence. Death on 
playgrounds is essentially nil, with risk calculated at 0.15 per 
100 000 children [16] or 1 in 30 million [30]. In other words, driv-
ing toward a playground carries a greater risk of childhood death 
than falls from monkey bars [30, 31]. Parents cite injury concerns 
for limiting thrill-seeking play on playgrounds, but such risk is 
low––calculated between 0.26 and 0.59 injuries per 100 000 uses 
[32]––and dwarfed by organized sports or gym class as causes of 
hospitalizations [33, 34]. Though painful, injuries resulting from 
falls from monkey bars rarely cause permanent harm [35]. Most 
playground injuries are low severity; nearly 95% of ED visitors are 
treated and released without further hospitalization [36]. Buckle 
and greenstick fractures of the distal radius or ulna can be immo-
bilized with removable splints, wraps, or soft casts for as little 
as three weeks (Fig. 1a) [37]. For children under 10 years of age, 
some displacement (50%) in complete fractures is acceptable 
without referral to an orthopedist [37]. Yet, even with severe inju-
ries, children are remarkably resilient. A recent study of pediatric 
admissions found that 88% and 92% of children hospitalized for 
severe injuries returned to baseline quality of life at 4 and 12 
months post-injury, respectively [38].

Such evidence instead points to monkey bars as posing a 
modest risk. Yet, societal and parental tolerance of risk gener-
ally––and monkey bars more specifically––is in rapid decline 
across Western cultures [39]. Wyver et al. [30] pointed to a shift 
in views toward child safety––from the community (How can we 
keep our kids safe?) to the individual (How can I keep my kids 
safe?)––to explain how the subject transformed into a modern 
moral imperative [7, 40]. This shift in the focus of responsibility 
coincides with the emergence of intensive parenting––defined 
as over-extended, child-centered devotion of time, money and 
energy [41]––and the rise of ‘surplus safety’ environments [30], as 
exemplified by the proliferation of ‘ultra-safe’ playgrounds during 
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Box 1:Evolution and the monkey bars

Original jungle gym at the Winnetka Historical Society, Winnetka, Illinois. Photograph by E. Jason Wambsgans. © Chicago 
Tribune/Tribune News Service, reproduced with permission.

The jungle gym was invented in 1920 by Sebastian (‘Ted’) Hinton, an attorney [116]. In a series of four patent applications––the 
first of which was awarded October 23, 1923––Hinton [117] described a metal climbing frame of layered cubes, eight feet tall, 
arranged like a ‘forest top through which a troop of children may play in a manner somewhat similar to that of a troop of monkeys 
through the treetops in a jungle’ (p. 1). His final application, approved in 1924, included an accessory monkey runway, which he 
described as an elevated horizontal ladder attached to the side of the jungle gym and suspended at the corners by vertical poles 
[118]. He argued that such a runway would ‘permit suspensory exercise, such as swinging by the arms and hanging travel, hand 
over hand’ (p. 2). Thus, Hinton’s climbing frame (today’s jungle gym) and monkey runway (today’s monkey bars) were envisioned 
as conjoined structures. Here, we view them interchangeable forms of playground equipment because both invite climbing, 
putting them into the same category of risky play––danger or injury from falling [3]. Most studies consider them together when 
reporting injuries [14].

Hinton lived in Winnetka, Illinois, a Chicago suburb and epicenter for the rise and spread of progressive education [116]. This 
factor was a major contributor to the success of his inventions. Winnetka school administrators, chief among them superinten-
dent Carleton Washburn, were disciples of John Dewey, a prominent philosopher and proponent of ‘whole pupil’ education [119]. 
Dewey advocated for curricula that balanced formal academics with practical activities meant to promote the mental, physical, 
and spiritual development of children. Physical education was a cornerstone of his pedagogy [120], as ‘the proper development of 
the mind depends on the proper use of the muscles and senses’ (p. 7). He viewed risky play as essential to learning: “the activities 
of a child are not so aimless as they seem to adults, but are the means by which [they become] acquainted with [their] world and 
by which [they learn] the use and limits of [their] own powers (p. 8). Thus, innovative playgrounds appealed to Washburn, who 
approved the first installation of a jungle gym at the North Shore Country Day School in 1920 [116]. Hinton continued to innovate 
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the 1990s and the ensuing ‘bubble wrap’ generation [42]. Parents 
who ignore efforts to maximize child safety may be viewed as 
negligent, amplifying pressure to adhere to surplus safety, even if 
their own lived experiences speak to the benefits of thrill-seeking 
play [43]. With the weight of public consciousness so focused on 
the physical and reputational costs of playground injuries, we 
rarely consider the potential benefits, particularly from the evolu-
tionary perspectives of biological anthropologists.

