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A B S T R A C T

The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in
diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular
mechanisms resulting in carcinogenesis. To address this, present study employed a systems
biology approach to identify switch genes pivotal to the crosstalk between diseased states
resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus
(T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from
published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub
genes common to all three diseases were identified. Functional enrichment analyses showed these
were mainly enriched for immune and metabolism associated terms including advanced glycation
end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system
signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein
interaction network analyses to identify meta hub/clustered genes. These were prioritized and
wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-
OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease in-
teractions. Deciphering the molecular bases for the intertwined metabolic and immune states may
potentiate the discovery of biomarkers critical for identifying and targeting the immuno-
metabolic origin of disease.

1. Introduction

The emerging field of network medicine is significantly contributing towards evolving human genomics, particularly in context to
diseases. Molecular mysteries underlying polygenic complex patho-physiologies such as cancer and other non-communicable diseases
are now being decoded with the analysis of high throughput omics data. Particularly, the study of gene-gene interactions and per-
turbations at cellular level, enable the construction of diseasomes and identification of their hub of interconnectivity, also termed as
switch genes [1]. These hubs may serve central and critical roles in disease pathogenesis.

While the dynamics of these genes and their networks are context specific, in terms of expression, cellular or tissue localization and
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disease, yet they may exhibit a molecular overlap with associated conditions. For instance, there exists a risk modifying association
between diabetes and several types of cancer, including breast tumorigenesis [2,3]. In yet another dimension, further complexities
originate as both these diseases are associated with other complex diseases including but not limited to arthritis [4–7]. Within the
dimensions of this meta-diseasome underlying complex diseases and their interactions, lie the type 2 diabetes-osteoarthritis- breast
cancer axes. In consequence, there is phenotypic emergence of multi-morbidity associated with inter-disease causative relationships
such as type 2 diabetes mellitus (T2DM) and osteoarthritis (OA) serving as independent risk factors for BC [7,8] and T2DM associating
positively with OA. This formulates the ground for finding a common origin of disease.

In line with this, several questions arise: to what extent do commonalities exist between these morbidities? Howmuch of an overlap
in disease signalling pathways and molecular mechanisms intersect and how does this potentiate an association? To address these, it is
paramount to study disease characteristics individually and in combination, probe into disease progression mechanistic and model
disease-disease interactions.

This phenomenon of inter-disease relationships is supported by surmounting epidemiological evidence. T2DM is a common
metabolic disorder, developing as a growing pandemic with a global prevalence of 476 million in 2017 and projected to rise to 570.9
million by 2025 [9]. To add to this burden on public health concern, it is reported that T2DM patients are at a moderate yet signif-
icantly elevated risk of developing BC [10]. Furthermore, patients, in particular those taking metformin in long-term, are at a 38 %
elevated risk of developing a specific subtype; triple negative BC (TNBC) [11]. TNBC accounts for 10–15 % of all reported BC cases
[12]. It is characterized by a lack of expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 2
(HER2), translating into an aggressive phenotype and poor survival outcome. TNBC is a heterogeneous disease, itself, stratified into
various subtypes, emerging from an interplay of genetic and environmental variables [13].

While, OA is predominantly an inflammatory disease affecting multiple joints, with the foot OA at a prevalence of 16.7 % for adults
aged fifty years and older and knee OA at 16 % worldwide [8,9]. Furthermore, the association between OA and BC, although not as
well defined as the T2DM-(TN)BC relationship, and still critically under-explored, is also reported [7]. Moreover, T2DM patients are
more susceptible to developing OA [4], The focus of this research is to study these three diseases together to gain insight into a
potentially common origin of disease and also, particularly, to unravel the molecular interplay underlying T2DM and OA as risk factors
for TNBC.

Breast carcinogenesis is a complex, multifactorial and heterogeneous phenomenon implicating genetic drivers and environmental
triggers resulting in an intricately regulated cascade of aberrant cell signalling in mammary tissue. This orchestrates molecular
mechanisms underlying hallmarks of cancer including but not limited to abnormal cellular growth, evasion from apoptosis, over-
activation of immune pathways leading to tumor promoting inflammation and dysregulated cellular genetics.

At genetic level, this may be onset by susceptibility/risk factors including mutations in genes such as breast cancer gene 1 (BRCA1)
which are associated with an increased risk of developing (TN)BC [14]. At meta level, disease-disease interactions emerging from
molecular crosstalk implicating switch genes may also result in multi-morbid state.

The superimposition of risk factors including but not limited to genetic predisposition and lifestyle choices such as diet and physical
activity, and their synergy with conditions including aging, obesity and dyslipidemia potentially formulate the molecular bases un-
derlying the multifaceted association between these three morbidities. Evaluating these mechanics may provide elucidation on the
converging phenotypic emergence of signature characteristics such as chronic inflammation, oxidative stress, metabolic alterations
and hormonal imbalances, and their underlying molecular dialogue, presenting varying degrees of complexities and interconnected
diseased states [15,16]. Recent studies explore the role of immune cells in modulating metabolic homeostasis [17]. In particular,
immune cell activation is reported to trigger metabolic reprogramming of anaerobic glycolysis, oxidative phosphorylation, and
metabolite synthesis [18,19]. Conversely metabolism sponsors the energy demands for all cellular functions including immune
response and inflammatory pathways, creating an immuno-metabolic feedback loop. However, this is not the extent of crosstalk
between these two states, which unravels into a multi-faceted, multi-layered, and intricately related integration of molecular
communication [20,21]. At the next level, alterations in metabolic pathways further drive immune-modulatory mechanisms under-
lying innate and adaptive immunity [21]. Hence, this critical equation is bidirectional and may determine cellular fate. At the union of
these two states, chronic metabolic inflammation, referred to as ‘metaflammation’ is reportedly a basis for disease development and a
known hallmark for metabolic disorders.

Hence, the interplay between the onco-characteristics on the spectrum of polygenic phenotypes, particularly implicating the
crosstalk between metabolic rewiring mechanisms and chronic inflammatory feedback loops short circuit into a cluster of diseases
including complex patho-physiologies beyond cancer, all mapped by common pathways and overlapping regulatory networks.

To investigate this phenomenon in context to the origin of complex disease, present work employed network biology approach to
identify common genetic players between the three complex morbidities. These genes may serve as potential biomarkers for disease
initiation, early secondary disease diagnosis in case of bi-morbidity, prognostic prediction and therapeutic targeting. To the best of our
knowledge, this is the first instance where T2DM, OA and TNBC have been grouped together as common immuno-metabolic diseases to
investigate mutually inclusive genes and pathways. In particular, the objective is to understand the underlying the molecular
mechanisms associated with these complex etiologies, in pursuit of decoding the immuno-metabolic origin of disease. Since common
and complex diseases such as these three may involve hundreds of genes with smaller effects on disease pathogenesis, rather than
singular or fewer genes with more deleterious effects in case of rare disorders, network biology has enabled the study of diseasomes to
identify hub genes prevalently dominating signalling pathways andmolecular crosstalk within a functional unit. Identification of these
hub genes, through in silico analysis of high throughput data generated large gene-gene/protein-protein interaction networks may
provide potential biomarkers associating with disease pathogenesis. On the next level, super-imposing disease specific hub genes may
allow for the emergence of common development patterns for the origin of disease, ultimately highlighting the highway to immuno-
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metabolic disease initiation and the route for its blockade potentiating disease prevention and treatment, and specifically, precision
medicine.

2. Materials and methods

2.1. Article selection

A comprehensive literature review search was done by utilizing the keywords “hub gene analysis” AND “type 2 diabetes mellitus”
AND/OR “triple negative breast cancer” AND/OR “osteoarthritis” on PubMed repository to retrieve a total of 355 articles, combined
from individual string searches. PubMed was utilized as it provides a reliable publicly available interface for searching medicine and
health related literature [22]. Screening on the basis of relevance concluded with 221 articles along with 31 additional articles meeting
the selection criteria as defined subsequently. Articles from the time period of 2012–2023, designed on identifying hub/key/core genes
through bioinformatics, implicated in any of these three diseases or in cross disease comparison, were included in this study. Hence,
252 articles were resourced for text based gene mining for subsequent analysis. These articles included the derivation and network
analysis of differentially expressed genes from publicly available microarray based transcriptomic datasets. Fig. 1 outlines the liter-
ature search process.

2.2. Bio-computational framework implementation

This research work utilized text based mining of hub/core genes for three complex diseases of immuno-metabolic origin, intended
as input for a series of integrated bioinformatics analyses. The subsequent outcome may potentiate multi-morbidity associated
biomarker discovery for the molecular origin of disease in metabolic disorders such as T2DM, OA and TNBC. Fig. 2 outlines the
methodology framework adopted for this study.

