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Introduction
As traditional drug development faces sufficiently long proce-
dures including target discovery, discovery screening, lead opti-
mization, ADMET (Absorption, Distribution, Metabolism, 
Excretion and Toxicity) testing, development and registration, 
the process is usually complicated and costly and it carries a 
high risk of failure. The pharmaceutical product development 
is still in need of at least 10 to 15 years and this can cost between 
$500 million and $2 billion,1 with substantial investments 
directed toward basic science, technology development, and the 
exploration of new organizational and management models.

In particular, newly discovered usages of existing drugs 
seems to bring the development cost down much compared 
with “de novo” drug discovery and development.2 Much recent 
publications3-14 have considered closely on drugs repurposing 
where additional indications were discovered unexpectedly. 
While Chlorpromazine (dopamine receptor blockade) was ini-
tially developed to treat Antiemetic/antihistamine, a tran-
quilizing effect of the drug was discovered by Heri Laborit and 
it became a staple of psychiatric treatment. Very recently, 
Galantamine (acetylcholinesterase inhibition)15 which was 
considered as a drug for treating polio, paralysis and anesthesia 
had its new usage approved in many countries for Alzheimer’s 
disease. Importantly, as repositioning drug candidates have fre-
quently been tested in development for their initial indication, 
a variety of phases common to de novo drug discovery and 
development can be avoided. So, the drug repositioning pro-
vides a chance of reducing time and risk of development. It is 
with the drug repositioning concept that many researchers 
choose to explore drug-disease association for predicting new 

usage for existing drugs. This may be due to the assumption 
that similar drugs tended to treat similar diseases.16

We can note a recent sharp growth of biological data for 
genome sequences, gene expression status, protein interactions 
and patients. In addition, most databases are dedicated to a 
specific type of information, and the relationship between dif-
ferent datasets, for example between gene production and epi-
genetic status, is still deficiently understood. With this complex 
data landscape, combining different datasets gives an inte-
grated heterogeneous dataset that is almost always as good as, 
and in several cases significantly better than, a dataset alone. 
Also note that, heterogeneous transfer learning methods, where 
heterogeneous networks take place throughout biological data, 
have been implemented with promising results.17 The approach 
is adapted in our article to set up a heterogeneous network 
allowing drug repositioning with appropriate proteins’ infor-
mation. There is evidence that if information of associations 
between drugs, protein and diseases is available then a hetero-
geneous network with Singular Value Decomposition (SVD) 
can learn relying on some meta-paths.18

Concerning the meta-paths, it is important for drug reposi-
tioning, and all other transfer learning methods, that a clear 
logical structure of meta-paths is needed to be defined. In this 
work, we present a new method for detection of new drug-
disease association based on meta-paths. The first major con-
tribution has come in the way of finding out drug-drug 
associations, protein-protein associations, disease-disease asso-
ciations and heterogeneous network construction from the 
associations. The second, we propose to analyze the drug-dis-
ease associations by presenting drug-disease associations 
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through 3 creative meta-paths. As far as the drug-disease asso-
ciations are combined from these meta-paths, latent features 
are extracted with data dimension reduction. Finally, we apply 
an appropriate classification model for the heterogeneous net-
work. The proposed approach is designed for drug reposition-
ing in a biological heterogeneous network and can be an 
effective model for label transferring as well as on other hetero-
geneous data.

Related Work
It is significant to understand what the expert currently studies 
when checking drug-disease association in drug repurposing. 
A large number of computational works have attempted to 
define a method of presenting drug-disease association or 
design drug re-purpose learning model. A detailed review of 
works related to our approach is shown now in 2 subsections.