PSYCHOLOGICAL BENEFITS OF THRILL-SEEKING 
PLAY

On shorter timescales, thrill-seeking play may actually miti-
gate childhood injuries by honing risk-perception skills [44–
47]. Children as young as four have an awareness of their 
physical abilities and will express caution on playground 
equipment beyond their capabilities [2]. This argument raises 
the possibility that ultra-safe playgrounds are detrimental to 
the development of accurate risk assessment, but it is a chal-
lenging concept to test. Related to this idea is the paradoxical 
notion that ultra-safe playgrounds might even promote exces-
sive risk-taking, or ‘risk compensation’. Examples include 
the inappropriate use of safety equipment [48, 49] and the 
increased allure of higher-risk settings for play behaviors (e.g. 
train tracks, roads, etc.) [47]. Complementing this idea is the 
argument that intensive parenting diminishes risk perception 
via negative feedback during routine supervision (e.g. ‘slow 
down’, ‘not so high’, and ‘be careful’), words that could instill 
doubt in a child’s innate judgment [46].

On longer timescales, thrill-seeking play may promote chil-
dren’s mental health by enhancing self-confidence, improving 
coping skills and promoting resilience [50]. In their seminal 
article, Sandseter and Kennair [3] described the evolutionary 
paradox inherent in thrill-seeking play––navigating monkey bars 
may cause injury, but low-risk thrills also inure children to mal-
adaptive fear levels. In other words, thrill-seeking play strength-
ens psychological coping mechanisms––such as diminishing an 

innate fear of heights––that is essential for child development. 
Dodd and Lester [51] extended this model by folding in a discus-
sion of anxiety, arguing for a developmental mismatch between 
a child’s innate proclivity for risk-taking and the rise of ultra-safe 
and intensively-parented play spaces, factors that may have con-
tributed to parallel increases in youth anxiety.

Supporting this inferred causation, Dodd et al. [52] used data 
from two online surveys of Canadian parents to demonstrate 
an association between thrill-seeking play and positive behav-
ioral outcomes during the coronavirus disease 2019 pandemic. 
Specifically, they found that greater time spent in thrill-seeking 
play was associated with a reduction in internalizing problems 
(e.g. fears, worries, nervousness, poor relationships with peers), 
and greater positive affect, suggesting that thrill-seeking play 
mitigated some of the uncertainty caused by pandemic-era lock-
downs. Another study found that children of self-reported ‘chal-
lenge parents’––parents who encourage thrill-seeking play by 
their children––experienced fewer anxiety symptoms [53]. This 
finding may explain why overprotective ‘helicopter’ parenting is 
linked with diminished coping skills, perfectionism and narcis-
sism in young adults [54, 55], as well as reductions in internal 
locus of control [56]. The latter result has far-reaching impor-
tance; individuals with a strong internal locus of control, who 
believe that their own efforts matter more in the direction of 
their lives than external events [57], have better mental health 
outcomes [56].

PHYSICAL BENEFITS OF THRILL-SEEKING PLAY

Thrill-seeking play is a frequent source of joy [45], and it is 
positively correlated with higher physical activity levels [58, 
59]. It is practiced by children regardless of gender, although 
some nuance in the type of thrill-seeking play may exist [20]. 
In a randomized control study of 5–7 year-olds, Engelen et al. 
[60] found that riskier playground environments led to a 12% 
increase in moderate-to-vigorous physical activity relative to 
controls. Thrill-seeking play also promotes motor training 

his design until his death in 1923. A decade later, his wife, Carmelita Chase Hinton, another Dewey acolyte and progressive educa-
tor, founded The Putney School in Putney, Vermont.

