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Abstract
Background  Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease 
onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, 
neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact 
of UTR genetic variants’ on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and 
variation tolerance analysis were also part of the study.

Methods  The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC 
and gnomAD. The RegulomeDB database was used to assess the functional impact of 5’ UTR and 3’UTR variants. The 
analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia 
of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of 
variants on microRNA binding sites, PolymiRTS was utilized for 3’ UTR variants, and the SNPinfo tool was used for 5’ 
UTR variants.

Results  The results obtained indicated that a total of 24 variants present in the 3’ UTR and 25 variants present in the 
5’ UTR were most detrimental. TFBS analysis revealed that 5’ UTR variants added YY1, repressor, and Oct1, whereas 3’ 
UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ 
expression. RNA secondary structure analysis showed that eight 5’ UTR and six 3’ UTR altered the RNA structure by 
either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3’ UTR and one 
5’ UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant 
was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ 
was an intolerant gene.

Conclusion  This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
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Background
The human genome predominantly comprises of non-
coding DNA [1]. Non-coding DNA, although not 
translated into proteins, plays a significant role in gene 
expression regulation during the transcription phase. The 
non-coding regions harbor untranslated regions (UTRs) 
that include 5’ UTRs and 3’ UTRs. 5’ UTRs are situated 
upstream of the protein-coding region, while 3’ UTRs are 
present downstream of protein-coding regions. UTRs, as 
we know, are not just passive bystanders in the process 
of gene expression. They are vital components for gene 
expression regulation and pre-mRNA processing, which 
affect protein outcomes [2, 3]. The 5’ UTRs control trans-
lation initiation by serving as an entry point for ribo-
some and interaction with TFs [4]. However, 3’UTRs are 
involved in the mRNA subcellular location, stability, and 
polyadenylation [5, 6].

Various studies in the literature have highlighted SNPs 
in UTR regions cause disease development, including 
cancer [7, 8]. UTR functions are commonly disrupted in 
oncological disorders [9, 10]. SNPs in the 3’ UTR region 
are reported to modify the cellular homeostasis balance 
toward cancer [11]. 5’ UTR mutations in BCL2 CXCL14 
and TAOK2 genes caused abnormal gene translation 
[12]. Furthermore, the 5’ UTR mutation in the APC gene 
added a false start codon, which hindered the translation 
initiation process, leading to colon cancer development 
[13]. 5’ UTR (g.−130G > A) variant in the MATE2-K gene 
associated with poor metformin response [14]. PRKCZ 
is a serine-threonine kinase that belongs to the atypi-
cal group of protein kinase C [15]. PRKCZ is present on 
chromosome 1(1p36.33–p36.2) on the forward strand 
[16]. PRKCZ enzyme is polyfunctional, regulating cellular 
homeostasis and behavioral phenotype [17, 18]. PRKCZ 
is a regulator of tumorigenesis due to the downstream 
target of the P13K, and it also activates ERK/MAPK and 
NF-kb, JAK/STAT pathways [19–21]. PRKCZ expres-
sion dysregulations lead to poor prognosis and a lower 
survival rate, as reported in different cancers such as 
prostate cancer, breast cancer, glioblastoma, colon can-
cer, and ovarian cancer [21–25]. A splice variant in the 
3’ region of PRKCZ was highly expressed in malignant 
prostate cancer cells and tissues [26]. rs436045 of PRKCZ 
was significantly associated with type 2 diabetes (T2DM 
) pathogenesis [27]. A previous study found that PRKCZ 
promoter methylation was involved in T2DM develop-
ment [28]. PRKCZ hypermethylation induced EMT in 
Head and neck squamous cell carcinoma [29].

The present study was mainly focused on untranslated 
region variants, i.e., 5’ UTR and 3’ UTR, ofPRKCZ. The 
current research aimed to explore the impact of PRKCZ 
5’UTR and 3’UTR variants on transcription factor bind-
ing sites and the impact of TFs on gene regulation and 
miRNA-mediated interactions. The study also focused on 

studying the impact of 5’UTR and 3’UTR variants on the 
stability of mRNA secondary structure. eQTLs analysis 
was targeted to investigate the effect of UTR variants on 
the expression of PRKCZ in different tissues. Variation 
tolerance analysis was targeted to analyze the probabil-
ity of variation in the gene with disease onset. This study 
provides preliminary in-silico based analyses that can be 
investigated further to understand the functional and 
clinical implications of PRKCZ UTR variants.