Drug-disease association presentation

Differences in feature extraction, similarity estimation, and 
matrix factorization are just some approaches that play a role 
for presenting drug-disease association. In particular, the asso-
ciation of drug-protein, drug-disease and protein-disease are 
encoded in binary labels indicating the presence or absence of 
an interaction. Feature vectors with certain length, often 
accompanied with the binary labels are used for presenting the 
features of drug-disease association.19 To improve performance 
as well as the efficiency, some works implemented dimension 
reduction techniques to transform feature arrays from a high-
dimensional space into a low-dimensional space, retaining 
meaningful properties of the drug-disease association. In order 
to forecast drug-disease interaction, different techniques can 
be implemented, some of them are: Support Vector Machines 
(SVM),17 and Random Forest.3 However, SVM performs 
poorly on highly imbalanced data, especially in complex tasks. 
In this study, only the weighted SVM model was considered 
without any data sampling or filtering, which may not be suf-
ficient to address the issue of data imbalance. Meanwhile, the 
limitations of Random Forests, such as high computational 
complexity and difficulty in explaining the model, could also 
apply in this case, based on the general nature of these limita-
tions for this method in other studies.

The similarity measure that associations are labeled based 
on their features’ similarity has been addressed in this domain. 
Because the drug-drug and disease-disease similarity measures 
can be performed through similarity or distance functions, pre-
diction of interaction can be estimated: Using the matrix con-
sisting of known drug and disease interaction, similarity 
measures can produce estimation for unknown drug and dis-
ease pairs. A number of similarity based methods, including 
Zhang et al,4 Shi et al5 has been proposed addressing the simi-
larity scores of either drug-drug, disease-disease or drug-dis-
ease associations. Furthermore, Euclidean distance was used in 
a nearest neighbor algorithm applied to the interaction.6 The 

genomic similarity of protein sequences, and pharmacological 
similarity of drugs, in cooperation with topological properties 
of drugs-protein-disease network were also suggested for drug-
disease interaction prediction.7 Actually, proportion of known 
drug-disease interactions and total number of interactions is 
very low and this is the main disadvantage of the similarity-
based methods.

We are also examining whether study works that are related 
to factors of the features of drug-disease interactions. More 
interesting might be the matrix factorization that can repre-
sent drug-disease interactions by factors. This is surely pos-
sible when there are consistent associations between the 
characteristics of drugs and the characteristics of the diseases. 
Unlike the similarity approach based on characteristics of 
drugs and the characteristics of the diseases, the matrix fac-
torization is based on measurement of the strength of the 
drug-disease interactions, when drugs and diseases are located 
within the same spatial region.8 Mentioned above works out-
lined different ways to present features for drug-disease asso-
ciation. The proposed method in this paper uses binary class 
for presenting drug disease association and the matrix factori-
zation approach for getting major factors of feature matrices. 
However, we propose to implement novel 3 meta-paths 
instead of using similarity measurement.

Drug re-purpose learning model design

Research in recent years shows that few experts described spe-
cific concepts like network, deep learning and hybrid methods 
for the designing of drug re-purpose learning models. Consider 
network-based methods where data structure is a set of objects 
represented by nodes and their relationships shown by edges. 
The attention of the methods is gained for machine learning 
research by the high network power. Alternative semi-super-
vised heterogeneous network embedding was noted by Song 
et al.9 Specifically, the network is set up by similarity of drugs, 
drug-disease, and protein-protein interaction. On other hand, a 
multi-graph based method was proposed by Zhao et al10 where 
graph convolution network was implemented with graph 
embedding approach for representing features of drug-disease 
associations. Good works adapting networks for drug-disease 
heterogeneous data can be seen in convolutional neural net-
works by Öztürk et al,11 and in multiple layer perceptions by 
You et al.12

In the deep learning direction, Zhao et al13 recommended 
a geometric deep learning method for solving the drug-dis-
ease associations problem with heterogeneous information. 
The projection of geometric prior knowledge of network 
structure to a latent feature space was addressed for feature 
representation.