2.2.1. Text based gene data retrieval
Shortlisted research articles were manually screened thoroughly to enlist hub genes identified for each of the three diseases. These

lists were stored as individual training datasets for subsequent analyses (Fig. 2).

2.2.2. Venn diagram analysis
Disease specific hub genes’ lists were imported into FunRich software to determine the molecular overlap between the T2DM, OA

and TNBC, as shown in Fig. 2A. FunRich is an open access multipurpose bioinformatics tool, commonly used for analysing large gene
datasets [23]. It provides a user friendly solution for Venn diagram analysis. The common genes’ list was retrieved as a multi-morbidity
associated signature molecular profile.

2.2.3. Phenotype to gene mapping
Gene data corresponding to all three diseases, their hallmarks and other characteristic features were downloaded from GeneCards

database (https://www.genecards.org/), and an overlap of each of the datasets with the common hub genes was determined using
FunRich (Fig. 2B). GeneCards is a comprehensive repository of human expressed genes associating with diseases, phenotypes and
biological pathways [24]. It provides a combined interface for gene-disease-pathway links, hence it was opted for disease/phenotype
associated gene mining.

2.2.4. GO and pathway enrichment
The molecular overlap i.e the common hub genes’ list was imported into EnrichR (https://maayanlab.cloud/Enrichr/) to perform

gene ontology (GO) and pathway enrichment (PE) analyses (Fig. 2C). EnrichR is an online interactive gene set enrichment analysis
(GSEA) tool, routinely used for GO and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses [25]. Compared to other

Fig. 1. Literature search and article selection. PubMed database was searched for articles on hub gene analysis for type 2 diabetes mellitus
(T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC) in singularity and in combination. A total of 252 were henceforth utilized for
subsequent disease specific hub/key genes mining.
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enrichment analyses tools, EnrichR provides a user friendly interface, and a comprehensive analysis with interactive visualization. Top
enrichment terms extracted from various embedded libraries are visualized based on adjusted p value < 0.05.

2.2.5. PPI network construction, gene clustering and meta hub genes identification
The common hub genes list was uploaded onto STRING version 12.0 (https://string-db.org/) to generate a protein-protein

interaction (PPI) network and then imported into Cytoscape version 3.10.1 to analyse its network topological parameters (Fig. 2D).
Molecular complex detection (MCODE) plugin (v2.0.3) was applied to identify core module genes, using default settings. MCODE
identifies densely connected components of the PPI network representing molecular complexes [26]. CytoHubba plugin (v0.1) were
employed to determine the meta hub genes. This plugin applies 11 network topological analyses to determine the important nodes of a
network.

2.2.6. Functional enrichment analysis of meta hub and core genes
Using Cytoscape plugin ClueGO (v2.5.10), functional enrichment analysis of the meta hub genes was performed for the three GO

categories and KEGG pathways (Fig. 2E). ClueGO integrates GO terms to present functionally classified networks, which can be
interpreted for the genes shared, determining the association between the over-represented terms based on kappa statistics [27]. It also
provides plausible insights into pathway based networks for the identification of potential biomarkers. It performs the Fisher exact test
for p value calculation and Bonferroni step-down method for multiple testing correction as the default option [28].

2.2.7. Expression validation of meta hub genes
The expression of the hub genes with reference to each of the three diseases were retrieved from disease specific databases. These

included T2DiACoD (https://t2diacod.igib.res.in/index.php), an online gene atlas for T2DM associated complex disorders with in-
formation from GEO datasets embedded within the website [29]. It applies Empirical Bayes moderated t-statistics test and
Benjamini-Hochberg for adjustment of p value [30]. Additionally, a previously analysed T2DM adipose tissue expression dataset
GSE29231 was also utilized (3 biological samples with 4 technical replicates each for T2DM as well as for healthy controls), using the
cut off criteria of adjusted p value < 0.05 (Benjamini and Hochberg adjustment test) and |Log(FC)| ≥ 1 [31]. OsteoDip (http://ophid.
utoronto.ca/OsteoDIP), a web based database for genes associating with OA which derives information from GEO series [32], and
UALCAN (https://ualcan.path.uab.edu/index.html), a publicly available, online tool storing a comprehensive repository for gene
expression data for up to 31 cancers and their subtypes, including (TN)BC (Welch T test for statistical difference) [33,34], were also
utilized (Fig. 2F).

2.2.8. Gene prioritization to determine master meta hub genes
The meta hub genes were subjected to gene prioritizing methods based on seven parameters for shortlisting candidates, and the

outcome of core meta genes were listed (Fig. 2G).

Fig. 2. Study methodology flow diagram. The disease specific hub/core genes were input into the candidate meta hub gene discovery pipeline to
generate potential multi-morbidity associated biomarkers. Start and end point are indicated and input/output are referred to in terms of genes. The
outlined rectangle boxes represent input, blue outlined rhombus-software/tool/database, light blue coloured box-critical outcome/secondary input,
medium blue box-intermediary output and dark blue box-final output/outcome in terms of critical genes. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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2.2.9. Gene-disease association
Association of each of the prioritized meta-hub genes with diseased state were confirmed on Diseases database (https://diseases.

jensenlab.org/), Fig. 2H. Diseases is a regularly updated web source with integrated information on gene-disease associations based on
multiple sources searched through automatic and manual text mining [35].

3. Results

3.1. Text based gene mining

Each article was carefully screened and hub genes (alternatively key/core genes) were extracted for all three diseases, as outlined in
Fig. 3.

Each of these lists were mapped onto FunRich software to obtain the identified number of genes. Redundancy within the same gene
list was removed by defining gene datasets. A total of 376, 567 and 360 genes were mined for T2DM, OA and TNBC respectively. These
genes were then further subjected to a series of integrated bioinformatics analyses to explore their functional niche and potential
implications within the T2DM-OA-TNBC axes.

3.2. Implementation of integrated bioinformatics analyses pipeline

3.2.1. Identification of the molecular overlap between T2DM, OA and TNBC hub genes
The meta-computational analysis involved the deciphering of the hub/key genes commonly implicated in all three diseases. For

this, a Venn diagram representing an overlap between the training gene lists was generated, as shown in Fig. 4.
The intersections represented molecular overlap between all three datasets with the common hub genes identified in Table 1.

3.2.2. Determination of molecular overlap representing phenotype to gene mapping
Genes associating with each of these diseases, their phenotypic hallmarks, factors, molecular pathways and various other features

were retrieved from GeneCards. For each of the corresponding gene lists, their overlap with the 31 hub genes’ signature was deter-
mined in FunRich, as depicted in Fig. 5.

A significant overlap between various aspects of disease pathophysiology and its molecular mechanisms, particularly on the
immuno-metabolic axis, amongst others was evident. This axis is well defined as the metabolic dysregulations, which are hallmark to
T2DM, primarily a metabolic disorder, are also prevalent in both OA and TNBC, and each of these three diseases are attributed by
chronic inflammation.

The union of genes specific to all three diseases from GC overlapped with 28 genes from the common hub genes signature (Fig. 5A).
Fig. 5B depicts the molecular overlap between 31 hub gene signature and genes associating with disease specific hallmarks, followed
by other features and terms studied, Fig. 5C–E. All 31 genes were shown to associate with beta cell dysfunction, increased hepatic
output, insulin resistance, joint pain, tumour promoting inflammation, sustaining proliferative signals resisting cell death, inducing
angiogenesis, genome instability and mutation, deregulating cellular metabolism and activating invasion and metastasis. Complete
overlap was also found with diet, lack of physical activity, adipose tissue, chronic inflammation, hypoxia and oxidative stress asso-
ciated genes.

3.2.3. Gene functional enrichment
The common hub genes were imported to EnrichR to perform functional enrichment analyses including GO and pathway

enrichment. Most statistically significant results are displayed in Fig. 6.

Fig. 3. Text mining and training data generation. Hub/key/core genes associating with type 2 diabetes mellitus (T2DM)/ osteoarthritis (OA)/ triple
negative breast cancer (TNBC) were extracted from published literature and mapped onto FunRich software. Statistical figures indicate the number of genes
obtained at each step.
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3.2.3.1. Gene ontology. For gene ontological assessment, statistically significant terms (adjusted p value < 0.05) including biological
processes (BP), molecular function (MF) and cellular component (CC) were determined. Analysis outcome (Fig. 6A), displayed that the
common hub genes are most significantly enriched with BP terms such as regulation of apoptotic (particularly negative) and other
programmed cell death mechanisms, cell population proliferative processes, and positive regulation of miRNA implicated in metabolic
processes. These genes were enriched for molecular functions including binding activities such as transcription factor binding of RNA
polymerase II on DNA, transcription co-regulation and protein phosphatase binding. Furthermore, the most significantly enriched
cellular component terms included euchromatin, membrane raft and intracellular organelle lumen.