Hinton’s use of evolutionary reasoning––an apparent first in US patent history––is an underappreciated aspect of his legacy. In 
1923 [117], he argued that ‘climbing is the natural mode of locomotion which the evolutionary predecessors of the human race 
were designed to practice’, before concluding that it is ‘ideally suited for children’ (p. 1). These words predate the announcement, in 
1924, of the Taung skull, the first-known specimen of Australopithecus, a hominin genus with unequivocal adaptations for climbing 
[121, 122]. They also came at a fraught time in American cultural history, preceding the infamous Scopes ‘Monkey’ Trial of 1925. 
Thus, Hinton wrote with considerable conviction and courage, but he never lived to see the prescience of his words. A century on, 
his views on the importance of climbing during human evolution are essentially unassailable, bolstered by decades of field research 
in paleoanthropology and primatology.
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[50], which is thought to stimulate cognitive and muscle 
development while fine-tuning the motor skills needed during 
adulthood [51]. Five-year-old children with ready access to 
independent thrill-seeking play had significantly better motor 

skills than those with fewer opportunities [61]. In another 
group of 5–7 year-olds, daily access to risky outdoor play 
(1–2 hr per day) was linked with significantly higher balance 
and coordination scores on a standardized motor fitness 
test [62]. Greater motor competency could stem from ‘self- 
handicapping’ [63], defined as the deliberate creation of phys-
ically challenging, moderately frightening, and unpredictable 
scenarios requiring locomotor versatility to overcome. The 
hypothesized advantage of such play is that it trains children 
to cope with comparable scenarios during adulthood [7].

On longer timescales, vigorous thrill-seeking play could 
enhance skeletal mass and strength [64]. For instance, add-
ing 30 min of moderately intense physical activity per day can 
increase the bone strength of 5–11 year-olds by 3–5% [65]. 
Exercise-induced bone deposition occurs mainly on periosteal 
surfaces, providing crucial fracture resistance during aging; 
indeed, these material changes can be maintained throughout 
adolescence and even into adulthood [64]. Five-year-old children 
who engaged in frequent moderate-to-vigorous physical activity 
had higher bone mineral contents (a proxy for later gains in bone 
mass) at 8 (6–14% higher) and 11 years of age (4–7% higher) 
compared to lower physical activity groups, even after con-
trolling for physical characteristics and current activity levels [66]. 
Another longitudinal study of former gymnasts found that fre-
quent mechanical loading of the forelimbs during adolescence 
was linked to greater bone mass and size than non-gymnasts, 
with such changes detectable 4–9 years after activity cessation 
[67]. Likewise men who engaged in more rigorous forelimb load-
ing during youth maintained proportionately larger and stronger 
humeri than control groups, even after 50 years of de-training 
[68].

Figure 1. Playground falls and forelimb fractures. (a) Angular fractures 

(arrows) of the radial and ulnar diaphyses of a 6-year-old male. The radial 

fracture is complete and involves both cortices; however, the ulnar fracture is 

incomplete with cortical and buckle fractures, exemplifying so-called green-

stick fractures. Greenstick fractures are common among children <10 years 

of age when an angulated longitudinal force is applied along the bone of an 

outstretched arm. Case courtesy of Samir Benoudina, Radiopaedia.org, rID: 

21674. (b) L.D.F. at six years old in 2002, when radio-ulnar fractures from 

falls were treated with hard casts; photograph by Steve Fannin, reproduced 

with permission. (c) Today, most radio-ulnar fractures are treated with soft 

splints; photograph by Jennifer Bernstein, reproduced with permission.

Figure 2. Rise and fall of Hinton’s jungle gym/monkey bars in New York City. (a) Children climbing in Central Park circa 1942. Photograph by Majory Collins, 

source: Library of Congress. (b) Closure and subsequent erasure of Hinton’s legacy at the 83rd Street Playground in Riverside Park. Photograph taken in 1996 by 

Steve Burman. © New York Times, reproduced with permission.
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SELECTIVE PRESSURES ON THRILL-SEEKING PLAY

Evolutionary reasoning guided Hinton’s patent application in 
1924 [Box 1], but this insight is all but forgotten in the current 
debate over playground safety, monkey bars and child growth 
and development. Our goal here is to revisit Hinton’s premise by 
drawing on a century of discovery in our disciplines of biological 
anthropology and primatology. This perspective has the potential 
to move debate forward in productive ways.