Most of the methods introduced above are really good at 
completing 1 task or working with 1 dataset. There are meth-
ods that are combinations of existing methods which were 
applied in the field or were transferred from other fields. We 
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see that combinations can be performed from feature-based 
methods, matrix factorization, networks and deep learning. 
Thus, the feature-based and similarity-based machine learning 
approaches were essentially integrated by Agarwal et al.14 Such 
hybrid methods are generally constructive and productive by 
optimizing the feature extraction for extracting the complex 
hidden features of drugs and diseases. Joining 2 machine learn-
ing methods in Drug-Disease Interaction prediction often 
yields favorable results as they can fully exploit the potential of 
partial methods simultaneously. However, one should be able 
to handle the high complexity, either computational or opera-
tional caused by integration. In drug repurpose learning model 
design, we selected the hybrid approach to attract advantages of 
partial methods including feature extraction, SVD and new 3 
meta-paths that were designed specifically to deal with the 
heterogeneous drug and disease data.

The Method
In this section, the essential tasks of our method are outlined 
for predicting drug-disease associations. As part of the story, 
we describe a heterogeneous network that takes place through-
out biological databases related to drug, protein and disease, see 
step 1 in Figure 1. Then, the network can be extended by add-
ing the relationships of drug-drug, protein-protein, and dis-
ease-disease. We will build 6 new matrices, which describe the 
connections, see step 2 in Figure 1. To ease drug-disease asso-
ciations prediction, our suggestion is to bring the new con-
structed matrices into learning—to have three paths which 
actually reflect the drug-disease associations, see step 3 in 

Figure 1. We shall see that features can be extracted from the 
drug-disease associations and used for learning in the final 
task, see steps 4 and 5 in Figure 1.

Heterogeneous network construction

To avoid being distracted by the details, we use D for drug, P  
for protein and S  for disease. Also, D D i mi= = …{ ; , , }1  means 
a set of drugs once the drug data are available for study. 
Similarly, P P j nj= = …{ ; , , }1  is a set of proteins and 
S S i ki= = …{ ; , , }1  is a set of diseases. Certainly, we need bio-
logical data that cover the “binds to” link between drugs and 
proteins, “causes/caused by” link between proteins and diseases, 
“treated/treated by” link between drugs and diseases. There are 
3 possible types of associations. Here, we have used a binary 
matrix DP R

m n
∈

×
 that presents the drug-protein associations. 

If drug Di  is associated with protein Pj , then the element 
DP i j[ , ]  is set to 1, otherwise set to 0. Indeed, the disease-
protein associations can be coded in a binary matrix SP Rk n∈ × , 
and the drug-disease association is expressed by a binary matrix 
DS m k∈ × .

Heterogeneous network.  Let G V E=( , )  be a network, where V  
denotes the set of nodes ( )V D P S=   , and E represents 
links set ( )E DP SP DS=  

. Its network schema, 
TG N R=( , )  is a meta-template of G , where N  and R repre-
sent node type sets and edge type sets, respectively.

The elements of the heterogeneous network in Table 1 
demonstrates that the network contains interconnected nodes 
and links of different types. A heterogeneous network can rep-
resent interconnected nodes of various types, including drugs, 
diseases, and proteins. So, step 1 in Figure 2 shows the nodes in 
3 colors according to the types. The edges of the networks are 
displayed in 3 types of lines for indicating divergent types of 
edges.

Network expansion by adding associations

In designing a heterogeneous network, there are choices about 
the types of edges. The constructed network has edges for 
drug-protein, disease-protein and drug-disease associations. 
We propose to append 3 new types of edges which are drug-
drug, disease-disease, and protein-protein.

The drug-drug association.  Specifying drug-drug association is 
very noteworthy and it can be actually carried out by studying 
the drug-disease or drug-protein association. Of course, asso-
ciation between two drugs can be established if there exists a 
disease that both drugs are associated with. The drug-drug 
association created by disease as intermediary is represented by 
a matrix DD S Rm m_ ∈ × . Similarly, drug-drug association can 
be observed by checking drug-protein association. It has to 
mark an association for two drugs whenever there exists a pro-
tein that is associated with both drugs. The drug-drug 

Figure 1.  General workflow containing 5 main steps.
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association created by protein as an intermediary is represented 
by matrix DD P Rm m_ ∈ × .