Methods
Data collection
The data relating to PRKCZ gene variants was down-
loaded from the Ensembl genome browser [30], COS-
MIC [31] and gnomAD [32]. The data contained variant 
IDs, allele variations and genomic coordinates. Ensembl 
genome browser includes a wide range of SNPs, both 
common and rare variants from various sources [30, 
33], gnomAD focuses on genomic variants from whole-
genome sequencing data [32], and COSMIC primarily 
contains somatic mutations from cancer genomes. It has 
lower UTR variants because it mainly focuses on coding 
region mutations [34]. The variant data obtained from 
the databases comprised two categories: coding regions 
and non-coding regions. As per the research objective, 
non-coding region variants encompassing 5’ UTR and 
3’ UTR were included in the study and coding region 
variants were excluded. In order to process high-quality 
data, all the UTRs were screened out from the databases 
and thoroughly investigated to remove redundant data. 
The UTR SNPs were mapped on the PRKCZ genome 
sequence (GRCh38/hg38 genome assembly) according to 
the information retrieved from the databases.

Regulatory function analysis
The RegulomeDB database [35] was accessed to deter-
mine the functional impact of 5’ UTRs and 3’UTRs 
variants. This tool classifies the variants into six classes 
ranging from 1 to 7, and Classes are further subdivided 
into subcategories, namely 1a, 1b, 2a, 2b, 3a, and 3b and 
it also provides scores to UTR variants: with variants 
having a score of 1 or nearly equal to 1 have functional 
dysregulations and score less than 1 indicate lower func-
tional dysregulation (Supplementary Material 1, Table 
S1).

Identification of transcription factor binding sites
The Alibaba tool was utilized to analyze the impact of 
UTR variants on transcription binding sites (TFBS) [36]. 
The tool combines TRANSFAC database data and gen-
erates pairwise alignment to find the TFBS. Alibaba tool 
takes the FASTA format as an input and provides TFBS 
as an output. It facilitates the identification of the num-
ber and type of transcription factors that bind to both 
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the wild-type and mutant sequences. To elucidate the 
upstream and downstream proteins of PRKCZ that regu-
late diverse transcription factors in the nucleus, a thor-
ough analysis was conducted through pathway mapping 
and gene annotations obtained from the Kyoto Encyclo-
paedia of Genes and Genomes (KEGG) database [37]. 
The pathway was visually represented using Microsoft 
PowerPoint.

microRNA annotation and structure prediction
To predict the effect of UTR variants on microRNA bind-
ing sites, PolymiRTS [38] was utilized for 3’ UTR variants, 
and the SNPinfo tool [39] was used for 5’ UTR variants. 
The PolymiRTS tool takes variant ID as an input and 
provides miRNA ID, functional class and context + score 
as an output. The database classified the effects of these 
variants into four functional categories: ‘D,’ ‘N,’ ‘C,’ and 
‘O. The ‘D’ class indicates that the derived allele affects a 
conserved miRNA site, the ‘N’ class disrupts a non-con-
served miRNA site, the ‘C’ class creates a new miRNA 
site, and the ‘O’ class provides no information on the 
ancestral allele. Additionally, the PolymiRTS Database 
provided insight into the Context + score change, where 
higher negative scores suggest a greater likelihood of 
disease development due to miRNA binding site disrup-
tion. Similarly, the SNPinfo tool also takes a variant ID as 
input and provides a transcription binding site if present, 
its genomic location and allele alteration as an output.

RNA secondary structure prediction
The study investigated the effect of both 5’ UTR, located 
upstream of the initiation site, and 3’ UTR, located 
downstream of the termination site of mRNA transcript, 
on the pre-processing, stability, and translation of mRNA 
structures. The RNAFold [40] web server was utilized 
to predict the secondary structure of mRNA and the 
minimum free energy value as a measure of the stabil-
ity of the mRNA structure. RNA secondary is an impor-
tant component in transcription and translation [6, 41]. 
RNAFold utilizes dynamic programming and McCaskill 
PF algorithms to predict mRNA secondary structure. It 
takes DNA sequence as an input to assess RNA second-
ary structure.

Expression quantitative trait loci (eQTLs) prediction
The GTEx portal [42] was employed to discover the sin-
gle tissue eQTLs. eQTLs are genetic variants linked to 
various gene expression variations [43]. The GTEx por-
tal takes variant ID as input and provides information on 
gene expression variations in different tissues, exclusively 
human tissues. The tool is an invaluable source for under-
standing the impact of non-coding variation correlated 
with other diseases, such as cancer, diabetes, stroke, etc.