3.2.3.2. Pathways. Pathway enrichment analysis was conducted in accordance with integrated KEGG, Wiki, Reactome, Elsevier and
Panther databases. The top significantly enriched terms are presented in Fig. 6B. The findings from each of these databases were
comparable with a general theme of enrichment in pathways involved in cancer, particularly breast cancer, immune pathways and
metabolic pathways. More specifically prolactin signalling and AGE-RAGE signalling (in diabetic complications), were presented by
KEGG and WikiPathways sources, and estrogen and ESR signalling according to Reactome, amongst the most significant terms.
Additionally, the Wiki pathway involving RAC1/PAK1’s implication in cell proliferation, angiogenesis and tumour growth, and the
Panther pathways for inflammation, oxidative stress and apoptosis signalling were also listed.

3.2.3.3. Regulatory control. Moreover, these genes were shown (Fig. 6C) to associate with enriched PPI hub genes such as HSP90AA1,
STAT3, FOS, ESR1, EGFR and BRCA1, majority of which are already existent within the hub genes derived interactome under study.
The transcription factor analysis based on information from integrated TRRUST database, revealed significant enrichment for TP52,
NFKB1, STAT3, ESR1 and JUN amongst others. The top three significantly enriched miRNAs derived from miRTarBase included hsa-
miR-155-5p, hsa-miR-451a, and hsa-miR29b-3p.

3.2.3.4. Diseases and phenotypes. In addition, the association of the sub interactome with disease and phenotypic terms were also
studied based on several databases integrated within the EnrichR interface (Fig. 6D). According to DisGeNET, the 31 hub genes based
interactome was implicated in endometriosis and various cancer types including osteosarcoma. This was reiterated by the resulting
output from OMIM Diseases which included breast cancer and additionally rheumatoid arthritis amongst the most enriched terms.
Jensen Diseases also showed enrichment for cancer types including cancer of the immune system amongst others and more general

Fig. 4. Venn diagram analysis. The yellow circle represents type 2 diabetes mellitus (T2DM) hub genes derived for meta hub gene analysis (M.A),
sea green-osteoarthritis (OA) and pink-triple negative breast cancer (TNBC). The intersection between circles represent overlapping genes common
to more than one disease. A total of 31 genes overlapped between all three datasets. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Table 1
Molecular overlap between type 2 diabetes mellitus (T2DM), osteoarthritis (OA) and triple negative breast cancer (TNBC). A total of 31 genes
are identified as the signature common hub genes between the three diseases.

Morbidity No. of Common
Genes

Genes

T2DM- OA-
TNBC

31 LCK; STAT1; IFNG; BIRC5; FN1; CD44; CTNNB1; TP53; CCND1; EGFR; ESR1; STAT3; KDR; JUN; MYC; AR; IL6; MMP1;
MMP9; FOS; KRAS; UBC; IGF1R; AKT1; NFKB1; ITGB1; MAPK14; SPP1; MMP2; VCAN; RELA

I.A. Durrani et al.
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Fig. 5. Phenotype to gene mapping. Overlap of 31 hub genes signature with GeneCards derived genes for A- T2DM, OA and TNBC, B- Hallmarks
for T2DM (top), OA (middle), and TNBC (bottom), C- Common factors, D- Common characteristics and E- Common pathways. Abbreviations: M.A-
meta hub gene analysis; T2DM-type 2 diabetes mellitus; OA-osteoarthritis; TNBC- triple negative breast cancer; GC- Gene Cards; HyG-
hyperglycemia; BCD-beta cell dysfunction; HyI- hyperinsulinemia; IHGO- increased hepatic glucose output; IIS- inadequate insulin secretion; IR-

I.A. Durrani et al.
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terms like cancer and arthritis. Similarly, ClinVar also displayed breast neoplasms, particularly familial cases amidst other cancers as
the most significantly enriched terms.

3.2.3.5. Hallmark. For the enrichment within hallmark terms, results derived from MSig database, as displayed in Fig. 6E, showed
significance for terms including epithelial mesenchymal transition (EMT), a characteristic hallmark of breast cancer, but also inter-
estingly, of OA pathogenesis and diabetic complications such as diabetic kidney disease, TNF-alpha signalling via NFKB, apoptosis and
inflammatory response.

3.2.3.6. Biomarkers. The interactome under study particularly associated with terms such cancer stem cell, mesenchymal cells and
adipose derived stromal and stem cell, with statistical significance (Fig. 6F). Their association with metabolites was also determined
through the EnrichR analysis retrieving information from the HMDB metabolites database. Amongst the most significantly enriched
terms, Simvastatin, aldosterone and Zinc were listed.

3.2.3.7. Specificity. These hub genes were also found to be present mainly in visceral adipose tissue and whole blood, according to
GTex tissues, stromal cell, breast cancer cell line, mammary gland cell line, immune system (Jensen tissues), fatty acid synthase
complex, BCL-2 complex and NFKB complex (Jensen compartments). Furthermore, fibroblasts, osteoblasts, osteoclasts, chondrocytes,
Miller cells, monocytes and stromal cells (PanglaoDB), and smooth muscle, adipocyte, pancreatic islet and various types of immune

insulin resistance; SI- synovial inflammation; ALCS- asymmetric loss of cartilage space; CD-chondrocyte degradation; JP- joint pain; AIM-activating
invasion and metastasis; DCM-deregulating cellular metabolism; EGS- evading growth suppressors; GIM-genome instability and mutation; IA-
inducing angiogenesis; NMER-non mutational epigenetics reprogramming; PoM-polymorphic microbes; RCD-resisting cell death; SPS- sustaining
proliferative signals; TPI- tumor promoting inflammation; AT-adipose tissue; HI-hormonal imbalance; MR-; CI- chronic inflammation; H-; OS-
oxidative stress.

Fig. 6. EnrichR based functional enrichment analysis. Enrichment for various categories are depicted. A- Gene ontology including three categories, B-
Pathways (five sources), C- Regulation (three categories), D- Diseases and phenotypes (four databases), E- Hallmark (one source), F- Markers (two types), G.
Specificity (four categories) and H- Therapeutics (based on one database).

I.A. Durrani et al.
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cells based on Human gene atlas, were also included as some of the most significantly enriched terms (Fig. 6G).

3.2.3.8. Therapeutics. Enriched drug targets were determined and the top three most significant terms included Quercetin, Hexa-
chlorophene and Niclosamide, according to the embedded IDG drug targets source, Fig. 6H.

3.2.4. Hub gene network analysis

3.2.4.1. Construction of protein-protein interaction network. Subsequently, the 31 common hub genes were entered onto the STRING
search interface to generate a protein-protein interaction (PPI) network with 31 nodes, 379 edges and an average node degree of 24.5
(PPI interactions score ≥ 0.4), as shown in Supplementary Fig. 1.

3.2.4.2. Identification of clustered genes. The topological network as visualized on Cytoscape is depicted in Fig. 7A. MCODE plugin was
applied and network analysed to determine clusters within the network. As demonstrated in Fig. 7(B), 1 cluster was found comprising
of 27 nodes, with a score of 25.077. Top 10 genes from within the cluster, with the highest MCODE scores were determined and listed
in Supplementary Table 1. IFNG was found to be the seed of the cluster.

3.2.4.3. Identification of meta hub genes. Hub gene analysis was performed based on multiple algorithms implemented by the Cyto-
hubba plugin of Cytoscape, as detailed in Supplementary Table 2. The top 10 genes according to each of the methods were extracted
alongside their ranks. CTNNB1 was ranked to be the highest according to a significant majority of the methods including Maximum
Clique Centrality (MCC), Degree, Betweeness, Closeness and Maximum Neighborhood Component (MNC), followed by STAT3, TP53,
EGFR, NFKB1, JUN, MMP9, AKT1, IL6 and ESR1. These final top 10 meta hub genes were identified based on the frequency of their
occurrence within the top rankings.

3.2.5. Pathway enrichment reanalysis of meta hub genes
The top 10 hub genes were combined with the top 10 clustered genes, to generate a list of 17 meta hub/core/genes, with a mo-

lecular overlap of 3 genes. The functionality of these genes was studied by re-performing the GO and pathway analyses using Cytoscape
plugin ClueGO. The results are displayed in the form of functionally clustered networks, Fig. 8.