The protein-protein association.  We have looked at techniques 
for defining this association. One way of detecting protein-
protein association is to search a drug as an intermediary for 
protein-drug-protein association to calculate the association 
matrix PP D Rm m_ ∈ × . With availability of protein-disease 
association, we can of course instantly evaluate protein-disease-
protein relation to get protein-protein association. This resulted 
a matrix PP S Rm m_ ∈ × .

The disease-disease association.  You can see that this kind of 
association matches one disease to another. What we have 
done is to extract disease-drug-disease relation by checking 
drug-disease association. Once 2 diseases are associated with 
the same drug, they are marked as associated in the matrix 
SS D Rk k_ ∈ × . Next each of disease-protein disease link in 
described disease-protein association is the base for clarifying 
the disease-disease association in its appropriate matrix 
SS P Rk k_ ∈ × . This aforementioned act of associating opera-
tions with intermediaries allowed us to yield 6 association 
matrices, as indicated in Step 2 of Figure 2.

New three meta-paths

Meta-path.  In a heterogeneous network, a meta-path X is 
defined as a path on a schema T N RG =( ),  representing a 
sequence of node types connected by specific edge types:

X X N R N R R Nk k: : ... ,1 1 2 2→ → →

where N N i ki ∈ ∈ +, { , ,..., }1 2 1  and R R i ki ∈ ∈, { , ,..., }.1 2
A common point of view is that a meta-path for drug dis-

ease association will start by a drug and end by a disease 
(N1 = Drug and Nk+1 = Disease). In the previous study, Wu 
et al18 showed 5 meta-paths effective for estimating drug-dis-
ease associations. In this study, we propose new 3 meta-paths to 
predict potential drugs for diseases. The meta-path design can 
reasonably maintain the most logical solution designed cur-
rently practical. It contains some definite estimations, each of 
which out-turns association. The first design that a meta-path 
should cover DD, DS, and SS by DD ∙ DS ∙ SS. This path takes 
2 options of drug-drug association DD which are DD_S, 
DD_P, and 2 options of disease-disease association SS that are 
SS_D, SS_P. By having combinations of the 2 options the first 
meta-path contains 4 sub-meta-paths:

m DD S DS SS D1 1_ _ _= ⋅ ⋅ 	 (1)

m1_2 = ⋅ ⋅DD S DS SS P_ _ 	 (2)

m1_3 = ⋅ ⋅DD P DS SS D_ _ 	 (3)

m DD P DS SS P1 4_ _ _= ⋅ ⋅ 	 (4)

When studying associations of DP  and PS  we can look at a 
meta-path that covers the associations by having particular 
drug-drug association DD and protein-protein association 
PP DD DP PP PS: .⋅ ⋅ ⋅  The DD and PP  associations have 
alternative options including DD S DD P PP S_ , _ , _  and 
PP D_ . Then, the whole 4 sub-paths for this meta-paths can 
be described as follows:

Table 1.  Elements of the heterogeneous network of drug-protein-
disease.

Type Property

Nodes (N) Drug (D)

  Protein (P)

  Disease (S)

Relations (R) Drug-Protein (DP)

  Disease-Protein (SP)

  Drug-Disease (DS)

Figure 2.  Construct the drug-protein-disease heterogeneous network and 6 new matrices representing the relationships of drug-drug, protein-protein, 

and disease-disease.
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m DD S DP PP S PS2 1_ _ _= ⋅ ⋅ ⋅ 	 (5)

m DD S DP PP D PS2 2_ _ _= ⋅ ⋅ ⋅ 	 (6)

m DD P DP PP S PS2 3_ _ _= ⋅ ⋅ ⋅ 	 (7)

m DD P DP PP D PS2 4_ _ _= ⋅ ⋅ ⋅ 	 (8)

