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A B S T R A C T

Caregiving adversity (CA) exposure is robustly linked to increased risk for poor oral, physical, and mental health
outcomes. Increasingly, the gut microbiome has garnered interest as a contributor to risk for and resilience to
such health outcomes in CA-exposed individuals. Though often overlooked, the oral microbiome of CA-exposed
individuals may be just as important a contributor to health outcomes as the gut microbiome. Indeed, outside the
context of CA, the oral microbiome is well-documented as a regulator of both oral and systemic health, and
preliminary data suggest its association with mental health. However, research examining the association be-
tween CA and the oral microbiome is extremely sparse, especially in childhood, when the community compo-
sition of such organisms is still stabilizing. To address that sparsity, in the current study, we examined
composition and differential abundance metrics of the oral microbiome in 152 youth aged 6–16 years, who had
either been exposed to significant caregiving adversity (significant separation from or maltreatment by a care-
giver; N = 66, CA) or who had always remained with their biological/birth families (N = 86, Comparison). We
identified a significant negative association between hair cortisol and oral microbiome richness in the Com-
parison group that was significantly blunted in the CA group. Additionally, youth in the CA group had altered
oral microbiome composition and elevated abundance of potentially pathogenic bacteria relative to youth in the
Comparison group. Questionnaire measures of fatigue, somatic complaints, and internalizing symptoms had
limited associations with oral microbiome features that were altered in CA. Although we found differences in the
oral microbiomes of CA-exposed youth, further research is required to elucidate the implications of those dif-
ferences for health and well-being.

1. Introduction

Early adversity (EA), defined as exposure to chronic or severe
stressors prior to adulthood, is linked to a variety of health risks. These
include, but are not limited to, poor oral health (Boyce et al., 2010;
Sarvas et al., 2021; Bright et al., 2015), immune dysregulation (Danese
and McEwen, 2012; Dutcher et al., 2020; Slopen et al., 2013a), cardio-
vascular disease (Doom et al., 2017), and psychopathology (Conway
et al., 2018). Caregiving adversity (CA), a severe subtype of early
adversity in which an individual is maltreated by or extensively sepa-
rated from their caregiver (e.g., due to orphanage or foster care), is an
especially concerning risk factor that exerts pronounced effects on stress
and immune physiology (reviewed by Kuhlman et al. (2017)), as well as
on oral health (Sarvas et al., 2021). Thoughmany compelling theoretical
models have been proposed to explain the wide-reaching effects of

caregiving adversity on health, very little mechanistic information is
known about those associations. The elucidation of such mechanisms is
necessary for the development of interventions to reduce risk for the
spectrum of harmful outcomes associated with CA exposure.

Although CA is a primarily psychosocial exposure, it affects multiple
tissues and organ systems across the body; therefore, the most likely
candidate mechanisms underlying the effects of EA on health are those
that also exert wide-reaching effects on the body. The microbiome
(communities of microorganisms inhabiting niches in the human body)
is compelling in this regard because it exerts effects not only in within
tissues directly colonized by microbes (Hajishengallis, 2015), but also
across the periphery –the cardiovascular system (Gaetti-Jardim et al.,
2009; Kebschull et al., 2010), placenta (Gomez-Arango et al., 2017a),
and bone tissue (Mikuls et al., 2014; Kinloch et al., 2011)– and even the
central nervous system (Riviere et al., 2002; Xue et al., 2020). Indeed,
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emerging evidence suggests that microbiome dysregulation is a likely
mechanism by which early adversity exposure affects individual out-
comes (Callaghan et al., 2016, 2020a; Cowan et al., 2019; Vogel et al.,
2020; Querdasi et al., 2023; Hantsoo et al., 2020; Reid et al., 2021).
Further characterization of microbiome dysregulation following early
adversity could lead to the development of treatments, such as prebiotic
supplementation, that promote well-being in those exposed to CA.

Links between host psychosocial factors and the gutmicrobiome have
recently become popularized among behavioral and neural scientists.
However, this focus on the gut microbiome may have led to a neglect of
other important microbial habitats which are also related to health
outcomes, such as the oral cavity. Microorganisms which inhabit the oral
cavity comprise the second largest community of microbes in the human
body after the gut. They are seated at the primary gateway for toxin,
nutrient, and pathogen entry to the human body, making this an
important site of influence for health outcomes. Indeed, extensive evi-
dence indicates that the oral microbiome is associated with oral health
outcomes, likely causally, as well as with systemic health outcomes.
Within the oral cavity, ecological dysregulation of the microbiome
directly causes cavities (Struzycka, 2014) and periodontitis
(Hajishengallis, 2015). Beyond the oral cavity, dysregulation of the oral
microbiome is positively associated with the incidence and severity of
cardiovascular disease (Carrion et al., 2012; Kapil et al., 2013), arthritis
(Mikuls et al., 2014; Kinloch et al., 2011), Alzheimer’s disease (Aragón
et al., 2018; Poole et al., 2013), and diabetes (Cho et al., 2021; Taylor
et al., 2013; Xiao et al., 2017). Emerging evidence suggests that the
abundance of certain taxa in the oral microbiome may be associated
with internalizing symptoms, and that these associations are moderated
by levels of salivary cortisol, a stress biomarker, and C-reactive protein
(CRP), an inflammation biomarker (Simpson et al., 2020; Wingfield
et al., 2021). Therefore, elucidation of factors that may induce oral
microbiome dysregulation is critical to the promotion of physiological
and behavioral health.

Unlike the gut microbiome, the oral microbiome appears to be
particularly resistant to antibiotic insult (Wu et al., 2020; Zaura et al.,
2015) in adults, suggesting greater stability in this community over
time. The oral microbiome also regulates immunity (Hajishengallis,
2015) through pathways distinct from the gut microbiome. As the oral
microbiome may be especially amenable to minimally invasive treat-
ment, such as toothpaste additives (Kong et al., 2021), its inclusion in
preventative healthcare strategies is likely more feasible than some gut
microbiome-based treatments. For these reasons, understanding how
environmental variables influence the oral microbiome will be essential
for creating new and effective treatments which target the manifold
health outcomes associated with this microbial community.

Caregiving adversity is especially concerning as a risk factor for oral
microbiome dysregulation. Poor oral hygiene and subsequent disease
are highly prevalent in CA-exposed children, so much so that clinicians
often use oral health as signs of possible maltreatment (Håkstad et al.,
2024). Indeed, adolescents with a history of foster care are more likely to
report oral health problems and barriers to receiving dental care (Sarvas
et al., 2021; Ferrara et al., 2013), which are robustly linked to oral
microbiome dysregulation. CA is also associated with other health be-
haviors that could influence the oral microbiome, such as diet, in adults
(Marquez et al., 2021). However, as caregivers play a larger role in
regulating the diet of children, diet may play less of a moderating role
for CA impacts on the oral microbiome earlier in development, partic-
ularly if children’s CA has ended, e.g., they are in a stable caregiving
arrangement. In terms of physiological mechanisms, CA is linked to
various outcomes likely to affect the oral microbiome, including
inflammation (Kuhlman et al., 2020a) and alterations to saliva compo-
sition (Kuras et al., 2017).