The GO reanalysis of the derivative sub-interactome (Fig. 8A–C), showed the genes to be enriched with BP terms including positive
regulation of miRNA metabolic process (pink), fibroblast proliferation (dark green) and its regulation (orange), response to UV (blue)
and cadmium (maroon), nitric oxide synthase regulator activity (purple) and muscle stretch (light green). Furthermore, osteoclast
differentiation, response to estradiol, extracellular matric disassembly, release of mitochondrial cytochrome C, regulation of carbo-
hydrate catabolic process and regulation of intrinsic apoptotic signalling pathway for p53 class mediator are amongst other significant
and clustered BP terms, highlighting the biological programming of the meta hub genes’ network. The significantly enriched MF terms
for these genes included positive regulation of DNA binding (bright green), transcription initiation factor binding (green), nitric oxide
synthase regulator activity (royal blue) and core promoter sequence specific DNA binding (cyan). Moreover, there were two CC terms;
transcription repressor complex and euchromatin, reflecting at the critical involvement of the meta hub genes in gene expression and
its regulation.

Fig. 7. Cytoscape based network analysis. A - A. Original network imported from STRING with nodes represented by labelled blue rectangles and edges
by grey lines. B- Cluster 1 derived through application of MCODE plugin, with nodes represented by rhombus as un-clustered, circle as clustered and rectangle
as seed. The increase in node colour intensity represents increasing MCODE score. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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The KEGG pathway analysis, as depicted in Fig. 8D, revealed enriched terms such as chemical carcinogenesis, choline metabolism
in cancer, estrogen signalling, AGE/RAGE signalling, lipid and atherosclerosis, central carbon metabolism in cancer, HIF1 signalling,
adipocytokine signalling pathway, mitophagy, and various terms related to cancer types, particularly including breast cancer, and
immune signalling pathways including TNF signalling and B cell and T cell pathways, amongst others, with proteoglycans in cancer
being the most significant.

3.2.6. Validation of meta hub genes expression
To study the disease specific expression of each of the meta hub genes, various specialized databases were utilized. T2DM specific

gene expression data corresponding to meta hub genes was derived from T2DiACoD and GEO Series GSE29231 as shown in Fig. 9A.
Meta hub/core genes such as CTNNB1, TP53, STAT3, JUN, MYC, MMPs and FOS were found to be up-regulated in T2DM adipose

tissue. Expression data specific to OA for these meta hub genes was retrieved from OsteoDip. The 17 meta hub genes were fed into the
server which returned a heat map profile for 14 genes as shown in Fig. 9B (expression data for KRAS, EGFR and ESR was not found).
The database showed expression profiles from 31 sources, 6 of which were disease vs. disease, 2 were evaluative and the remaining
were disease vs. normal. The up-regulated genes included CCND1, CD44, and NFKB1, however not across all samples. Furthermore,
expression data for TNBC was derived from UALCAN database. A heat-map for the 17 meta hub genes were generated, as shown in
Fig. 9C. TNBC subtype specific data for each of these genes was also studied, particularly for the immunomodulatory subtype and is
presented in Fig. 9D. Up-regulated genes included IFNG, STAT3 and MMP9.

In further support of this, expression status of each gene for all three diseases was retrieved from experimental data and published
literature. Supplementary Table 3 presents a summary of their expression pattern across the three diseases. Additionally, as another
measure towards validation, the redundancy of occurrence within the parent training datasets for each of the meta hub genes was
evaluated and is indicated in Supplementary Table 4.

Fig. 8. Gene ontology and pathway reanalyses on Cytoscape. The nodes represent different terms, their colours correspond to functional groups
and the edges between nodes indicate interaction and crosstalk. Nodes with multiple colours symbolize genes common between more than one term.
A- Gene ontology (GO) biological processes, B- GO molecular function, C- GO cellular component and D- KEGG pathway. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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3.2.7. Gene prioritization
To capture the bio-contextual highlight of this interactome, hub of hub genes prioritization was exercised based on several pa-

rameters: (1) redundancy within the parent hub gene list derived from text mining, (2) ranking based on hub gene- and (3) MCODE
analysis, (4) inclusion within the molecular overlap between meta hub genes and clustered/module genes list, (5) frequency/degree of
enrichment of genes in functional enrichment analysis, and similar expression pattern- (6) across the three diseases based on databases,
and (7) literature search. For each of these parameters, the best performing gene was shortlisted, except in the case of molecular
overlap between meta-hub and clustered genes which comprised of 3 genes and common expression pattern exhibiting genes which
presented with an addition of 2 genes. The final derivation of the shortlisted candidate meta hub genes, 9 in total, is diagrammatically
represented in Fig. 10.

3.2.8. Confirmation of gene-disease association
The gene-disease association for each of the candidate meta hub genes was assessed on Diseases database, which assigns a z score

against a confidence level for genes associating with a disease term based on text mining, Supplementary Table 5. Each gene was
assigned a confidence based on the source of the association, with the automatic text mining capped at 3 stars, and manually curated
data at 4 stars. All of the identified meta hub genes were found to be associated with all three diseases.

3.3. Meta hub genes-three disease mapping

The disease specific signalling maps were constructed from manually curated interactions data sourced by text mining and liter-
ature search. The disease specific signalling networks are depicted in Fig. 11A–C, whereas D shows a 3 disease (3-D) map derived from

Fig. 9. Disease specific meta hub gene expression. A- T2DiACoD database and GEO dataset GSE29231 generated expression data for type 2
diabetes mellitus (T2DM). The heat map depicts tissue specific expression for T2DM, p < 0.05, red: up-regulated; green: down-regulated, B-
OsteoDip generated data expression for osteoarthritis (OA). The snapshot represents heat map generated for OA specific gene expression for meta
hub genes based on 31 sources, red: up-regulated; green: down-regulated, C- UALCAN generated expression data for triple negative breast cancer
(TNBC). The generated heat map for the meta hub genes show the expression pattern of each of the genes across TNBC and healthy control samples,
D- TNBC subtype specific expression data for meta hub genes. BRCA: Breast invasive carcinoma. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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the superimposition and overlap between the disease specific interactions. This was done to identify signature meta-hub genes sig-
nalling mechanisms common to all three diseases and hence potentially characteristic of T2DM-OA-TNBC crosstalk.

In the 3-D map, EGFR and CD44 were found to feed into AKT1 activity such as the activation/supplementation of STAT3, NFKB1,
MMP9 and their downstream gene targets MMP1 and MMP9 (also activated/recruited by CTNNB1). At the core of this, AKT1 can be
seen to emerge as the hub of the meta hub genes; most interconnected and within signalling stream of all nodes except CTNNB1 and
IFNG (Fig. 11D). Since the latter is not implicated in crosstalk with any other node, 8 candidate meta hub genes surfaced to be reigning
the T2DM-OA-TNBC molecular crosstalk.

Fig. 10. Gene prioritization. Various parameters were applied to shortlist 9 meta hub genes.

Fig. 11. Wiring diagram representing disease signalling networks. Disease specific signalling maps are presented for A- Type 2 diabetes
mellitus (T2DM) [36,37,38–62], B- Osteoarthritis (OA) [63,64,65–83], C- Triple negative breast cancer (TNBC) [84,85,86,87,88,89–114], and D- 3
Disease mapping of T2DM-OA-TNBC signalling network.
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3.4. Discussion

This study employed a bio-computational approach to identify the molecular overlap between genes associating with T2DM, OA
and TNBC using meta data of hub/core genes extracted from published literature. The interactions between various complex diseases
paint a complex picture hence a focus was defined in the form of T2DM-OA-TNBC axes. The selection of these three morbidities as
models of study is based on both disease burden and co-morbidity risk. While the cluster of complex diseases is extensive, diabetes,
arthritis and cancer, prevalent worldwide and in Pakistan, are of particular interest. Since each of these diseases are heterogeneous,
subtypes with greater incidence, elevated risk of co-morbidity and hence concurrently posing a greater health challenge were selected.
The article selection strategy, as outlined in Fig. 1, involved the final inclusion of 252 research articles contributing 376, 347 and 537
hub/core genes associating with T2DM, OA and TNBC respectively.

These hub genes were imported andmapped onto FunRich to determine a molecular overlap between all three diseases. A signature
of 31 hub genes were found to be common between all three datasets and hence was utilized for subsequent sequential analyses.