If we look at 3 associations of drug-drug DD, protein-protein 
PP  and disease-disease SS, the associations of drug-protein 
DP  and protein-disease PS  insists on preserving completely 
different paths for drug-disease association. For all possible 
combinations of options of DD PP,  and SS, the meta-path of 
DD DP PP PS SS⋅ ⋅ ⋅ ⋅  has 8 sub-paths:

m DD S DP PP S PS SS D3 1_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (9)

m DD S DP PP S PS SS P3 2_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (10)

m DD S DP PP D PS SS D3 3_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (11)

m DD S DP PP D PS SS P3 4_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (12)

m DD P DP PP S PS SS D3 5_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (13)

m DD P DP PP S PS SS P3 6_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (14)

m DDq P DP PP D PS SS D3 7_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (15)

m DD P DP PP D PS SS P3 8_ _ _ _= ⋅ ⋅ ⋅ ⋅ 	 (16)

So, in general, for producing drug-disease association each 
new meta-path has its sub-paths.

Feature extraction

As defined by Wu et al,18 the element DS i j( , )  of the transition 
matrix DS  represents the number of paths from the drug Di  to 
the disease S j  according to the corresponding meta-path. It 
seems like an act of getting row i  in the transition matrix DS  
to build features for drug Di . Similarly, column j can be used to 
build features for disease S j . In this form of programing, the 

mentioned above features of drug-disease association are 
grouped together to represent features of the association. Here, 
the number of drugs is m and the number of diseases is n, then 
the number of features representing the drug-disease interac-
tion will be m n+ . In Figure 3, we mark X X X1 2 3, ,  for the 
feature matrices provided by each combination of sub-paths of 
3 meta paths.

However, as we know, the number of known drug disease 
pairs is extremely small, compared with the total number of 
drug-disease pairs. Therefore, this considerably affects the con-
struction of an effective machine learning model. It is, of course, 
possible to apply the singular value decomposition (SVD) to 
extract some small features in our work. Some studies have also 
expressed that in the task of dimensionality downgrading using 
SVD in the prediction problem on a heterogeneous biological 
network, useful data will not be altered, but redundant infor-
mation will be taken out.20 Note, as an interesting contribution, 
that the proposed 3 meta-paths with their 128 subpaths reflect 
many aspects integrated in the heterogeneous network, thereby 
revealing many relationships between drug disease treatment. 
Then, the base classifiers of each metapath were constructed to 
predict the relationship between drug-disease treatment. 
Finally, we integrated these base classifiers together to create an 
ensemble classifier as shown in Figure 3. The classifier used in 
our method is the ensemble classifier with a voting strategy for 
selecting the best one.

Prediction of drug-disease associations

It would be necessary to apply an ensemble classifier for 
improving performance. Suppose x is a feature vector of a 
drug-disease pair with an unknown label, and h i x i_ ( ), , ,=1 2 3 
is the prediction probability of each base classifier. Then, the 
final prediction result of the ensemble model is the average 
value of h xi ( ).

H x h xi

n

i( ) = ∑13
1

( )	 (17)

In summary, as data were collected from different biological 
databases, we integrate them to form a mixed drug protein-
disease bio-network. We explained how 128 subpaths of three 
new meta-paths enriched associations for the heterogeneous 

Figure 3.  Extract features with singular value decomposition, then predict drug-disease.
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network. This noticeably aids the process of constructing fea-
ture vector data that represent the relationship between drug 
and disease in the network.

Experiments
The study for evaluating the prediction of new drug disease 
interactions by considering available interaction between drugs, 
proteins and diseases. The description of data and parameters 
used in our experiments will be outlined and discussion of 
learning results will be followed in this section.