Not surprisingly, given the behavioral and physiological associates of
CA just discussed, young adults who retrospectively reported a history of
exposure to early caregiving adversity exhibit differences in oral
microbiome composition compared to those with low exposures

(Charalambous et al., 2021). Critically, this association is present even
when the CA occurred decades prior to the oral microbiome sampling
(Charalambous et al., 2021), suggesting that CA exerts a lasting impact
on the oral microbiome. Interestingly, CA exposed individuals are also at
heightened risk for socioemotional problems, including internalizing
symptoms like anxiety and depression (Gardner et al., 2019), and broad
physical health problems (e.g., cardiovascular disease (Ho et al., 2020),
gastrointestinal distress (Callaghan et al., 2020b)). How early in devel-
opment changes to the oral microbiome arise after CA exposure and
whether they are directly linked to health outcomes in the same in-
dividuals remain open questions. As the age of onset for many psychi-
atric disorders is early adolescence (Kessler et al., 2005), and because
the oral microbiome is developing and stabilizing across early childhood
and into adolescence (Burcham et al., 2020; Willis et al., 2022), deter-
mining the developmental trajectory of microbiome changes after CA is
a public health priority with clear basic science importance.

In addition to its direct effects, caregiving adversity may also affect
the responsiveness of the oral microbiota to host cortisol levels. Such an
effect has been observed in host tissue, wherein chronic CA-induced
dysregulation of cortisol levels can cause brain tissue and immune
cells to exhibit insensitivity to the regulatory effects of cortisol
(McGowan et al., 2009; Tyrka et al., 2012). We posit that, similarly to
host tissue, the oral microbiota may become less sensitive to the effects
of host-derived cortisol after CA exposure. Cortisol has been shown to
exert dysregulatory effects on the oral microbiome in vitro and in
typically developing children (Boyce et al., 2010; Duran-Pinedo et al.,
2018; Tikhonova et al., 2018), but the association between oral micro-
biome characteristics and tonic cortisol levels in CA-exposed youth has
yet to be studied. Characterizing the effect of CA on the association
between tonic cortisol levels (which can be measured in accumulated
hair concentrations, for example) and microbiome characteristics will
reveal more about the putative mechanisms underlying health in
CA-exposed youth.

The current study tests whether CA is associated with compositional
characteristics of the oral microbiome in children and adolescents, and
whether CA moderates the association between tonic cortisol levels and
oral microbiome composition. To probe the potential clinical utility of
our findings, we also examined associations between the oral micro-
biome and health outcomes in youth. Specifically, we examined sub-
clinical and transdiagnostic mental and physical health symptoms which
would be more likely to present in a developmental context: fatigue,
somatic complaints, and internalizing symptoms. Notably, each of these
adverse health outcomes have been shown to be elevated in individuals
exposed to early adversity, including specifically CA exposed in-
dividuals, (Callaghan et al., 2020b; Orendain et al., 2023; Heim et al.,
2006; Crawley et al., 2012) and have been linked to the oral microbiome
in prior studies in youth (Simpson et al., 2020) and adults (Wang et al.,
2018; Gonzalez et al., 2016; Fourie et al., 2016).

2. Materials & methods

2.1. Methods

2.1.1. Participants
Participants were enrolled in a larger study, the Mind, Brain, Body

study, at the University of California, Los Angeles (UCLA), between
November 2019–March 2022. Participants who took part in the research
before the COVID-19 related research ramp down at UCLA (March 2020)
came into the research lab for their first visit, and then completed
additional biological sample collection, questionnaires, and a behavioral
task at home 2 weeks later. Participants who took part in the research
after the COVID-19 related research ramp down at UCLA completed two
virtual visits online and mailed their biological samples back to the lab.
The parent study included a large number of questionnaires, several
biological samples (saliva, stool, blood, hair), a parent-child interaction
task that was filmed, and a computerized behavioral task. The current
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study uses data from the questionnaires, saliva sample, and hair sample.
Informed consent was obtained from participants’ caregivers, and

assent was obtained from the child and adolescent participants. There
were two participant groups: the caregiving adversity (CA) group and
the Comparison group. To recruit a sufficiently large CA group, we
focused our recruitment efforts on foster youth who had been adopted or
placed in guardianship care, as the reasons for foster care placements
typically involve some form of caregiver maltreatment (which constitute
a CA exposure (U.S. Children’s Bureau, 2022)). To be included in the CA
group, participants must have experienced some form of caregiver
maltreatment or extensive parent separation (as described in the Care-
giving Adversity section below), and have been between the ages of 6–16
years old at the time of study participation. Youth in the Comparison
group must not have endorsed any caregiving related adversities, and
must not have had a diagnosed mental illness or learning disability aside
from attention deficit disorder (ADD), which was not an exclusion cri-
terion if it was judged by the parent to be unlikely to interfere with study
participation, or if the child was taking their prescribed ADDmedication
at the time of study participation. Youth in the Comparison group must
have been either 6–16 years old at the time of study (the original cri-
terion was either 6–9 or 13–16 years old but the age range was expanded
due to recruitment challenges). Participants were not enrolled in either
the CA or Comparison group if the participant’s caregiver reported that
the participant had uncorrected vision problems that would interfere
with their ability to read or understand study materials/tasks, had used
antibiotics in the past 4 months (in this case they were placed on a
waitlist and were allowed to enroll in the study when they no longer met
the antibiotic exclusion criteria), or the participant smoked marijuana
more than once a week, had more than 10 alcoholic drinks per week, or
used any other illicit substances, based on parent report.

All individuals from the Mind, Brain, Body study who completed a
saliva sample were included in the current analyses, resulting in a final
sample size of 66 in the CA group and 86 in the Comparison group.
Family-level clustering among siblings was present, but uncommon, in
our sample (with an average sibling cluster size of 1.36, see Table 1 for
group averages of siblings included in the study). To estimate the effect
of this clustering on microbiome diversity and composition, we calcu-
lated the design effect of family-level clustering on alpha diversity. The
effect was less than 1.15 for Faith’s diversity and observed feature
counts, and less than 1.08 for Pielou’s evenness and Shannon’s diversity.
Given that these effects are small (representing a sampling variability
inflation of about 8–15%), that we are not interested in family-level
effects, and that we don’t expect effects to vary across families, we
consider this negligible (Lai and Kwok, 2015), and therefore, our ana-
lyses do not adjust for clustering within families.

Table 1 shows counts of categorical variables and means of contin-
uous variables for the Comparison and CA groups, as well as for the
complete sample. For continuous variables, standard deviation is shown
in parentheses, and for counts, percentages are shown in parentheses
within each group. For variables collected at the time of the 1st study
visit, values for participants who did not respond or did not know the
information are included. For variables collected at 1-year follow-up,
only responders are shown. The last column shows p-values for differ-
ences between the CA and Comparison groups using Student’s T tests for
continuous variables and chi squared tests for categorical. 1 These cat-
egories refer to feeding exclusively with breastmilk, including breast-
feeding and feeding breastmilk with a bottle; feeding a combination of
breastmilk and formula; feeding exclusively with formula; and either a
response that the information was unknown or no response altogether. 2

This scale was completed by caregivers and ranged from 0 to 15 (Sup-
plement 3). 3 Oral health and oral hygiene information were collected
from a subsample of N = 85 participants at 1-year follow-up. Partici-
pants were classified as having any oral health problem if they endorsed
having problems with bleeding gums, caries/cavities, toothache, or sore
gums.