Recently published literature identifying hub genes specific to T2DM, OA and TNBC includes several articles not utilized here, since
the scope of this study included articles matching the selection criteria up to 2023. Although these include the identification of disease
specific key genes, however it is noteworthy that none of these hub genes were common to all three diseases, and therefore not relevant
to this study design. Previously hubs genes common to T2DM and BC were identified, however since these did not match the BC
subtype specificity criteria, these were not included in the analysis [31,115].

The 31 common signature hub genes were mapped with already reported/predicted genes associating with each of the three
diseases, their hallmarks, and other characteristics, common factors, and pathways. Interestingly, all 31 genes were found to be present
in GeneCards lists corresponding to T2DM and T2DM and 28 with OA. The 3 genes (LCK, KRAS and UBC) not present in the OA genes
list from GeneCards were not omitted for subsequent analysis at this point to explore the possibility of identifying novel genes
associating with OA and its co-morbidities. This analysis provided a glimpse into the clinic-pathophysiological niche of the interactome
under study.

Genes associated with hallmarks for each of the three diseases were also extracted from GeneCards. All 31 genes associated with
T2DM characteristics including insulin resistance, beta cell dysfunction and increased hepatic glucose output. For hyperglycaemic and
inadequate insulin secretion phenotypes, 28 genes overlapped with the 31 hub gene signature. In case of hyperinsulinemia, an
intersection corresponding to only 18 genes was determined. All 31 hub genes were shown to be implicated in joint pain, 30 genes each
with chondrocyte degradation and synovial inflammation associated with OA, and 26 genes with asymmetric loss of cartilage space,
consolidating their implication in OA pathogenesis. Furthermore, with the recent updates on hallmarks of cancer [116], overlap with
all 14 hallmarks was assessed. A complete 31 signature overlap was seen with terms such as tumour promoting inflammation, sus-
taining proliferative signals, resisting cell death, angiogenesis, genome instability and mutation, deregulation of cellular metabolism
and activating invasion and metabolism, indicating the role of these genes in tumorigenesis and cancer progression. These findings
indicate at the functional determination of this interactome associating intricately with disease pathogenesis, particularly involving
metabolic deregulatory mechanisms such as those associated with glucose level and output and particularly insulin resistance, a
characteristic not only hallmark to T2DM, but also implicated in breast carcinogenesis and the development of OA [15,117].
Furthermore immune associating terms including chronic inflammation, particularly tumour promoting and synovium affecting in-
flammatory pathways were represented by the interactome under studying, highlighting the extent to which the inter-disease crosstalk
is submerged within the interface of immunity and metabolism’s intersection.

The molecular links between these three diseases may involve the integrative crosstalk of various cell signalling pathways
translating into mechanisms and phenotypic hallmarks, also well represented by the these 31 meta hub/core genes. However a
particular focus of this study is to elucidate on the immuno-metabolic crosstalk and disease initiation in existing morbid state char-
acterized by low grade chronic inflammation and metabolic rewiring. This will provide comprehension on the extent of immuno-
metabolic nature of the 3 diseases derived interactome, hence these terms are specifically highlighted amongst other findings.

Furthermore, common factors such as diet and lack of physical activity were studied and all 31 hub genes were shown to associate
with these risk factors. Age is another risk factor affecting all three of these diseases, however it was omitted from the analysis. Over
25000 genes associated with it, according to GeneCards, and such a large dataset was unmanageable within the limits of the employed
study pipeline.

Moreover, there are several disease characteristics and attributes common to all three diseases. Of particular interest, all 31 hub
genes associated with oxidative stress, hypoxia and chronic inflammation. Metabolic reprogramming associated genes overlapped
with 30 hub genes. Adipose tissue is reported to contribute significantly to the pathogenesis of not only T2DM, but also TNBC and OA.
It is also a major contributor to breast tumour microenvironment and critically implicated in regulating OA progression [15,118]. All
31 hub genes overlapped with the adipose tissue genes, confirming their reported implication in adipose associated signalling and
regulation of diseases. Since the focus of this study is to probe into the immuno-metabolic nature of association tying T2DM, OA and
TNBC together, shared pathways including immune and metabolic pathways, were analysed next. All 31 hub genes were present in the
genes listed for both these clustered pathways, again reflecting on the functional implication of the present interactome in
immuno-metabolism.

It is also important to note, that here, the terms ‘metabolic pathways’ and ‘immune pathways’ are meta terms. These, each in itself
includes not a single pathway but multiple signalling pathways and their crosstalk leading to interactive networks and consequently,
devising highways implicated in metabolism and immune responses, respectively.

The functional enrichment for these 31 hub genes was also studied on EnrichR. It computes several types of enrichment scores such
as p value derived from Fisher exact test, and adjusted p value by applying Benjamini-Hochberg method [119]. The most enriched
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terms of particular interest amongst GO BP category included apoptotic and proliferation regulation, and miRNA metabolic processes
as shown in Fig. 6D. Additionally, cellular response terms in reference to reactive oxygen species, oxidative stress, interleukin 6 and 9,
lipid, cytokine stimuli, peptidoglycan, inflammatory response and its regulation, positive regulation of macromolecule metabolic
process, nitrogen compound metabolic process, protein serine/threonine kinase activity, cellular metabolic process, interleukin-1 beta
production and intrinsic apoptotic signalling, cytokine mediated signalling, regulation of vitamin D biosynthetic process, JAK-STAT
mediated receptor signalling pathway, tumour necrosis factor mediated signalling, regulation of cytokine production in inflammatory
response and T-helper 17 cell differentiation amongst other significantly enriched processes not depicted in the top ten terms (Fig. 6A).
MF terms such as insulin-like growth factor binding, tumour necrosis factor and chemokine binding activity, with RNA polymerase II
binding were amongst significantly enriched terms. These again, highlight the over-representation of immuno-metabolic biological
processes for the interactome.

Moreover, five different pathway analyses were performed to support a broader coverage and in-depth understanding of the
significantly enriched pathways. According to KEGG database, some of the top enriched terms included pathways in cancer implicating
24 out of the 31 input genes, AGE-RAGE signalling (12 genes) and PI3K-AKT pathway (14). Furthermore, immune related terms
including but not limited to T-h17 cell differentiation, IL-17, T cell and toll-like receptors signalling pathways, and cancer related terms
such as breast cancer were also included. Osteoclast differentiation, focal adhesion, HIF1 signalling, insulin resistance, adipocytokine
signalling pathway, NFKB signalling, insulin, mTOR, AMPK and p53 signalling pathways were amongst other significantly enriched
terms. The results from other databases were found to be comparable with similar or functionally related pathways. Some other terms
of interest from WikiPathways included cancer immunotherapy by PD-1 blockade, mammary gland development, endochondral
ossification, folate metabolism, role of altered glycosylation of MUC1 in tumor microenvironment, factors and pathways affecting
insulin-like growth-Akt signalling, miRNA involvement in the immune response in sepsis, regulatory circuits of STAT signalling and
leptin-insulin overlap. Additionally, according to REACTOME, immune system and interleukin signalling, NFKB activation, cellular
responses, metabolism of proteins, carbohydrates glycosaminoglycan,NLRP3 inflammasome and other immune related pathways were
also reported, with the term interleukin signalling being most significantly enriched (21 genes). Panther pathways also displayed
enrichment for similar terms, particularly inflammation mediated chemokine and cytokine signalling, however returned the least
number of enriched terms overall. Amongst the top significant terms from Elsevier pathways, proteins involved in altered expression in
cancer metastases, breast cancer related terms, and specifically, STAT3 and NFKB mediated activation of inflammation induced
tumorigenesis were listed. It also included genes with mutations and proteins with altered expression both associated with cancer
metabolic reprogramming, IG1R/AKT signalling in breast cancer, metabolism of thyroid hormones in adipose tissue, glutamine in
cancer and overall mTOR/p53 mediated cell metabolism. Diabetes associated activities such as adiponectin synthesis, adipokines by
adipocytes, insulin signalling and resistance, and diabetic complications, were in line with other databases. As for OA, osteoclast and
osteoblast related terms were also amongst the significantly enriched terms. Further probing into these pathways may provide in-depth
understanding of the deeply rooted implication of the meta-hub genes in immuno-metabolic functional regime.

Moreover, the most number of genes associated with hub protein ESR1 (17 genes) and for transcription factor, it was SP1 (17
genes). Previously, genetic variant of estrogen receptor 1 (ESR1) has been associated with altered risk of TNBC [120], implicated in
enhancing insulin sensitivity [121], and also associated with reversing osteoarthritic phenotype in OA chondrocyte [122]. The
transcription factor Sp1 is reported to maintain a tissue specific mechanism for the regulation of target gene expression and is not only
reported to mediate oncogenesis, but has also been studied in context to its role in OA and T2DM [123,124].