Data

Our study on searching drugs for diseases requires reliable and 
accurate data of drug-disease, drug-protein and disease-pro-
tein. The resources of the data are available from OMIM,21 
Gottlieb’s data set,22 DrugBank.23 and selected by Wu et al18 as 
shown in Table 2. Actually, the data was provided by the sources 
with a big variation of formats and data types due to different 
data sources. In the OMIM,21 by checking 449 diseases and 
1147 proteins, 1365 disease-protein interactions were reported. 
At the same time, Gottlieb’s data set provided 1827 drug dis-
ease interactions addressing 302 diseases and 551 drugs. By the 
DrugBank,23 4642 drug-protein interactions were gathered 
from 1186 drugs and 1147 proteins. The first significant notice 
is the heterogeneity of the dataset, collected from different 
sources. Second, for studying the relation between a drug and a 
disease, it is to check whether the route lies within the network 
of the diseases, proteins and drugs that connect a particular 
drug and a specific disease. Since the network consists of edges 
that were constructed from mentioned above different sources, 
the network is surely heterogeneous.

Parameters

In the algorithm 1 for meta-path 1, the drug parameter 
d ∈  0 1,  has 2 parameters for calculating drug-drug associa-
tion DD, we marked m1d0 and m d1 1 for the case of running 
sub-paths of the meta-path with d = 0, and d =1 accordingly. 
Considering the disease parameter s∈  0 1, , the notes of m s1 0 
and m s1 1 serves the sub-paths of the first meta-path with 
s = 0, and s =1 appropriately. By the same way, the second 
meta-path and the third path contains parameters. There are 22 
options, which are combinations of input parameters d s,  for 
metapath 1, 22 options for d p,  in meta-path 2 and 23 options 
for d p s, ,  in meta-path 3 according to the described method in 

Section 3. Thus, there are 2 12827 =  learning options in total. In 
training for each learning option, the 3 meta paths have been 
performed and then an ensemble method was conducted from 
the paths to get ensemble learning.

To enable cross validation, the data of drug-disease interac-
tion in each learning option were split randomly 5 times, pro-
viding a training set and a test set each time. Several metrics 
that include ACC, PRE, REC, MCC, F1 (A1-A5) were 
implemented in the cross validation to evaluate performance of 
learning. The Area Under Precision-Recall Curve (AUPR) 
and Area Under Receiver Operating Characteristic Curve 
(AUC) were used in our tests.

Discussion
We may illustrate the selected parameters corresponding to the 
possible value of accuracy. The map in Figure 4 explores the 
correspondence by using vertical axis for parameters of path 1 
and path 2, while horizontal axis is covered by parameters of 
path 3. In particular, the accuracy which is higher than 0.9 has 
been seen in several places of the map. To report the best results 
of implementing 3 paths by 28 options, Table 3 uses a particu-
lar note for an option consisting of parameters. At the path 1, 
the note of m1(ds) is to show parameter of drug (d) for accuracy 
varying from 0.906 to 0.908. Actually, there is only 1 note of 
1 1−  for path 1 m ds1( ), that requires updating the prior of drug 
by drug-protein interactions and the prior of disease by dis-
ease-protein interactions. However, the third path needs the 
prior of disease update by disease-drug interactions as the 
number of 0 can be seen at the end of all notes in the third 
column and disease ( )s  and where d  can be 0 or 1. So that, the 
note of 1 1−  in the case means d s= =1 1, . Table 3 shows 7 the 
best options for accuracy varying from 0.906 to 0.908. Actually, 
there is only 1 note of 1 1−  for path 1 m ds1( ), that requires 
updating the prior of drug by drug-protein interactions and the 
prior of disease by disease-protein interactions. However, the 
third path needs the prior of disease update by disease-drug 
interactions as the number of 0 can be seen at the end of all 
notes in the third column.