Climbing is essential to primate life, facilitating the acquisition 
of food, escape from predation, and sleep. It was practiced by 
our earliest ancestors, the hominins [Box 2], and it continues to 
hold importance for many foraging peoples [69–71]. Death from 
injuries related to climbing is a risk factor for all primates, but 
it is attributed primarily to fall impacts from extreme heights. 
For example, food-harvesting in some hunter-gatherers entails 
tree-climbing to heights up to 50 m, with fall impacts accounting 
for ~7% of male deaths in the Baka of the Central African Republic 

Box 2—Paleoanthropology of climbing

Perimortem fractures (outlined in red) of the upper extremity of A.L. 288-1 (‘Lucy’), an adult female Australopithecus afarensis. 
Photographs by J. Kappelman, reproduced with permission.

Ample evidence of arboreal activity exists in the human fossil record, including a 3.3 million-year-old (Ma) infant of 
Australopithecus afarensis, the Dikika child [122]. Climbing adaptations include a gorilla-like shoulder, chimpanzee-like fingers, and 
a flexible foot [123, 124]. The infant died at ~3 years of age, and it is tempting to imagine its propensity for thrill-seeking play in 
the treetops of Pliocene Africa; indeed, its age falls squarely in the age-range of maximum arborealism and suspension among 
chimpanzees (Fig. 3a) [86, 89].

Still, some hominin fossils hint at mortality from falls. For instance, Kappelman et al. [125] described bone fractures in the 
skeleton of ‘Lucy’––an adult female A. afarensis dated to 3.2 Ma––and attributed them to a fall of ~13 m. The authors identified 
perimortem fractures consistent with vertical deceleration impacts along both forelimbs, including a four-part fracture of the 
proximal head of the right humerus, a greenstick (or hinge) and spiral fracture on the lateral surface of the right humeral mid-
shaft, a compressive impact fracture on the proximal head of left humerus, and a transverse break of the right distal radius. Such 
fractures suggest a high-energy impact scenario with outstretched arms. It is interesting––and perhaps not coincidental––that the 
greenstick fracture is comparable to those commonly found in pediatric patients that fall from playground equipment (Fig. 1a) 
[37]. In another example, L’Abbé et al. [126] attributed a distal ulnar bending fracture in the skeleton of MH2––an adult female A. 
sediba dated to ~2.0 Ma––to a fall. Like those of Lucy, the fracture indicates an axially-placed load on the forelimb, suggesting an 
attempt to break its fall with outstretched arms.
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and ~2% in the Agta of the Philippines [71]. Chimpanzees and 
orangutans commonly climb to heights exceeding 20 m [72, 73], 
and 4–10% of chimpanzee mortality is attributed to injuries sus-
tained from falling [74, 75]. Teleki [76] and Goodall [74] described 
51 falls by Gombe chimpanzees; of these, 41% were >5 m and 
25% were >10 m, with one juvenile and one adult dying subse-
quent to drops of 14 and 25 m, respectively. Shimada and Yano 
[77] described a fall of 7 m for a juvenile chimpanzee; the indi-
vidual recovered, but was temporarily immobilized with head 
trauma. Among wild orangutans, 76% of individuals treated by 
veterinarians for serious injuries fell from heights of 20–50 m, 
with two dying of skull trauma [78]. There is also evidence of 
fall-induced deaths in the hominin fossil record [Box 2].

These heights and the corresponding mortality risks do not 
apply to most playgrounds today. A better point of comparison 
revolves around the risk of skeletal fracture. Healed fractures 
are found in the long bones of all great ape species, suggesting 
that nonfatal falls are somewhat frequent [79]. For example, the 
frequency of healed bone fractures (typically forelimbs) ranges 
from 21% to 36% of individuals in populations of wild chimpan-
zees [79, 80]. Comparable rates are evident among wild gorillas 
(20%), gibbons (36%), and orangutans (61%) [81, 82], as well 
as those human populations that climb trees often [71]. In one 
example from Papua New Guinea, tree falls accounted for 27% 
of hospital admissions, most of which involved fractures of the 
distal radius [83]. Falls from mango trees accounted for 16% of 

admissions for skeletal fractures at a hospital in Fiji, with 69% 
being pediatric inpatients and 56% of fractures occurring in the 
forelimb [84]. Likewise, falls from coconut trees resulted in a 
large number of admissions at a rural hospital in the Solomon 
Islands, with 57% of falls resulting in fracture; and it is telling 
that 40% of admittees were 10–14 years old [85]. Thus, skeletal 
fracture and recovery is a relatively common experience in the life 
history of most apes, including humans.