2.1.2. Caregiving adversity
Caregiving adversity was assessed via parent report of the child’s

caregiving history. To be included in the CA group, participants must
have met at least one of the following conditions: been adopted inter-
nationally from institutional or foster care; adopted domestically from
foster or kinship care; be in guardianship care with a non-biological
parent caregiver (kinship care or foster parent); have had extensive
separation from a primary caregiver for other reasons (e.g., parental
incarceration); and/or have been exposed to significant maltreatment at
the hands of a caregiver. This operationalization was designed to
examine the effects of caregiving related adversities that cut across
specific sociolegal subtypes and were united by virtue of their impact on
the caregiver-child relationship. This relationship is ecologically sig-
nificant and has evolved in mammals to foster the survival and guide the
development of youth, making it relevant within humans and across
mammalian species (Callaghan et al., 2019). Critically, studies have
shown that caregiving related adversities (even when comprised of
diverse caregiving experiences), have a unique impact on the brain and
behavioral outcomes, as opposed to non-interpersonal adversities, e.g.,
poverty (Vannucci et al., 2023), justifying our approach to examine
diverse CAs together. However, to probe possible effects of CA subtypes,
we conducted a supplementary analysis that re-tested significant find-
ings using CA as a multicategorical variable (domestically adopted,
internationally adopted, or Comparison; Supplement 1).

Moreover, we chose to study development in CA exposed individuals
who were now in stable care arrangements (e.g., adoption, guardian-
ship) because it enables examination of lasting effects of CA that are
largely restricted to early life, while lessening the impact on ongoing
adversities on study outcomes. In order to better understand the effects
of CA duration, we conducted a supplementary analysis that re-tested
significant findings within the CA group only, controlling for time
since entry into stable care (Supplement 2).

2.1.3. Health outcomes
We used three measures of participants’ health that were proxy re-

ported by their caregivers as outcomes in this study: fatigue subscale on
the Pediatric Quality of Life (PedsQL) (Varni et al., 2015), and somatic
complaints and internalizing symptoms subscales of the Child Behavior
Checklist (CBCL) (Achenbach, 2004).

2.1.4. Covariate selection
The following covariates were selected a priori, based on literature

suggesting their lasting associations with the oral microbiome: child’s
age and sex (Dzidic et al., 2018; Dashper et al., 2019; Kumar, 2013),
primary style of infant feeding (Dzidic et al., 2018; Eshriqui et al., 2020)
(breastmilk, formula, combination of breastmilk and formula, or un-
known), child’s birth mode (Dzidic et al., 2018) (vaginal birth, C-sec-
tion, or unknown), and prenatal or early postnatal antibiotic exposure
(Dzidic et al., 2018; Gomez-Arango et al., 2017b) (exposure to antibi-
otics, no exposure to antibiotics, or exposure unknown). Because many
caregivers did not know the child’s infant feeding style, birth mode, or
perinatal antibiotic exposure history, we included “Unknown” as a
category here. We also included caregiver-reported impact of the
COVID-19 pandemic on the family as a covariate (see Supplement 3 for
details of the scale), given that a large fraction of families enrolled in our
study during the pandemic. Only one caregiver reported that their child
was not cisgender and no caregivers reported that their child used
alcohol (at levels that qualified for study exclusion), thus gender and
alcohol use were not included as covariates. Additionally, because our
sample was uniformly high in socioeconomic status (assessed by care-
giver education; see Table 1), we did not use this variable as a covariate
in any analyses, though we did test whether caregiver education was
associated with children’s hair cortisol in a supplemental analysis (see
Supplement 4).

Although oral hygiene behaviors and oral health symptoms were not
reported concurrent with the oral microbiome sample, information
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Table 1
Sample demographics & covariates.

Race/Ethnicity Counts (and Percentages) Total

Comparison Caregiving Adversity

Asian 23 (26.74%) 11 (16.67%) 34 (22.37%) p = .441
Black/African American 3 (3.49%) 1 (1.52%) 4 (2.63%)
Multiracial 16 (18.60%) 7 (10.61%) 23 (15.13%)
Native American 1 (1.16%) 1 (1.52%) 2 (1.32%)
White (Hispanic) 16 (18.60%) 10 (15.15%) 26 (17.11%)
White (Not Hispanic) 19 (22.09%) 21 (31.82%) 40 (26.32%)
No Response 8 (9.30%) 15 (22.73%) 23 (15.13%)

Mean Age in Years (and Standard Deviation) Total

Comparison Caregiving Adversity

Mean Age in Years (SD) 11.36 (3.64) 11.15 (3.08) 11.27 (3.40) p = .691

Sex Counts (and Percentages) Total

Comparison Caregiving Adversity

Female 40 (46.51%) 35 (53.03%) 75 (49.34%) p = .527
Male 46 (53.49%) 31 (46.97%) 77 (50.66%)

Feeding Style in Infancy1 Counts (and Percentages) Total

Comparison Caregiving Adversity

Breastmilk 55 (63.95%) 6 (9.09%) 61 (40.13%) p < .000*
Breastmilk & Formula 23 (26.74%) 3 (4.55%) 26 (17.11%)
Formula 8 (9.30%) 33 (50.00%) 41 (26.97%)
Unknown/No Response 0 (0.00%) 24 (36.36%) 24 (15.79%)

Birth Method Counts (and Percentages) Total

Comparison Caregiving Adversity

Vaginal Birth 55 (63.95%) 19 (28.79%) 74 (48.68%) p < .000*
C-Section 30 (34.88%) 13 (19.70%) 43 (28.29%)
Unknown/No Response 1 (1.16%) 34 (51.52%) 35 (23.03%)

Perinatal Antibiotic Exposure Counts (and Percentages) Total

Comparison Caregiving Adversity

Yes 10 (11.63%) 1 (1.52%) 11 (7.24%) p < .000*
No 64 (74.42%) 14 (21.21%) 78 (51.32%)
Unknown/No Response 12 I13.95%) 51 (77.27%) 63 (41.45%)

Mean Coronavirus Impact2 (and Standard Deviation) Total

Comparison Caregiving Adversity

Mean Coronavirus Impact (SD) 5.14 (4.00) 4.82 (3.55) 5 (3.80) p = .602

Highest Caregiver Education Counts (and Percentages) Total

Comparison Caregiving Adversity

Graduate Degree 48 (55.81 %) 31 (46.97%) 79 (51.97%) p = .217
Bachelor’s degree 18 (20.93%) 22 (33.33%) 40 (26.32%)
Less than Bachelor’s 16 (18.60%) 9 (13.64%) 25 (16.45%)
No Response 4 (4.65%) 4 (6.06%) 8 (5.26%)