Furthermore, the available results of related works are sum-
marized in a comparative report. By incorporating drug chem-
istry information and gene ontology annotation information, 
Liang et  al24 proposed the Laplacian regularized sparse sub-
space learning (LRSSL) approach for predicting drug-disease 
interactions.24 Luo et  al25 used the Bi-Random walk algo-
rithm (MBiRW)25 with analysis of medications and disorders 

Table 2.  Data in experiments.18

Object Number Interaction Number Ratio

Drug 1186 Drug-protein 4642 1:293

Protein 1467 Protein-disease 1365 1:377

Disease 449 Disease-protein 1827 1:291
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for evaluating new drug-disease interactions. In applying 
meta-paths with ensemble learning methods, Kawichai et al26 
associated drugs and diseases by Gene ontology terms.

To estimate drug-disease interactions, a linear neighbor-
hood similarity27 and a network topological similarity10 were 
introduced by Zhang et al. It is then possible to implement a 
similarity constrained matrix factorization method (SCMFDD) 
analyzing drug features, and disease semantics and information 
of drug-disease associations.20 After representing similarities 
and interactions between diseases, medications, and therapeu-
tic targets, a three-layer heterogeneous network model 
(TL-HGBI) was proposed by Wang et  al28 like a computa-
tional framework. Tho Dang et al29 implemented the EMP-
SVD18 in other new 5 meta-paths and that improved some 
performance metrics.

As SVD was proposed to extract some small features, it’s 
essential to show the effect of the SVD by small experiment 
where SVD was not used in our method and all features were 
used for training. The scores of the experiment can be seen in 
Table 4 with ACC = 0.848, which is lower than the case with 
SVD. The method has its major three meta paths. For instance, 
the method with 1 meta path consists of 1 time running EMP-
SVD proposed by Wu et  al.18 The method designed with 2 
meta paths consists of first run of the EMP-SVD and then run 
different combination m2 1_ , m2 2_ , m2 3_ , m2 4_ , m2 5_  as 
presented in Section 3.3. The best score of the experiment of 
the method with 2 meta paths is also included in Table 4. 
Actually, the score is not as good as the 1 for 3 meta paths.

In this study, we proposed to analyze the drug-disease asso-
ciations by presenting drug-disease associations through three 

Figure 4.  Accuracy by ensemble path given parameters of each meta-path.

Table 3.  The best results of ensemble path by parameters of 3 meta-path.

m1(ds) m2(ds) m3(ds) AUPR AUC PRE REC ACC MCC F1

1-1 1-1-0 0-0-0 0.968 0.963 0.895 0.922 0.908 0.816 0.908

1-1 1-1-1 0-0-0 0.968 0.963 0.895 0.922 0.908 0.816 0.908

1-1 1-0-0 0-1-0 0.968 0.963 0.903 0.914 0.907 0.815 0.909

1-1 1-0-1 0-1-0 0.968 0.963 0.903 0.914 0.907 0.815 0.909

1-1 0-1-0 1-0-0 0.966 0.960 0.906 0.910 0.906 0.813 0.908

1-1 0-1-1 1-0-0 0.966 0.960 0.906 0.910 0.906 0.813 0.908

1-1 1-1-0 0-1-0 0.967 0.963 0.897 0.915 0.906 0.811 0.906

1-1 1-1-1 0-1-0 0.967 0.963 0.897 0.915 0.906 0.811 0.906
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novel meta-paths. Through experiments, it has also been 
proven that this is a new point and main contribution of the 
article, demonstrating the role of these three new meta-paths. 
However, a limitation of the article is that it has not been sci-
entifically explained using biomedical bases to see the practical 
significance. If it can be done, it will be a groundbreaking con-
tribution. This is really very difficult, and currently research is 
mainly doing what we do, which is to prove it through experi-
ments and measurements for evaluation.

Case Studies

When transferring drug-disease associations from known 
associations to new associations, new drug-disease associations 
can be checked with literature for confirmation or disapproval 
reports. We used the label transfer method with 3 paths for 
searching for a new association of drug- disease from the data-
set covering drug-disease, disease-protein and drug-protein 
association. A number of new associations of drug-disease are 
found while they were both unassociated in the initial dataset 
and unassociated by the original 5 paths methods.