It follows that natural selection should operate strongly on 
juvenile primates to master the art of climbing; indeed, climb-
ing and swinging are more common among younger age classes 
than any other ontogenetic stage (Fig. 3) [87, 88]. Among chim-
panzees, infants (0–5 yrs) and juveniles (5–10 yrs) spend 15% 
and 27% more time climbing and arm-swinging than adults (+ 20 
yrs), respectively [86]. This difference exists because infants and 
juveniles allocate more time (~40%) to arboreal activities [89]. 
Not only are juveniles more apt to climb than adults but they also 
exhibit a far greater diversity of movements and postures [87]. 
Exemplifying this point, juvenile langurs have 65% more distinct 
positional behaviors (both postures and movements) and 92% 
more distinct suspensory positional behaviors than adults [90]. 
Such locomotor experimentation is a crucial part of juvenile 
development, as it enables the fine-tuning of motor skills needed 
during adulthood [88]. Tellingly, infant chimpanzees that engage 
in more social play (a category that included locomotor play) 
tend to reach social (e.g. first non-maternal groom) and motor 

Figure 3. Suspensory behaviors of juvenile primates. (a) Juvenile chimpanzees spend more time climbing and swinging than adults [86], a pattern shared with 

humans; photograph by Eric Kilby, reproduced with permission. (b) Child arm-swinging on modern-day monkey bars with a maximum height of 2.2 m. Compare 

the mulched surface with those from earlier eras in Fig. 2. Location: Norwich, Vermont, USA; photograph by Z.M.T. (c) In Europe, adventure playgrounds are 

designed to promote thrill-seeking behavior, including potential fall heights exceeding 3 m; photograph by N.J.D. (d) Street sign highlighting the adventurous 

philosophy of Craigmillar Castle Park Playground, Edinburgh, Scotland; photograph by N.J.D.
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(e.g. first independent travel) milestones at earlier ages [91]. 
Thus, play-climbing represents a form of practice: one that pro-
motes an awareness of branch material properties––an import-
ant consideration when navigating arboreal environments [92, 
93]––and the mechanical loading caused by one’s own mass. It 
is best to practice these perceptual skills at a size that minimizes 
the force of impact and risk of injury. Yet, mounting morphologi-
cal and physiological evidence points to juvenile skeletons being 
resistant to the mechanical challenges and impacts that occur 
during thrill-seeking play.

Juvenile primates have underdeveloped bodies and weaker 
muscles than adults, yet they move in riskier ways; so it stands 
to reason that natural selection has acted on their skeletons to 
improve locomotor efficiency and safety [94]. In terms of effi-
ciency, juvenile primates possess higher effective mechanical 
advantage of their limb muscles than adults, meaning juveniles 
apply relatively less muscular force to produce the same output 
forces for a given posture [94]. For example, juvenile capuchins 
enjoy a greater anatomical mechanical advantage (AMA) of the 
biceps brachii and triceps brachii muscles, increasing the effi-
ciency of suspensory behaviors [95]. Likewise, juveniles have 
better grasping abilities than adults because they have dispro-
portionately large digits [94, 96]. For example, the relatively wide 
phalanges of juvenile baboons enable disproportionate pull 
strengths, exceeding adult values by 200% [97].

Juvenile bones are also relatively fracture-resistant. For exam-
ple, the juvenile humerus and femur have disproportionately 
greater bending strengths than those of adults [98], in part 
because mineralization is incomplete. In short, juvenile bones 
are structurally tougher and more elastic, factors that absorb 
energy and minimize fracture severity [94]. Capuchin monkeys 
have the highest bone safety factors (i.e. the strength of their 
bones relative to predicted loads) at the onset of juvenilization, 
when the risk of falling is greatest [98]. Similarly, the humeri 
of chimpanzee infants (0–5 yrs) are relatively more resistant 
to bending and torsion than those of older individuals [89], a 
pattern shared with human children of similar ages [99]. These 
traits could be linked to the greater head-to-body mass ratio of 
juveniles, which moves their center of mass cranially and favors 
use of the hands to minimize the impacts of falls [100]. Using 
outstretched hands to mitigate head trauma during falls could 
explain the evolution of disproportionate forelimb strengths at 
the juvenile stage of development [98]; so, it is telling that many 
of the buckle and greenstick fractures to the radii and ulnae of 
children are the result of hands-first impacts (Fig. 1a) [37].