For miRNA, hsa-miR-155-5p was the most significantly enriched term, associating with 13 genes. This miRNA is reported to
positively mediate glucose metabolism [125], and associate with diabetes and its complication such as diabetic neuropathy [126].
Interestingly, miR-155 has been termed the master regulator of inflammation [127], and miR-155-5p in particular has exhibited a
protective role against OA [128]. Recently, miR-155 has also been reported as a diagnostic marker for TNBC [129], and for ER positive
BC, it is shown to mediate metabolic rewiring stemming from cellular reprogramming in response to lack of estrogen [130]. In addition
to this, it has been associated with T2DM-BC crosstalk [131], hence extending this axis to include OA, its multifaceted role in disease
pathophysiology establishes another molecular link between T2DM, OA and TNBC.

Corresponding to another category, ClinVar presented about half of the terms to be associated with cancer, DisGeNET showed a
diverse range of cancer terms including breast cancer triple negative neoplasms, osteosarcoma and other diseases including but not
limited to diabetes mellitus, arthritis; specifically osteoarthritis, and other phenotypes such as inflammation, synovitis and obesity.
Much fewer terms yet on similar themes were also presented by Jensen and OMIM diseases databases. Hallmark based significantly
enriched terms of particular interest included EMT, TNF-alpha signalling via NFKB, inflammation response, hypoxia, glycolysis and
signalling pathways mediated by JAK-STAT3, Interleukins, AKT and p53. This again reflects on the implication of the common hub
genes’ signature in disease pathogenesis on the immuno-metabolic axis, supporting previously stated findings. Marker terms such as
cancer stem cell and adipose derived-stromal and stem cells and metabolite Simvastatin were found to be significantly associated with
our 31 hub genes signature. As previous discussed, adipose tissue provides a common ground between these three diseases and is of
particular significance. To add to this, their association with cancer stem cell signifies their role in carcinogenesis and progression.
Simvastatin is a lipid regulator drug, given to T2DM patients to treat dyslipidemia [132]. In OA, it is reported to induce a
chondro-protective niche by reducing the expression of matrix metalloproteinases [133]. In case of TNBC, treatment with this drug
induced ferroptosis in cancer cells in vitro [134].

Further on the therapeutics perspective, drug target terms were also assessed and one of the top enriched was Quercetin, impli-
cating 8 hub genes including AKT1, EGFR, MMP2 and MMP9, from amongst the meta hub genes. It is a naturally occurring bioactive
compound, specifically a flavonol belonging to the group of flavonoids, with potent anti-oxidant and anti-inflammatory properties
investigated for diabetic, arthritic and cancer models [135]. Hence, its multipurpose application in therapeutics establishes a
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consolidated ground for drug repurposing and targeting multi-morbidities on the T2DM-OA-TNBC axes, yet further research is
required to validate this.

Specificity terms across sources included adipose tissue, whole blood, breast cancer cell line, immune system, synovial tissue,
osteocyte, chrondocytes, and pancreatic progenitor cells. It also encompassed compartments such as NFKB and TORC1 complexes, in
line with the tissues most affected by the diseases’ triad. Interestingly, these included sites and tissues most affected or crucially
associated with the 3-Ds.

Next, a PPI network with 31 nodes was generated. MCODE analysis on Cytoscape identified one cluster existing within the network,
with IFNG as its seed. This is achieved by implementing a graph theory based algorithm, that detects molecular complexes within large
PPI networks, through identifying densely interconnected sub regions, or clusters within a locally dense node serving as seed and from
which the cluster is derived [26]. Top 10 genes were retrieved as core genes within the module.

For meta hub gene identification, network topological properties-analysing algorithms were utilized and genes ranked accordingly
to identify genes of greater significance within the network. The outcome of Degree and MCC methods gave identical rankings and,
Density of Maximum Neighborhood Component (DMNC) the most diverse, as expected. A combined top 10 meta hub genes list was
compiled based on the genes ranking higher by the greatest number of methods. There were 3 genes overlapping between the top 10
hub and core genes, each, hence giving rise to a total of 17 genes for subsequent analyses.

These overlapping genes which formed the sub interactome, were reanalysed for functional enrichment using Cytoscape plugin
ClueGo, which performed the GO analyses for all three categories. Fig. 8A shows the most enriched BP terms labelled for distinct
clusters based on functionally grouped terms (comprising of 68 over represented terms, each denoted by a node (based on a Kap-
paScore group = 9), with functionally related groups also depicted. Their crosstalk included term-term interactions, with four larger
clusters; particularly fibroblast proliferation (darker green), regulation of fibroblast proliferation (orange), response to cadmium ions
(maroon) and positive regulation of miRNAmetabolic processes (pink) are identified. Each colour represented a major cluster of terms
signifying a functionally grouped sub network Furthermore, other enriched terms included positive regulation of vascular associated
smooth muscle cell proliferation, cellular response to estradiol, regulation of carbohydrate catabolic process and post transcription
gene silencing, NO synthetase regulator activity, extracellular matrix assembly, and release of cytochrome C from mitochondria. For
the MF terms, four main groups were determined (12 representative terms and KappaScore groups = 4), with interactions within the
NO synthase regulator activity, and core promoter sequence-specific DNA binding associated nodes. For CC, only two terms were
found: transcription repressor complex and euchromatin (KappaScore groups = 2).

For KEGG analysis, there were 52 enriched terms, with KappaScore group of 1 and the most over-represented term being pro-
teoglycans in cancer, as shown in bold (Fig. 8D). These analyses conclude the implication of the sub interactome in cell proliferation,
particularly of fibroblasts, cellular responses, metabolic processes, cancer pathways, and specifically, the role of proteoglycans in
cancer, representing the singular main functional group emerging from the pathway analysis. Additionally, immune associated terms
such as TNF, IL17, B cell, T cell and Th1 signalling pathways were also enriched, This again validates in in silico, the potential role of
the T2DM-OA-TNBC interactome in disease initiation, and carcinogenesis in particular, converging on metabolic, immune and cancer
associated pathways.

However, it is important to note that the terms the hub genes are enriched for does not necessarily equate to a positive association
with the particular function. It is crucial to bring into context the expression of each of these genes to comprehend the nature of their
role in that particular phenotype. The expression based validation of the 17 meta-hub genes was executed using a combined disease
specific databases- and literature search based approach. Genes exhibiting a similar expression pattern, particularly those up-regulated
across all three diseases, were of particular significance. These included MMP9 (through databases), and others (MMPs, NFKB1 and
CD44) based on manually curated information on expression reported in previously published articles.

To identify the molecular drivers of this sub interactome, further shortlisting was done based on several parameters dictating
prioritization as shown in Fig. 10.

Confirmation of the gene-disease association for the prioritized meta hub genes was done on Diseases database. It assigns a z score
based on the gene’s association with disease taking into account the co-occurrence of gene and disease terms in text by chance and
through an actual association. These scores are then converted into confidence measured by stars. All 9 meta hub genes were found to
be associated with 3-Ds, with 3 star and above confidence level. This marked the completion of the bio-computational analysis
framework, generating an output of 9 candidate meta hub genes potentially associated with T2DM-OA-TNBC axes.

Probing into the gene-gene interactions within this sub interactome identified for T2DM-OA-TNBC by devising a signalling circuit
may provide further valuable insights into the switch mechanisms employed by diseased cells and tissues to accommodate a secondary
pathogenic cascade of signalling dysregulations underlying the emergence of multi-morbid state. While these meta hubs may be
critically implicated in disease driving signalling, the decision making ability at molecular level is shared by a set of switch genes.
These genes exercise their regulatory control over the cell through the feedback mechanism ubiquitously embedded within the cellular
systems [136]. Hence, it is critical to study potential switch genes within this sub interactome and to further elucidate on the secondary
regulatory players. For this, the 9 candidate meta hub genes were studied for their regulatory patterns within the system to manually
curate gene-gene interactions data. Regulatory networks representing disease specific signalling maps for all diseased states were
constructed and superimposed to bring to surface the regulome perpetuating T2DM-OA-TNBC axes.

Finally, these genes were screened for their potential as central transducers of signalling within the T2DM-OA-TNBC interactome.
Disease specific regulatory networks were superimposed to identify common molecular routes that could drive the switch mechanisms
underlying inter-disease crosstalk and initiation of disease, particularly in case of co/multi-morbidity.