Siblings in the Study Counts (and Percentages) Total

Comparison Caregiving Adversity

Has at least 1 sibling in study 36 (41.86%) 34 (51.52%) 70 (46.05%) p = .308
Has no siblings in study 50 (58.14%) 32 (48.48%) 82 (53.95%)

Mean Waist-to-Height Ratio (and Standard Deviation) Total

Comparison Caregiving Adversity

Mean Waist-to-Height Ratio (SD) 0.49 (0.07) 0.47 (0.04) 0.48 (0.07) p = .136

Oral Health at 1-Year Follow-Up3 Counts (and Percentages) Total

Comparison Caregiving Adversity

Any Oral Health Problem 7 (12.96%) 7 (22.58%) 14 (16.47%) p = .397
No Oral Health Problem 47 (87.04%) 24 (77.42%) 71 (83.53%)

Toothbrushing at 1-Year Follow-Up Counts (and Percentages) Total

Comparison Caregiving Adversity

Twice or More a Day 30 (69.77%) 17 (65.38%) 47 (68.12%) p = .049*
Once a Day 7 (16.28%) 9 (34.62%) 16 (23.19%)
Less than Once a Day 6 (13.95%) 0 (0.00%) 6 (8.70%)

Flossing at 1-Year Follow-Up Counts (and Percentages) Total

(continued on next page)
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about these variables was reported approximately 12 months after the
samples were collected. Items for two scales assessing oral hygiene be-
haviors and oral health symptoms were adapted from Simpson et al.
(2020) (Table 1, see Supplement 5 for details), and were proxy reported
by parents for participants younger than 9 and were self-reported by
participants who were 9 years or older. We did not include oral health
symptoms as a covariate in any analyses because problems such as caries
(Tanner et al., 2016) and gum disease (Hajishengallis, 2014) have been
shown to be outcomes of ecological dysregulation of the oral micro-
biome, rather than a potential confounder of the relationship between
CA or cortisol and oral microbiome. In contrast, we suspected that oral
hygiene behaviors (e.g., brushing and flossing) likely partially mediated
the association between CA and oral microbiome composition, with
adversity potentially leading to less effective brushing and flossing
(Myran et al., 2023) and this in turn affecting the microbiome (Burcham
et al., 2020). Thus, to improve causal inference, we did not control for
oral hygiene behaviors in primary analyses involving CA impacts on the
microbiome (Wysocki et al., 2022). However, because oral hygiene
could potentially confound the effects of cortisol on the oral micro-
biome, given that oral hygiene can affect the microbiome (Burcham
et al., 2020) and could potentially affect cortisol levels (Pani and Al
Odhaib, 2013), we included a supplementary analysis to re-test any
significant effects of cortisol while controlling for oral hygiene behaviors
(see Supplement 6).

2.1.5. Procedure
In person data collection: 27 participants completed in-person data

collection prior to the shutdown of in-person research activities due to
COVID-19. These participants were invited to our research laboratory at
UCLA with their caregiver. Under the instruction of trained researchers,
they completed behavioral tasks and interviews, were measured for
height, weight, and waist circumference, and gave biological samples,
including hair and saliva. Caregivers reported the participant’s de-
mographic information and completed questionnaires. Participants aged
9 years and older could choose whether to complete questionnaires
independently or whether to have the items read to them by a
researcher; participants aged 8 years or younger always had the items
read to them by a researcher.
Online data collection:Due to safety concerns caused by the COVID-19

pandemic, in-person data-collection was halted after the first 26 par-
ticipants, and the remaining 126 participants completed data collection
remotely. These participants and their caregivers received data collec-
tion materials by mail. Over Zoom video calls, researchers instructed
caregivers and participants on completion of behavioral tasks, height,
weight, and waist circumference measurements, and hair and saliva
sample collection. Caregivers could choose whether to complete ques-
tionnaires and report demographic information on paper or online using
the Redcap data collection system. Similar to the in-person data
collection, participants 9 years and older could choose whether to
complete questionnaires independently using Redcap or whether to
have the items read to them by a researcher; participants aged 8 years
and younger always had the items read to them by a researcher. See
supplementary analysis for comparison of in-person vs. remote partici-
pation on primary study outcomes (Supplement 7).

2.1.6. Hair cortisol storage and assay
Tonic stress was measured through hair cortisol (which has been

shown to have a correlation as high as 0.61 with the prior 30-day
average of salivary cortisol (Short et al., 2016)), assayed from 3 cm
hair samples. Under instruction from a research assistant and with help
from a caregiver, participants’ hair samples were collected from un-
derneath the crown of the head and cut close to the root. Three samples
were stored at − 20 Celsius, and were then thawed before processing.
The remaining 139 were stored at room temperature. Primary findings
involving hair cortisol that were significant at p < .05 and/or q < 0.25
were re-tested in a robustness analysis controlling for hair storage
temperature (see Supplement 8). All samples were shipped at ambient
temperature to the Meyer lab, where they were processed and analyzed
according to the methods described in Meyer et al. (2014) with minor
modifications. Briefly, each sample was weighed, washed twice with
isopropanol to remove external contaminants, and then air-dried.
Washed samples were ground to a fine powder using a bead mill,
extracted overnight into methanol, and centrifuged to spin down the
beads and the powdered hair. An aliquot of the methanol extract was
transferred to a clean tube, dried using a vacuum evaporator, and then
reconstituted in assay buffer. Reconstituted extracts were spin-filtered to
remove any residual particulate material, then assayed in duplicate
along with standards and quality controls using the Arbor Assays
DetectX Cortisol ELISA kit. Intra- and inter-assay coefficients of varia-
tion for this assay were both <10%. In total, 142 hair samples were
collected (63 from the CA group and 79 from the Comparison group), of
which all but 1 (from the Comparison group, which was too small to
process) were assayed for cortisol levels.

2.1.7. Saliva sample collection, storage, sequencing and pre-processing
Saliva samples were collected via OMNIgene®•ORAL sample

collection and stabilization kits (DNA Genotek). After endorsing that
they had not consumed any food or beverages for at least 30 min, par-
ticipants collected the samples under instruction from research assis-
tants and with help from a caregiver. In total, 152 participants (n = 66
from the CA group and n = 86 from the Comparison group) collected
saliva samples. One participant (from the Comparison group) collected
the sample via a swab, which was an accessory to the OMNIgene kit; the
remaining 151 samples were passive drool. Five samples (3 CA, 2
Comparison) were frozen directly in the collection tube. The remaining
samples were incubated at 50 ◦C for 2 h, vortexed, aliquoted into
cryogenic tubes and frozen at − 20 ◦C. The samples were shipped to the
sequencing site on dry ice to prevent thawing. Primary findings
involving the oral microbiome that were significant at p < .05 and/or q
< 0.25 were re-tested in a robustness analysis controlling protocol
variation (length of sample storage before incubation and whether or
not the sample was frozen directly in the collection tube; see Supplement
9).