OUR VIEWS AS BIOLOGICAL ANTHROPOLOGISTS

Like Hinton [Box 1], we view play-climbing as a legacy of primate 
evolution that promotes child health and well-being. But this 

perspective is often overshadowed by the arguments of public 
health professionals and policymakers, who tend to problema-
tize forelimb fractures as a costly and preventable playground 
injury. The tension between these perspectives is evident in 
the diverging play-climbing standards of several countries. In 
Australia, the maximum acceptable ‘free height of fall’ for climb-
ing equipment was increased from 2.5 to 3.0 m in 2014 (standard 
AS 4684-2014), putting it into alignment with an earlier European 
standard (EN 1176-2008) (Fig. 3c) [101]. Conversely, many clini-
cians have argued for free-fall heights <2.0 m, with some favor-
ing reductions to ≤1.5 m [21–24]. Both perspectives are rooted in 
statistical data, giving the impression of evidenced-based policy-
making, but there is a problem: there is scant empirical data on 
how children interact with climbing equipment. To fill this void, 
it is useful to consider the tools of primatologists, researchers 
adept at quantifying limb movements during climbing [102, 103] 
or applying deep learning methods to track postures [104]. Such 
data would inform our understanding of how playground equip-
ment shapes the childhood propensity for thrill-seeking play, 
moving us closer to human-centered design principles.

When faced with forearm shaft fractures, pediatric orthope-
dists have turned increasingly toward nonoperative treatments, 
even in severe cases [105–107]. This trend speaks to the out-
standing resilience of juvenile forelimbs (Fig. 4), and it suggests 
that a wide safety margin is baked into the juvenile life stage, a 
premise that may inform enduring questions related to human 
life history evolution. Juvenile growth among primates, especially 
humans, is exceedingly slow [108], but the selective advantages 
of prolonging this life history stage are debated. It could mitigate 
against periods of low food availability [108, 109] or enable the 
development of advanced foraging and social skills [110–112]. 
Another possibility is that it is essential for developing motor 
competence, an idea linked to the evolution of play behaviors 
[63, 113], but not extended juvenility. It follows that arborealism 
is a strong predictor of juvenile duration across primates; and 
that the evolution of the hominin foot and ankle––traits that 
may have increased the risk of falling during arboreal activities 
[114]––was a major selective force on human life history evolu-
tion. In short, the selective advantages of motor competency in 
an arboreal milieu may have contributed to the evolution of pro-
longed juvenility across primates, and particularly hominins, a 
hypothesis that invites future research.

SWINGING FORWARD

Ensuring the safety of children is a justifiable concern, and we 
understand societal apprehension over the relatively high rates 
of fracture associated with monkey bars. What is less understood 
are the long-term physical and mental health costs of reducing or 
eliminating monkey bars or other catalysts of thrill-seeking play. 



Commemorating the monkey bars, catalyst of debate Fannin et al.  |  151

In debates over the costs and benefits of such play, it is practical 
to consider the regularity of forelimb fractures across the arc of 
primate evolution, a perspective that begins to contextualize the 
injury with the adaptive importance of thrill-seeking play during 
the juvenile life stage of primates, especially humans. We believe 
the enduring appeal of monkey bars today is a testament to this 
evolutionary legacy, and that we must find ways to avoid extreme 

injuries while also letting children face developmentally appro-
priate risks.

A century ago, Hinton invented monkey bars to encourage  
primate-inspired play. Over the next 100 years, we may consider 
taking the next step of encouraging thrill-seeking play with natural 
materials in less-developed settings [115]. For instance, outdoor 
‘adventure’ playgrounds have emerged in recent years across 

Figure 4. A seven-year-old boy climbing on monkey bars suffered a fall, resulting in a displaced fracture of the right distal radius (arrow). Despite the severity, 

the attending orthopedic surgeon opted for nonoperative treatment. Serial radiographs over the next 15 months illustrate the natural remodeling of bone. Case 

history and images courtesy of James Gamble, Stanford University School of Medicine.
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North America [7]. Already common in Europe, adventure play-
grounds offer standard challenges (e.g. great heights; Figure 3c), 
as well as loose elements that encourage interactive and construc-
tive play; e.g. recycled junk, nature-based materials, and access to 
fire and water [7]. Adventure playgrounds exemplify the spirit and 
intent of Hinton’s original desire for innovative playground equip-
ment, and we hope that future discussions of thrill-seeking play 
will acknowledge the potential benefits while continuing to draw 
inspiration from our evolutionary and arboreal legacies. 
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