Variation tolerance analysis
The Human Gene Database [44] was utilized to deter-
mine the genetic variation tolerance in the PRKCZ gene. 
The data provides a residual variation tolerance score and 
gene damage index (GDI). The residual variation score 
shows the gene’s susceptibility to genetic variation, while 
GDI characterizes the relationship between gene damage 
and the likelihood of disease.

Results
Data collection and processing
Data for both the 3’ and 5’ UTR variants was obtained 
from the Ensembl genome browser. The total number 
of 3’ and 5’ UTR variants obtained from the Ensembl 
genome browser were 576, including 139 5’ UTR variants 
(Supplementary Material S2, Table S2) and 223 3’ UTR 
variants (Supplementary Material S3, Table S3). Further-
more, 192 variants were downloaded from genomAD, 
consisting of 124 5’ UTR variants and 68 3’ UTR vari-
ants. The COSMIC database only contained 22 variants, 
all of which were 3’ UTR variants (Fig. 1A). The present 
study exclusively incorporated UTR variants that exhib-
ited nucleotide changes, while those variants that lacked 
information related to nucleotide changes were excluded 
from the analysis (Fig. 1B).

Regulatory functional analysis
The present study conducted a detailed regulatory analy-
sis of both the 3’ and 5’ UTR variants through utilizing 
the RegulomeDB tool. The RegulomeDB tool provided 
information on 100 5’ UTR variants (Fig.  2A) (Supple-
mentary material 4, Table S4) and 154 3’ UTR variants 
(Supplementary material S5, Table S5). Furthermore, 
variants with a probability score ranging from 0.60 to 1 
were included for functional analysis, whereas those with 
a score lower than 0.60 were excluded. After applying the 
pre-determined inclusion and exclusion criteria, a total 
of 25 5’ UTR variants and 24 3’ UTR variants were identi-
fied to have a score above the 0.60 threshold. This infor-
mation is depicted in Fig. 3A and B. Figure 3C provides 
a visual representation of the regulomeDB class rank to 
which the identified variants belong. Additionally, Fig. 3D 
displays the percentage distribution of the variants across 
the different rank classes.

Transcription factor binding site analysis
A comparative analysis of the 5’ UTR wild type and 
mutant sequences was conducted, which revealed that 
of the 25 variants analyzed, 11 variants caused the dele-
tion of transcription factor binding sites, 8 variants led 
to the creation of a new site, whereas 6 variants caused 
no effect on TFBS ( Supplementary Material S6, Table 
S6) (Fig.  4A). However, 5’ UTR variants (rs1389053287, 
rs1282623960, rs192386882, and, rs57743955) led to the 
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addition of entirely new YY1, repressor, Oct1, and YY1 
mutant TFBS respectively (Fig.  4B). Based on the com-
parative analysis of 3’ UTR, it was found that 4 variants 
resulted in the deletion of TFBS, while 14 variants led 
to the addition of TFBS. Additionally, 6 variants did not 
affect the TFBS (Supplementary Material S77, Table S7) 
(Fig.  4C). 3’ UTR variants (rs1017752535, rs755735985, 
rs375170466, rs1006027187, and rs371058786) led 
to the addition of AP-2alpha, AhR, Da, GR, and USF 
mutant TFBS respectively (Figs.  4D and 5). TFs identi-
fied through the Alibaba tool were also analyzed to inves-
tigate their impact on PRKCZ expression. Moreover, 
KEGG pathway analysis revealed that different signal-
ing pathways wereinvolved in PRKCZ gene expression. 
UTR genetic variants could lead to overexpression of 
certain TFs c-myc, c-Jun and fos, PDK and NF-KB com-
plex, which ultimately could initiate positive feedback 
that promoted PRKCZ overexpression. These pathways 
encompass MAPK, WNT canonical and planner polar-
ity pathway, NF-KB, and PI3K pathway. MAPK pathway 
was found to activate c-myc, c-Jun and fos, while NF-KB 
pathway promoted the transcription of NF-KB complex 

transcription. Similarly, the WNT canonical and planner 
polarity pathway also activated c-Jun, c-myc and PDK. 
All these TFs mentioned triggered PRKCZ translation 
and expression. Moreover, PRKCZ underwent activation 
within the cytoplasm through the AKT and PDK path-
way via PI3K activation. Additionally, PRKCZ exerted 
an influence on the activity of ERK and RAC1 proteins. 
Consequently, PRKCZ influenced ERK and RAC1 to 
enhance the activity of C-myc, C-Jun, and Fos.