For each new found drug-disease association we search 
available publications of the drug and its uses in treatment of 
the disease. Many drug-disease associations are created by the 
label transferring method but no report of the association can-
not be found. Although it is hard to derive publication for new 
associations, we can instead obtain confirmation for some 
drug-disease associations. Thus, by raising association of the 
drug of fludrocortisone and the disease of hypertension from 
label transfering, we have found a paper of Veazie et al31 on this 
association. The disease of orthostatic hypotension is an over-
stated drop in blood pressure while standing. This is the effect 
of a diminish in cardiac output or defective or insufficient 

vasoconstrictor mechanisms. The drug fludrocortisone is a 
mineralocorticoid that expands blood volume and blood pres-
sure. Fludrocortisone is regarded as the first- or second-line 
pharmacological therapy for disease of orthostatic hypotension 
alongside mechanical and positional methods.

For instance, a new association of the oseltamivir drug and 
the encephalopathy disease is created by our label transfer 
method. Encephalopathy is described for any disease of the 
brain that changes brain structure or function. In the market, 
oseltamivir is sold under the brand name Tamiflu and it is an 
antiviral drug. A common way of using oseltamivir is to pre-
vent and to treat influenza A and influenza B, viruses which 
cause the flu. In what follows, a case of treatment with oseltami-
vir for encephalopathy was reported in detail by Yen et  al.32 
Here, flu-like symptoms and progressive encephalopathy were 
observed for a 25-year old female patient. With assistance of 
nasopharyngeal swab Polymerase Chain Reaction Influenza B 
was detected. The patient was treated with oseltamivir and 
patient’s mental status retaken within days.

Conclusions
We presented a new method for enhancing performance of 
drug-disease interaction prediction and applied it to the analy-
sis of biomedical heterogeneous data. The method includes 3 
paths designed for training a dataset of interactions between 3 
objects: drug, protein and disease. The contribution of this 
paper is to present only 3 meta-paths with a full 27 options 
which allows us to update the prior of mentioned above objects 
by their related interactions with neighbor objects. In experi-
ments, all the learning options were tested with cross validation 
permitting us to see which options can improve accuracy. As a 
result the method succeeded in enhancement for most of all 
performance metrics, including accuracy and F1-measure. The 

Table 4.  Performance of related methods.

Methods AUPR AUC PRE REC ACC MCC F1

EMP-SVD18 0.956 0.951 0.913 0.854 0.876 0.755 0.882

LRSSL24 0.881 0.861 0.864 0.732 0.770 0.553 0.790

MBiRW25 0.952 0.942 0.867 0.901 0.884 0.769 0.884

MPG-DDA26 0.944 0.930 0.886 0.842 0.867 NA 0.863

PREDICT30 0.908 0.895 0.809 0.850 0.830 0.662 0.828

SCMFDD20 0.836 0.854 0.926 0.713 0.774 0.575 0.805

TL-HGBI28 0.852 0.846 0.829 0.750 0.774 0.552 0.787

Five Paths29 0.962 0.956 0.882 0.901 0.889 0.780 0.889

Our method with 3 paths no SVD 0.923 0.920 0.867 0.838 0.848 0.696 0.852

Our method with 2 paths 0.845 0.833 0.822 0.731 0.756 0.518 0.773

Our method 0.968 0.963 0.895 0.922 0.908 0.816 0.908

The best scores are printed in bold.
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integration of the use of prior update, the use wherever appli-
cable for heterogeneous biomedical heterogeneous data, and 
the way to make training flexible, yields an computational 
framework effective for data collected from different sources.
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Appendix
Consider a test that provides n n nTP TN FP, , , and nFN  which are 
the number of true positive samples, true negative samples, 
false positive samples and false negative samples, correspond-
ingly.33-36 A number of classification metrics can be been esti-
mated to enable the performance evaluation:
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