Amplicon sequencing of the V4 region of the 16S gene was performed
with the 515f/806r primer set (Caporaso et al., 2011) following the
Earth Microbiome Project (EMP protocol) by Arizona State University
lab services. PCR amplifications for each sample were done in duplicate,
then pooled and quantified using an accublue kit. A no template control
sample was included during the library preparation as a control for
extraneous contamination. 240 ng of DNA per sample were pooled and
cleaned using QIA quick PCR purification kit (QIAGEN). The pool was

Table 1 (continued )

Flossing at 1-Year Follow-Up Counts (and Percentages) Total

Comparison Caregiving Adversity

Comparison Caregiving Adversity

Once or More a Day 20 (46.51%) 11 (42.31%) 31 (44.93%) p = .928
Less than Once a Day 23 (53.49%) 15 (57.69%) 38 (55.07%)
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quantified by using the qubit. Then, the DNA pool was diluted to a final
concentration of 4 nM, then denatured and diluted to a final concen-
tration of 4 pM with a 25% of PhiX. The DNA library was then loaded in
the MiSeq Illumina and run using the version 2 module, 2x250
paired-end, following the directions of the manufacturer. Three samples
from the CA group were not successfully sequenced on the first run, and
were therefore re-run, resulting in successful sequences for those
samples.

We pre-processed the raw sequences using Qiime2 software, version
2022.2.1 (Bolyen et al., 2019). Sequences were denoised and amplicon
sequence variants (ASVs) inferred using the DADA2 method (Callahan
et al., 2016). A phylogenetic tree was constructed using FastTree (Price
et al., 2010). Taxonomic assignment was conducted using a bespoke
Naïve Bayes classifier trained with a k-mer length of 12 (Bokulich et al.,
2018; Kaehler et al., 2019). For calculation of alpha and beta diversity
metrics, data were rarefied to 14,697, which was the highest depth at
which all samples were retained.

2.1.8. Statistical analyses
Analyses were conducted using R software version 4.3.1.
Unless otherwise stated, any log transformations were performed

using the natural log.
We used Welch’s t-tests to compare the CA and Comparison groups

on the 3 health outcomes (fatigue, somatic complaints, and internalizing
symptoms) and on hair cortisol. Welch’s t-tests were chosen to avoid
statistical assumptions of equal variance between groups. Post-hoc
transformations of the health outcome scores were implemented (log,
square root, or no transformation, chosen by visual inspection) to reduce
skewedness. We calculated 95% confidence intervals (CIs) of the dif-
ference in group means.

Using Qiime2, the following alpha diversity metrics were calculated:
Faith’s phylogenetic diversity (Faith, 1992), count of observed features,
Shannon’s diversity (Shannon, 1948), and Pielou’s evenness (Pielou,
1966). We elected to use these four metrics of richness as they each
capture unique information, providing the most comprehensive picture
of the microbiome: phylogenetically weighted (Faith’s) and unweighted
(observed features), evenness of the microbiome (Pielou’s), and a
combination of richness and evenness (Shannon’s). Multiple linear re-
gressions were calculated to correlate each of these metrics with group
membership, log-transformed hair cortisol, and their interaction,
adjusting for all selected covariates. Semi-partial correlation coefficients
(r) were calculated for statistically significant results.

Qiime2 was also used to calculate the following beta diversity
dissimilarity matrices: Jaccard (1912), Bray-Curtis (Bray and Curtis,
1957), Unweighted UniFrac (Lozupone and Knight, 2005), and
Weighted UniFrac (Chang et al., 2011). Using the adonis 2 function in
the vegan package (Okansen et al., 2022) for R, we examined how much
of the variance in the distance matrices was explained by group mem-
bership, log-transformed hair cortisol and their interaction, adjusting for
all selected covariates. We used the sequential method (terms are tested
sequentially), with the interaction term tested last. Alternative results
calculated with the marginal method, which calculates the effect of each
term controlling for all other terms, but cannot test main effects, are
available in Supplement 10.

Differential abundance was calculated with the MaAslin2 package
for R (Mallick et al., 2021) using center log-ratio normalization and
filtering for features that were present in at least 20% of samples.
Benjamini-Hochberg multiple comparison correction was selected, with
a maximum false discovery rate (FDR) of 0.250. This relatively high
threshold was selected due to the exploratory nature of the analysis,
following published recommendations for biomarker discovery
(Aatsinki et al., 2019). The q-statistic associated with each test has been
provided in tables in the main text and Supplement 11to enable inter-
pretation of the chance that each significant result is a false positive.
Continuous predictor variables were standardized. We examined the
association between feature abundance (at each taxonomic level from

ASV to phylum), CA group membership, log-transformed hair cortisol
and the interaction between CA group membership and log-transformed
hair cortisol, adjusting for all selected covariates. Additionally,
semi-partial correlation coefficients (r) were calculated for statistically
significant results.

As a final step, we tested the association between the microbiome
and each health outcome: fatigue, somatic complaints, and internalizing
symptoms, focusing on microbiome diversity metrics or features that
were significantly associated with CA, cortisol, or their interaction. Each
of these models adjusted for group membership, log transformed
cortisol, the interaction between group membership and cortisol, and all
selected covariates, except for beta diversity tests, as the sequential
method tests interaction terms last.

3. Results

3.1. Group differences in health outcomes & cortisol

The CA group scored significantly higher than the Comparison group
on the CBCL somatic complaints score (log-transformed; t (111.5) =

− 3.94, p < .000, 95% CI = [− 0.90,-0.30]), the CBCL internalizing
symptoms score (log-transformed; t (121.75) = − 4.80, p < .000, 95% CI
= [− 1.15,-0.48]), and the PEDS-QL fatigue score (square root-
transformed; t (146.63) = − 5.04, p < .000, 95% CI = [− 0.43,
− 0.19]). Hair cortisol, which reflects circulating cortisol levels across
the last 1–3 months, did not significantly differ between groups (log-
transformed; t (138.79) = 0.22, p = .823, 95% CI = [− 0.27,0.34]),
suggesting that ongoing physiological stress was comparable between
the two groups.

3.1.1. Alpha diversity
Adjusting for hair cortisol levels, there were no significant main ef-

fects of CA on Faith’s diversity (b = − 1.72, t (127) = − 1.86, p = .066),
observed features (b = − 17.54, t (127) = − 1.60, p = .112), Pielou’s
evenness (b = 0.03, t (127) = 1.40, p = .165) or Shannon’s diversity (b
= 0.04, t (127) = 0.15, p = .880). Adjusting for CA, there was a
significantly negative main effect of hair cortisol on Faith’s diversity (b
= − 0.65, t (127)= − 2.88, r= − 0.24, p= .005) and observed features (b
= − 6.41, t (127) = − 2.39, r = − 0.20, p = .018), but not Pielou’s
evenness (b = 0.01, t (127) = 1.54, p = .125) or Shannon’s diversity (b
= − 0.00, t (127) = − 0.04, p = .965). The interaction between CA group
and cortisol was significantly associated with Faith’s diversity (b= 0.82,
t (127) = 2.24, r = 0.19, p = .027), which was driven by a negative
association between cortisol and Faith’s diversity in the Comparison
group (b= − 0.65, t (127) = − 2.88, r= − 0.24, p= .005), but not the CA
group (b = 0.17, t (127) = 0.59, p = .555). The interaction between CA
group and cortisol was not significantly associated with observed feature
counts (b = 7.57, t (127) = 1.74, p = .085), Pielou’s evenness (b =

− 0.01, t (127) = − 1.16, p = .248) or Shannon’s diversity (b = − 0.01, t
(127) = 0.08, p = .936). Full results are available in Supplement 11.