Amongst these, 9 meta hub genes, all except IFNG, were implicated in T2DM-OA-TNBC overlapping crosstalk. Interferon gamma
(IFNG), is a pro inflammatory cytokine, reported to modulate and increase the plasticity within the immunopeptidome in TNBC, shown
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in a study conducting IFNG treatment of TNBC cell line MDA-MB-231, leading to diversified antigen processing presentation [137].
This could potentiate personalizedmedicine based cancer vaccine strategies in the near future. It was identified as the seed node within
the clustered network. Ironically though, after bringing into context disease specific signalling pathways and common molecular
routes signifying core regulatory nodes within 3-D crosstalk, it was found to not interact with other nodes within the regulatory
network underlying T2DM-OA-TNBC associations. Hence, while pursuing IFNG as a candidate meta hub gene may be promising,
supported by its interconnectivity on T2DM and TNBC specific signalling maps, its implication with context to other candidate nodes
was not seen on the 3-D map, therefore it will not be discussed further. Hence 8 meta hub genes depicted potential molecular interplay
on the 3-D signalling map underlying T2DM-OA-TNBC axes. These included AKT1, NFKB1, CTNNB1, EGFR, MMP1, MMP9, CD44, and
STAT3.

Ak strain transforming (AKT), is a critical regulator of the PI3K-AKT signalling pathway. This pathway is crucially implicated in core
cellular mechanisms such as survival, metabolism and autophagy, and activated in response to multiple stimuli including but not
limited to nutrients, growth factors, cytokines and hormones [138]. It is a serine/threonine kinase which exists in three isoforms. AKT1
is involved in glucose metabolism along with its more predominantly implicated isoform AKT2. AKT2 also specifically regulates
fibroblast differentiation, particularly adipogenesis [139], and mediates pancreatic beta cell response to endoplasmic reticulum stress
[140,141].While AKT1 is also shown to be crucial for fibroblast proliferation and other cellular processes [142]. This is supportive of
present study’s findings on enriched fibroblast proliferation and its regulatory pathways. Previously, the potential of combinatory
inhibition of glycolysis and glutaminolysis in fibroblasts to address metabolic reprogramming in another type of arthritis; rheumatoid
arthritis has been studied [143], reflecting on the critical role of metabolic rewiring within fibroblasts and its effect on disease
development. Furthermore, AKT1 is also reported to inhibit breast cancer cell migration, by regulating EMT proteins [144] promote
local tumour growth [145], and critically implicated in proliferation in TNBC. It is important to note however, that its expression in
TNBC is relatively lower in comparison to other BC subtypes. With reference to its role in OA, its expression in chondrocytes has been
implicated in the negative regulation of calcified cartilage formation [146].

Nuclear factor kappa beta (NFKB), a transcription factor, is not only a critical regulator of inflammatory pathways, but its subunit
Rel, crucially modulates metabolism in B cells [147]. Moreover, in cancer, NFKB is reported to mediate cellular response to nutrient
starvation leading to metabolic adaption. NFKB mediated Inflammasome activation in response to metabolic imbalances is also re-
ported. In breast cancer in particular, its expression is associated with 10 fold chemoresistance [148]. Moreover, it is associated with
inflammatory biomarkers and catabolism up-regulation and anabolism down-regulation in chondrocytes, contributing to OA [149]. In
T2DM, it is activated in response to hyperglycemia and is associated with vascular complications [150].

The gene encoding beta-catenin, CTNNB1, is implicated in energy homeostasis and its underlying glucose metabolism [151]. It is a
crucial player of theWNT signalling and is known to interact with transcription factor 7 like 2 (TCF7L2), Forkhead box protein O (FOXO),
and HIF1A, and previously implicated in the diabetes-cancer link [31,152]. In OA, its dysfunction is a critical contributor to adiposity,
chronic inflammation and diet induced insulin resistance in skeletal muscles [153].

Epidermal growth factor receptor (EGFR) is overexpressed (constitutively) in up to 50 % of TNBC cases and is found to correlate with
CTNNB1 expression in TNBC tissue [154,84]. It is reported to phosphorylate beta catenin, leading to EMT, while also reduce membrane
associated beta catenin. It has been implicated in the diabetes-associated vascular complications, particularly kidney dysfunction [36].
Whereas in case of OA, it has depicted a protective niche by maintaining cartilage homeostasis and increasing joint lubrication, hence
negatively regulating disease progression [155,156].

Matrix metalloproteinase 1 (MMP1) is a collagenase, induced by AKT1 signalling, and crucially involved in the ECM degradation
[157]. In OA, it is particularly involved in mediating the joint destruction by allowing for articular cartilage breakdown. Its expression
is reported to be high in T2DM patients and is associated with a role in diabetic complications; wound healing in particular [158,159].
It is also reported to be overexpressed in TNBC, and associated with growth apoptosis, and metastasis [85].

Another member of the matrix metalloproteinases family, MMP9 is a gelatinase, implicated in adipose tissue signalling and its
dysregulation, highlighting its critical role in adipose homeostasis and higher plasticity in responding to nutrients [160]. Furthermore,
MMP9’s involvement in regulation of metaflammation associated with obesity [160], signifies another immuno-metabolic link at
molecular level.

Cluster of differentiation 44 (CD44) is a transmembrane glycoprotein that acts as homing cell adhesion molecule (HCAM) and
principally receptive to Hyaluronan, an extracellular matrix glycosaminoglycan [161]. CD44’s role in adipose tissue inflammation,
particularly diet induced, and its association with insulin resistance and T2DM has been established previously [162–164]. Further-
more, it has been reported as a marker for breast cancer initiation [86], particularly for TNBC [87,165]. It is sensitive to changes within
microenvironment and this may contribute towards its role in cancer initiation [166]. It is also associated with increased cytokine
mediated synoviocyte proliferation in OA [167].

Signal transducer and activator of transcription 3 (STAT3) mediates insulin resistance in skeletal muscle, and mitochondrial gene
expression and electron transport chain mechanisms in pancreatic beta cells [168,169]. It is reportedly overexpressed and constitu-
tively active in TNBC, exhibiting oncogenic potential by inhibiting apoptosis and promoting cell survival and growth [88]. Further-
more it is also associated with OA progression through the mediation of NFKB pathway, contributing to joint destruction [63].

At the crux of these interacting nodes, AKT1 is a critical meta hub gene, exercising its role as the central transducer of signals,
hence, nodes directly upstream and downstream to it may be further implicated in the interactome’s functional centrality. Hence, a
molecular concoction of 6 critical nodes achieved through the subsequent molecular equation, may potentially dictate the molecular
reprogramming underlying the immuno-metabolic origin of disease.

EGFR,CD44= > AKT1 => NFKB1+ STAT3+MMP9
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Probing into the crosstalk of these 6 nodes on immuno-metabolic interface of disease causing mechanisms, may provide a redi-
rection to understanding the underlying characteristics common to all three diseases, within the context of this regulatory axis. For
instance understanding the interplay of metabolic switches, other drivers of metabolism and chronic low grade inflammation, a feature
prevalent in many diseases including metabolic disorders, further complicated with the development of insulin resistance, oxidative
stress and hormonal fluctuations may bridge the knowledge gap on the exact molecular mechanisms underlying T2DM-OA-TNBC
association (s).

Considering the status quo of existing research on this, several molecular links already arise. The phenotypic characterization of
severe insulin resistance in T2DM is associated with an atypical blood inflammatory response [170]. Insulin resistance is a causative
mechanism, particularly for obesity associated OA [171] and cancer, hence it serves as a molecular tie between diabetes, OA and
cancer. Moreover, latest trends in research focus on immune cell profiling to predict disease susceptibility and to correlate with disease
pathogenesis, highlighting the significance of probing into the immuno-metabolic axis for metabolic disorders such as diabetes, along
with OA and BC.

In line with this, inflammatory mechanisms formulate a well-established link between diabetes and other metabolic conditions
including obesity, and metabolic syndrome [172]. Interestingly, these molecular connections extend to other morbidities with un-
derlying metabolic deregulations at play, including but not limited to cancer and arthritis. Breast cancer is known to exhibit elevated
glucose consumption and production of lactate, which contributes towards suppressing body’s antitumor response [173–175]. Dys-
regulations within the metabolic pathways are critically implicated in tumorigenesis and its further development, hence focusing on
targeting metabolic pathways may provide a promising avenue to block tumour initiation [176]. Furthermore, within the tumour
ecosystem, immune cells play a significantly critical role, intertwined with metabolic reprogramming, and exhibit plasticity [177]. In
parallel, metabolic programs within the immune cells dictate their activation and fate [21]. Pivotal to this crosstalk between metabolic
rewiring and inflammatory pathway activations, are the NFKB and AKT pathways, mediating the immuno-metabolic centred crosstalk,
potentiating transition in disease states.