3.1.2. Beta diversity
Adjusting for hair cortisol, the main effect of CA was small but sig-

nificant for the Bray-Curtis (R2 = 0.01, F = 2.06, p = .016), Weighted
UniFrac (R2 = 0.02, F = 2.30, p = .047), and Jaccard (R2 = 0.01, F =

1.47, p = .025) dissimilarity indices (see Fig. 3a–c), but not Unweighted
UniFrac (R2 = 0.01, F = 1.29, p = .183). Adjusting for CA exposure,
there was no significant main effect of cortisol for the Bray-Curtis (R2 =
0.01, F = 0.91, p = .501), Jaccard (R2 = 0.01, F = 1.22, p = .110),
Unweighted UniFrac (R2 = 0.01, F = 1.08, p = .341), or Weighted
UniFrac (R2 = 0.01, F = 1.93, p = .117) indices. The interaction of CA
group and cortisol was significantly associated with Jaccard dissimi-
larity (R2= 0.01, F= 1.33, p= .039, see Fig. 3d), was not significant but
was trending for Unweighted UniFrac dissimilarity (R2= 0.01, F= 1.67,
p = .055; see Fig. 3e), and was not significant for Bray-Curtis dissimi-
larity (R2 = 0.01, F = 1.21, p = .255) and for Weighted UniFrac
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dissimilarity (R2 = 0.01, F = 0.94, p = .427). Full results of all 4 models
are available in Supplement 11.

To probe the interaction of CA and cortisol in explaining variance in
Jaccard dissimilarity, we conducted a post-hoc analysis wherein we
tested whether cortisol explained significant variance in Jaccard
dissimilarity independently in each of the groups, controlling for the

same covariates as the original analysis. Cortisol explained variance in
Jaccard dissimilarity in the Comparison group (R2 = 0.02, F = 1.58, p =

.006) but not the CA group (R2 = 0.02, F = 1.10, p = .255).

3.1.3. Differential abundance
We used the MaAslin2 package in R to test if CA group membership,

Fig. 1. Fig. 1a–d shows group differences in health outcomes (CBCL somatic complaints, CBCL internalizing symptoms, and PEDS-QL Fatigue) and cortisol. Points
showing Comparison group members are in blue and CA group members are in orange. Points are jittered along the X axis. The violin plots show the distribution of
the abundance of each respective health outcome or log-transformed cortisol in each group, with greater width showing greater density of observations at each point
in the Y axis. A black, horizontal line shows the mean for each group. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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hair cortisol, or their interaction was associated with the differential
abundance of taxa, adjusting for all covariates. At the phylum level, CA
was negatively associated with Actinobacteriota (b = − 0.56, q = 0.172, r
= − 0.20). CA was also negatively associated with Actinobacteria at the
class level (b= − 0.68 q= 0.083, r= − 0.26), Actinomycetales at the order
level (b= − 1.03, q = 0.056, r = − 0.31), Actinomycetaceae (b= − 1.07, q
= 0.056, r = − 0.30) and Leptotrichiaceae (b = − 1.12, q = 0.113, r =
− 0.28) at the family level, and Actinomyces (b = − 1.02, q = 0.076, r =
− 0.30) and Leptotrichia (b = − 1.10, q = 0.139, r = − 0.28) at the genus
level. At the ASV level, CA was positively associated with a feature
identified as Rothia Mucilaginosa (b = 2.93, q = 0.138, r = 0.29) and a
feature identified as an uncultured Porphyromonas (b = 1.94, q = 0.194,
r = 0.27). Cortisol was positively associated with the phylum Fuso-
bacteriota (b = 0.15, q = 0.230, r = 0.19). The interaction between CA
and hair cortisol was not significantly associated with any features. Full
results are available in Supplement 11.

3.1.4. Health outcomes
We explored whether any of the alpha diversity, beta diversity, or

taxonomic abundance metrics identified in the previous section as being
significantly associated with CA, cortisol, or the interaction of CA and
cortisol were associated with any of the following 3 health outcomes:
fatigue, somatic complaints, or internalizing symptoms, when adjusting
for the variance associated with CA, cortisol and their interaction.

Neither alpha diversity nor beta dissimilarity indices were associated
with any of the health outcomes (see Supplement 11). One target
microbiota differential abundance metric, the uncultured Porphyr-
omonas ASV, which was higher in the CA than comparison group, was
significantly positively associated with a health outcome, internalizing
symptoms (b = 0.34, q = 0.159, r = 0.16). Full results are available in
Supplement 11.

4. Discussion

This study examined the oral microbiomes of children and adoles-
cents exposed to caregiving adversity (CA) and tested whether the
experience of caregiving adversity moderated associations between
cortisol and the oral microbiome. We found that when controlling for its

Fig. 2. Fig. 2a and b shows log-transformed values of hair cortisol (pg/mg) on the X axes and alpha diversity metrics on the Y axes (Faith’s diversity in plot 2a,
observed feature counts in plot 2b). The left facet of 2a shows values for participants in the Comparison group (blue) and the right facet shows the Caregiving
Adversity group (orange). In 2a, a line shows the simple slope of the respective alpha diversity metric over log-transformed cortisol in each group. In 2b, a black line
shows the slope across both groups. The main effect of cortisol was significantly negative for both Faith’s diversity and observed feature counts. The interaction
between CA and cortisol was significantly associated with Faith’s diversity, shown in plot 2a, and driven by a negative association between cortisol and diversity in
the comparison, but not CA group. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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interaction with hair cortisol, the main effect of CA group membership
had no significant association with alpha diversity; explained a small
amount of variance in beta diversity; and was significantly associated
with a range of differentially abundant taxa, mostly in the Actino-
bacteriota phylum (as discussed below). In contrast, when controlling for
its interaction with CA group membership, the main effect of hair
cortisol was negatively associated with two alpha diversity richness
measures, Faith’s diversity and observed feature counts (driven by the
comparison group), but it was not significantly associated with any beta
diversity metrics. This suggests that cumulative exposure to high cortisol
levels over several weeks may alter the composition of the oral micro-
biome, leading to decreased richness. Additionally, hair cortisol was
positively associated with abundance of the phylum Fusobacteriota.
Interestingly, we also observed that the interaction between CA group
membership and cortisol was associated with Faith’s diversity, such that
a significantly negative association between hair cortisol and diversity
was observed in the comparison group, but this association was blunted
in the CA group. This interaction term also explained significant (but
small) variance in Jaccard dissimilarity (beta diversity), though it was

not associated with any differentially abundant microbes. Together
these data suggest that CAs from earlier in childhood have a lasting
impact on the oral microbiome throughout later childhood and adoles-
cence, and that this effect may be realized, in part, via CA exposure
altering the relationship between recent physiological stress (cortisol)
and the oral microbiome.