Yet, it is challenging to pursue genes with pleiotropic effects as potential biomarkers. Hub genes within a network are the most
interconnected of nodes, hence indicating at their centrality within the functioning and regulatory systems. Targeting AKT and NFKB
and their pathways has been pursued as therapeutic strategies for T2DM [150,178], TNBC [179,180], and OA [181,182]. Another
strategy to address this complexity is to identify the signalling axes based on the meta hub genes identified. Probing within the
clustered networks of these meta-hub genes may then help identify downstream genes that can disconnect disease implicating feed-
back loops within signalling paths crucial for cell survival. For instance,MMPs may also be considered as potentially promising genes
to target on the T2DM-OA-TNBC axes. WhileMMP1 is reportedly elevated in TNBC, indicating at its potential diagnostic relevance, its
inhibition is shown to inhibit malignancy in vitro, and MMP9 has also been found on the therapeutic axis [85,183]. MMPs have also
depicted potential for therapeutic interventions targeting T2DM complications associated with wound healing [184], and OA [185].

Furthermore, other meta hub genes identified also associate with clinical significance. For instance, CD44, implicated in insulin
resistance, has been studied as a therapeutic target with potential for T2DM [186]. Research has also shown, targeting it may prevent
immune triggered cytokine activation and development of chronic joint inflammation, ameliorating OA conditions [64]. Furthermore,
it is already under study as a therapeutic strategy against TNBC, and identified as a cancer stem cell marker [165,187]. Similarly, EGFR
holds therapeutic significance in case of diabetic complication leading to Kidney disease [188], for OA [156], and TNBC [189]. In case
of STAT3, several of its inhibitors are under preclinical study for TNBC, and it is associated with overall poor survival [190]. It is also
pursued for Metformin associated T2DM [37], and OA [191]. Targeting of CTNNB1 too has exhibited therapeutic potential for OA
[192], and TNBC [154]. Another study using anti-diabetic drug pioglitazone in Glioblastoma Multiforme lowered beta-catenin level
[193], creating potential ground for T2DM therapeutic intervention studies targeting CTNNB1.

At the next level, reflecting on gene-gene interactions may lead us to identifying early disease driving molecular events which may
involve the integration of signals from various inputs to orchestrate regulatory networks central to comprehending the origin of
complex diseases. In line with this, understanding of disease associated gene sets may provide valuable insight into the co-localization
of two or more diseases wired by an overlapping of their gene networking systems. This may in turn potentiate disease module dis-
covery and perhaps even open avenues for targeting the molecular origin of disease initiation.

However, large gene networks underlying complex diseases and their signalling crosstalk pose a challenge for deriving insights
with the system as a whole, hence these are subjected to network analysis such as module identification so that functionally grouped
units or pathways involving genes implicated in the same biological functions can be recognized within networks of high modularity, i.
e dense regions within the networks because of highly interconnected nodes, as compared to others [194]. Within this context, the
identification of switch genes responsible for transition from one diseased state to another or comorbid condition, may facilitate
comprehension of disease-disease relationships [195]. Interestingly, it has been observed that switch genes may be closer to each other
in comparison to other nodes within gene regulatory networks underpinning specific diseases. This may be exploited further by
studying disease-disease commonalities such as their molecular overlap in the shape of interactomes, such as the derivation of mo-
lecular equation identified in the context of T2DM-OA-TNBC crosstalk, through this study.

This has been made possible with the evolution within the field of medicine, particularly personalized medicine, leading to ad-
vances in technology and the generation of high throughput omics data which introduced another spin off trajectory in the name of
network medicine [195]. A single disease is treated as a collection of patho-phenotypes associated with a set of mapped genes depicted
not only as an interplay with other factors, but also exhibiting a molecular overlap and sharedmechanisms resulting from an intricately
executed crosstalk in cellular context. As if this was not complicated enough at disease level, further complexities arise in the face of
disease-disease associations established through the expression of switch genes at molecular level, which exercise their regulatory
reigns at cellular and higher levels. Unravelling the multi-layered associations between complex diseases at gene-gene interaction
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level, may potentiate biomarker discovery coupled with therapeutic interventions for drug repurposing and designing. In summary,
pleiotropic gene modules such as the meta hub genes identified, sketching complex regulatory landscapes and exhibiting
immuno-metabolic plasticity could be studied. Specifically, finding the molecular signature which leads to the interplay between
multiple traits and phenotypes common to various complex diseases may elucidate on the molecular mechanisms underlying
disease-disease associations [196]. In the context with T2DM-OA-TNBC inter-relationships, this may allow for comprehension of
molecular bases of cancer initiation in diabetic/osteoarthritic models on immuno-metabolic axis.

While this study elucidates on the immuno-metabolic landscape of inter-disease relationships; potentially driven by an interplay
between AKT1 and NFKB1 pathways, these findings may just be the tip of the iceberg. The origination of deregulatory perturbations
within the genetic makeup may involve multitude of switch genes in action to sponsor pathogenic changes resulting in diseased
outcomes. Hence further in silico and in vitro studies are warranted to dive into the depth of this crosstalk. Furthermore, limitations in
the form of existing biases associated with resources utilized apply, and hence effort was made to rely on adjustments for multiple tests
correction where possible. The three diseases under study served as models for this preliminary in silico research based on their inter-
disease associations and shared molecular overlap. While the T2DM-BC association has been reported, and its underlying molecular
mechanisms hypothesized, the OA-BC association is still unexplored and hence requires further scientific investigation. It is also
interesting to note that bone is that most frequent site of metastasis for BC [197], and OA and BC both involve bone remodelling [198,
199], further igniting interest in understanding the underlying molecular overlap.

The potential of this study lies in the application of its findings in understanding disease patho-physiologies of co-morbid patients,
so as to potentiate appropriate therapeutic targeting and also contribute towards lowering the risk of co-morbidity in already diseased
patients. Identifying and targeting meta-hub genes may potentially be the right track in addressing this public health concern.
Additionally this may also enable drug repurposing to allow for already available drugs to be studied for and utilized for these inter-
disease associations.

However, further extensive and thorough pursuit, involving other complex and chronic diseases with overlapping immuno-
metabolic features is required to decode the origin of immuno-metabolic diseases. Moreover, each of these diseases under study are
heterogeneous in nature and further categorized, with T2DM associating with varying complications, OA defined on the basis of
affected area and TNBC subtyped into further classes, hence further stratification of diseases is required for clarity, in the future on the
road to precision medicine.

4. Conclusion

Understanding complex polygenic diseases with the application of network biology concepts map the complexities within a
functioning system into protein-protein interactions underlying healthy and diseased states. This enables the emergence of hub genes
within the biological networks, highlighting the significance of their role within the biological system [200].

This study employed a systems biology approach to probe into the hub genes associating on the type 2 diabetes mellitus (T2DM)-
osteoarthritis (OA)- triple negative breast cancer (TNBC) axes. In summary, the T2DM, OA and TNBC interactome comprised of 31
meta hub/core genes, with 27 functionally related genes that led to interlinked pathways and signalling networks underlying multi-
morbidity. Perturbations within this interactome, particularly loss or gain of function mutations within these hub genes would
essentially initiate a ripple effect of disturbance leading to a spectra of diseased phenotypic outcomes and associations. Understanding
the global dynamics within such regulatory networks may provide insight into the disease causing-switch genes and their impact on the
genetic circuits/diseasome underlying disease pathogenesis.

Ultimately, 8 meta hub genes constituting the molecular activation cocktail were found to potentially govern disease initiation and
progression, particular implicating the immuno-metabolic axis, at the heart of this crosstalk. Interestingly, all these identifiedmeta hub
genes are clinically significant targets for addressing T2DM, OA, and TNBC, hence potentiating their relevance in cases of co-
morbidities. In particular, the AKT1-NFKB1 axis highlights the crux of immuno-metabolic crosstalk and can be probed further into
to gain molecular insights into the immuno-metabolic origin of complex and chronic diseases such as T2DM, OA and TNBC, under
study. Deciphering the molecular basis for the intertwined metabolic and immune states may potentiate in-depth understanding of the
molecular driver events leading to such immuno-metabolic diseases, particularly the discovery of biomarkers for identifying the
immuno-metabolic origin of TNBC in diseased patients, in part addressing the incidence of multi-morbidities which are a prevalent
health concern worldwide.
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