The fact that different relationships were seen between cortisol and
oral microbiome composition in CA and comparison groups was a
particularly interesting finding in this study. In terms of alpha diversity,
this association suggests that cortisol may regulate the richness of the
oral microbiome, but that experience with early caregiving adversity
may disrupt that regulatory association. Similarly, cortisol was associ-
ated with greater variance in the Jaccard dissimilarity index for samples
within the Comparison group, but not for samples within the CA group.
Although this was a small effect, the fact that this interaction term
significantly explained variance in both alpha and beta diversity metrics
indicates a degree of robustness. Together, these effects support the
possibility that microbes of the oral cavity acquire cortisol insensitivity
in hosts with CA exposure. Indeed, as mentioned in the introduction,

Fig. 3. Fig. 3a–e shows principal coordinates plots of beta diversity dissimilarities (Bray-Curtis in plot 3a, Weighted UniFrac in plot 3b, Jaccard in plots 3c and 3d,
and Unweighted UniFrac in plot 3e). The X and Y axes show the principal coordinates that explained the most and second most variance, respectively, in each
dissimilarity metric in 3a-3d; for Fig. 3e, the first and third principal coordinates were selected to improve visibility of the data. The amount of variance explained is
shown in the axis labels. Ellipses show a 95% confidence level for a multivariate t distribution for participants in each CA group in plots 3a-3c, and for participants
with log-transformed cortisol values below the sample mean (green, solid line) or above the mean (blue, dotted line) in plots 3d-3e. Similarly, log-transformed
cortisol values below the mean are represented by circles and those above the mean with squares. Plots 3d-3e are faceted such that participants in the Compari-
son group are shown on the left, and Caregiving Adversity group on the right. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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several types of host tissue have been shown to exhibit cortisol insen-
sitivity following CA (McGowan et al., 2009; Tyrka et al., 2012), sug-
gesting that the microbiome could display a similarly altered cortisol
response in CA-exposed hosts. Such cortisol insensitivity could be due to

changes in taxonomic composition, that is, microbes that are less sen-
sitive to cortisol may become more prevalent in the community within
CA-exposed hosts. It is also possible that the association between hair
cortisol and oral microbiome diversity in the Comparison group may not

Fig. 4. Fig. 4a–j shows abundance of selected taxa (Actinobacteriota in 4a, Actinobacteria in 4b, Actinomycetales in 4c, Actinomycetaceae in 4d, Leptotrichiaceae in 4e,
Actinomyces in 4f, Leptotrichia in 4g, R. Mucilaginosa in 4h, an uncultured Porphyromonas species in 4i, and Fusobacteriota in 4j). The Y axis of each plot shows
abundance of each taxon after filtering and transformation (center log ratio; CLR), as described in the Methods section. The X axes of 4a-4i show group membership. The X axis
of Fig. 4j shows the log of pg/mg of hair cortisol. Points showing Comparison group members are in blue and CA group members are in orange. Points in Fig. 4a–i are jittered
along the X axis. Fig. 4a–i are violin plots that show the distribution of the abundance of each respective taxon in each group, with greater width showing greater density of
observations at each point in the Y axis. The distributions of the Comparison group are shown in blue and the CA group in orange. A black, horizontal line shows the mean for
each group. Fig. 4j includes a black line that shows the slope of Fusobacteriota abundance over hair cortisol values. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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be causal, but due to a confounder that affects both variables. For
example, sleep problems may lead to altered levels of cortisol (Kuhlman
et al., 2020b) and of certain oral bacteria (Liu et al., 2020). Longitudinal
and experimental data (e.g., in rodent studies or human intervention
studies) are necessary to reveal more information about the causal na-
ture of the relationship between cortisol and the oral microbiome.

While the interaction between CA and cortisol was not significantly
associated with any differentially abundant microbes, several taxa were
associated with CA or cortisol independently. In other words, both past
adversities and recent stress were associated with unique features of the
microbiome. Starting with recent stress, hair cortisol, reflecting accu-
mulations across the past several months, was modestly positively
associated with one taxa - the phylum Fusobacteriota, which contains
both commensal and pathogenic members. Critically, Fusobacteriota has
been shown to increase its gene transcription in response to cortisol in
vitro (Duran-Pinedo et al., 2018), bolstering the idea that it is intimately
regulated by cortisol levels. In terms of past adversity exposure, we also
observed associations with several taxa within the Fusobacteriota
phylum. Specifically, the CA group had a lower abundance of the genus
Leptotrichia. Interestingly, some members of the Leptotrichia genus are
also highly responsive to cortisol in terms of their transcriptomic activity
(Duran-Pinedo et al., 2018). Thus, the depletion of this genus in the CA
group could broadly support the view that CA might reduce the abun-
dance of microbes that are responsive to cortisol. However, some strains
of Leptotrichia have also been associated with higher internalizing
symptoms in adolescents (Simpson et al., 2020), and in this study, the
CA group had higher rates of internalizing symptoms but lower Lepto-
trichia than non-CA exposed youth (Conway et al., 2018). Also depleted
in the CA group were Actinobacteriota, which are among the most
common phyla of the oral microbiome (Sedghi et al., 2021). Similarly to
Leptotrichia, Actinobacteriotamay be responsive to cortisol. For example,
abundance of Actinobacteriota has been positively associated with basal
salivary cortisol in a sample of typically-developing adolescents
(Simpson et al., 2020). While the functional capacities of taxa within this
phylum are tremendously variable, these data, in combination with the
current findings, also support a possible depletive effect of CA exposure
on cortisol-responsive bacteria.

At a higher taxonomic resolution, more of our findings were
congruent with the elevated oral health risk previously identified in CA
youth (Sarvas et al., 2021). Specifically, within the Actinomycetaceae

family, Actinomyces, a genus which includes strains thought to inhibit
oral pathogen growth (Sedghi et al., 2021), was decreased in the CA
group. Indeed, the abundance of Actinomyces is thought to be increased
by periodontal health interventions (Zhang et al., 2021), suggesting that
its depletion in the CA group may indicate risk for poor oral health.
Actinomyces is also thought to be an important nitrate-reducer, a func-
tion whichmay help maintain healthy blood pressure (Sato-Suzuki et al.,
2020). Nonetheless, Actinomyces depletion in the CA group may not be
entirely harmful: Actinomyces also degrades carbohydrates, which can
lead to an environment more conducive to caries (Sedghi et al., 2021),
especially in combination with diet.

The health associations of differentially abundant microbes
remained mixed even at the highest level of resolution (the ASV level).
CA was positively associated with two ASVs: R. mucilaginosa, a
commensal member of the Rothia genus, and an uncultured feature
belonging to the Porphyromonas genus. In past studies, R. mucilaginosa
interacted with adolescents’ basal cortisol levels to explain variance in
anxiety – under low basal cortisol this taxon was positively associated
with anxiety, but this association was not significant under high basal
cortisol (Simpson et al., 2020). However, in our sample, R. mucilaginosa,
while significantly associated with CA, was not associated with cortisol
nor mental health; more research should examine how consistently this
taxon is related to CA, cortisol levels, and mental health. Porphyromonas,
the genus containing the second ASV that was higher in the CA than
comparison group, is best-known for its member species: Porphyromonas
gingivalis, a keystone pathogen. However, even here the interpretation is
not clear-cut, as previous studies have noted that the Porphyromonas
genus contains both beneficial and highly pathogenic species (reviewed
by Guilloux et al. (2021)). As such, more detailed, strain-level infor-
mation, such as that gained through shotgun metagenomic sequencing,
is needed to interpret the association between CA and this taxon. Crit-
ically, the association between CA and both of these ASVs was modest.
However, considering the variability within our sample in terms of the
type of CA experienced, time since CA exposure, and nature of the
caregiving environment following CA exposure, these effect sizes are not
unexpected and may indicate a remarkably robust effect of CA in the
face of such individual differences. More granular sequencing methods,
such as shotgun metagenomics, will further elucidate differences at the
strain level and provide insights into genetic potential for metabolic
functions within the microbiome, which may be more informative than
taxonomic information alone.

Amongst the significantly differentially abundant microbes associ-
ated with adversity and cortisol in this study, we observed very limited
associations with health. Specifically, we saw a small positive associa-
tion between the relative abundance of the ASV identified as an uncul-
tured member of the Porphyromonas genus (which was higher in the CA
group) and internalizing symptoms. While there are a number of
possible explanations for this association, we speculate that it could be
due to the association that members of the Porphyromonas genus
(reviewed by Hajishengalis et al. (Hajishengallis, 2015)), and internal-
izing symptoms (Slopen et al., 2013b) share with the third variable of
elevated inflammation. In support of this third variable hypothesis, CA
has previously been linked to elevated inflammation in youth (Kuhlman
et al., 2020a), and in this study, CA is associated with elevated inter-
nalizing symptoms and higher Porphyromonas. Although members of the
Porphyromonas genus have been linked to inflammation in adults
(Hajishengallis, 2015), there is limited evidence for this effect in youth.
As such, future studies incorporating measures of circulating or local
inflammatory markers alongside the oral microbiome will provide
important mechanistic insights into the links between CA exposure,
Porphyromonas abundance, and internalizing symptoms.

While the links between microbiome community composition and
taxa with behavior were modest in this study, more associations may be
revealed when looking at microbiome functional potential, rather than
taxonomic associations, and when examining objective, rather than self-
reported, health outcomes. Additionally, as oral microbiome

Fig. 5. Fig. 5 shows abundance of an ASV identified as an uncultured Por-
phyromonas species. The Y axis shows abundance of this taxon after filtering and
transformation, as described in the Methods section. The X axis shows inter-
nalizing symptoms. Points showing Comparison group members are in blue and
CA group members are in orange. A black line shows the slope of ASV abun-
dance over internalizing symptoms. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of
this article.)
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dysregulation is typically less severe in youth than in adults, a link be-
tween microbial composition and health may be less detectable in the
current study design due to the young age of the participants.

Considering the variance in physiological and psychological states
associated with adversity, and the fact that youth in this study were
relatively healthy overall, the fact that even small associations between
CA and microbiome features, and between microbiome features and
health is notable. Moreover, the fact that adversity moderated a previ-
ously reported association between cortisol and the oral microbiome
suggests that a more comprehensive approach to the study of the oral
microbiome, that tests for many potential mediators, is warranted.
Health behaviors, such as oral hygiene or diet, are especially important
to consider. Current or past barriers to accessing dental care could affect
the composition of the oral microbiome in CA exposed youth. Physio-
logical variables, such as hypothalamic-pituitary-adrenal (HPA) axis
dysregulation or increased inflammation, are also putative mechanisms
that need to be accounted for. Longitudinal follow-up of this cohort may
reveal additional insight into such mechanisms, with both physiological
and behavioral mechanisms considered in tandem. Research into other
types of adversity, such as abuse or neglect not resulting in permanent
removal from the caregiver, will yield additional information about
which characteristics of adversity most impact the oral microbiome. For
example, changes in nutrition and the physical environment that a child
experiences when transitioning from a birth family to an adoptive family
could play an important role in microbiome development, but such an
effect is not testable in the current study design.

4.1. Limitations

Given the sequencing methods we used, which limited our under-
standing to taxonomic information, the functional meaning of micro-
biome differences between the CA and Comparison groups are not
knowable in this study. Whole genome metagenomic sequencing, which
provides strain-level taxonomic information, as well as information
about the functional capacity of the microbial genes should be consid-
ered in future samples. Additionally, given the cross-sectional nature of
these data, it is unclear how stable individual differences in the micro-
biome are across time. Longitudinal tracking of this cohort will reveal
not only the stability of the group differences in microbiome composi-
tion over time, but also additional information about the mechanisms
behind these differences, temporal precedence and causal implications,
and implications for health and well-being.

Delineating both physiological and behavioral factors contributing
to oral microbiome composition is of particular interest, as these may
inform different treatments to promote a healthier microbiome. For
example, prospective tracking of biomarkers, such as cortisol, behav-
ioral factors such as diet or antibiotic use, and oral health and mental
health outcomes would be useful for identifying potential oral
microbiome-based treatments. Furthermore, because our sample had
relatively high socioeconomic status, with most participants having at
least one parent with a bachelor’s or graduate degree, we were unable to
investigate the effects of socioeconomic status, which has also been
shown to moderate the association between cortisol and oral micro-
biome composition (Boyce et al., 2010).

The nature of this study is primarily exploratory, which was reflected
in our use of an exploratory q-value threshold of 0.25 for differential
abundance analyses. Due to a relative scarcity of work in this area, we
elected to use this exploratory threshold in which we were willing to
tolerate up to 25% of our significant differential abundance findings
might be type I errors. To aid in interpretation of our findings, we pro-
vided exact q-values for all of our significant results, which can be
interpreted at the likelihood that the particular test was a false positive,
and ranges among our results from 0.056 to 0.230. As our understanding
of the relationship between CA and the oral microbiome improves, more
targeted methods that allow for fewer type I errors while maintaining
statistical power to identify meaningful associations will be possible.

4.2. Conclusions

The results of this study demonstrate that, while Comparison youth
exhibit a negative association between microbial richness and hair
cortisol levels, this association is blunted in CA-exposed youth. These
findings suggest that recent stress may affect the oral microbiome of
youth, but that a history of exposure to Caregiving Adversity may alter
that relationship. Additionally, several microorganisms were differen-
tially abundant in CA-exposed youth, including depletion of several
microorganisms identified in other literature as being responsive to
cortisol, as well as increased abundance of potential pathogens. Thus,
both recent stress and history of CA are important considerations for
researchers and clinicians who work with the oral microbiome.

Code availability

Scripts used to manipulate and analyze data for this manuscript are
available at https://github.com/ngancz/oral_microbiome_caregi
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