Analyzing the impact of UTR variants on miRNA binding 
sites
The PolymiRTS database contained valuable data regard-
ing variants that affected miRNA binding. Seven 3’ UTR 
were observed to alter the miRNA binding sites, includ-
ing its genomic location, ancestral allele, functional class, 
and Context + score (Table 1). Moreover, it was found that 
one SNP affected multiple miRNAs. SNPS rs80119748 
altered the binding site of hsa-miR-3186-3p at conserved 
site, rs11553733 altered the binding site of various miR-
NAs; it created a new binding site of has-miR-4746-3p 
and hsa-miR-876-3p, and it altered the binding site of 

Fig. 1  PRKCZ corresponding UTR variants data retrieved from multiple sources, i.e., Ensembl genome browser, genomeAD, and Cosmic Panel (A) shows 
the number of 3’ and 5’ UTR variants obtained from databases, while (B) exhibits the UTR variants chosen for further analysis
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hsa-miR-140-5p hsa-miR-6499-3p at the conserved site, 
rs113534097 impacted the binding site of two miRNA 
such as hsa-miR-188-5p, hsa-miR-6866-3p by creating 
new binding sites. rs143864233 affected the binding sites 
of hsa-miR-1307-3p, hsa-miR-1469, hsa-miR-4638-5p 
at conserved sites. rs202100130 altered the binding site 
of hsa-miR-3943 at the conserved site, whereas it cre-
ated new binding sites for following miRNA such as 
hsa-miR-4313, hsa-miR-3127-3p, hsa-miR-6769a-3p, hsa-
miR-6756, 3p, rs1050601, hsa-miR-132-5p, hsa-miR-3148 
d, hsa-miR-6124 d, hsa-miR-4497, hsa-miR-4664-3p, hsa-
miR-4668-5p, hsa-miR-6784-5p. The SNPinfo database 
indicated that rs57743955 5’ UTR variant created TFBS. 
Among 5’UTR variants, it was found that solely one vari-
ant had a discernible impact on the TFBS (Table 2).

Analyzing the impact of UTR variants on RNA secondary 
structure
Out of 25 5’ UTR, eight variants were found to alter 
the RNA secondary structure. rs1450239046 removed 
one stem-loop. Conversely, rs12822623960 removed 

two stem loops, rs1471967977 removed two stem loops 
and increased the positional entropy, rs1319211422 
removed one stem-loop and created a larger stem-loop, 
and rs1292130789 removed three stem-loops. Vari-
ant rs192386882 also caused the removal of three stem 
loops and caused an increase in the positional entropy, 
rs145641717175 rearranged nucleotides in the stem-
loop, enlarged it, and increased the positional, and 
rs1444012826 added one stem loop and decreased the 
positional entropy (Fig. 6A). Out of 24 3’ UTR, 6 variants 
either removed or added stem loops. The rs1038816956 
removed a stem-loop leading to a decrease in positional 
entropy; the rs754595816 added one stem-loop, causing a 
larger stem-loop; the rs753475181 added two stem-loops, 
leading to high positional energy.the rs1006004882 and 
rs779822936 added one stem-loop, resulting in a decrease 
in positional entropy and the rs755735985 added a stem-
loop, causingan increase in positional entropy (Fig. 6B).

The non-coding variants exerted varied effects on the 
mRNA structural stability by either enhancing or reduc-
ing it or causingno effect. The results showed that among 

Fig. 2  Functional analysis of UTR variants by RegulomeDB. The data is segmented by score and rank for both 3’ UTR and 5’ UTR. (A) displays the score-wise 
category for 3’ UTR variants, while (B) shows the score-wise classification for 5’ UTR variants. A score of 1 or near 1 indicates a higher probability of affecting 
miRNA function. (C) demonstrates the rank-wise categorization for different classes for both 3’ UTRs and 5’ UTRs
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5’ UTR, ten variants caused an increase, six caused a 
decrease, and nine variants had no effect on the mRNA 
stability (Fig. 7A) (Supplementary Material S8, Table S8). 
Moreover, 3’ UTR analysis showed that among all3’ UTR 
variants, seven variants led to an increase, six variants 

caused a decrease, and ten variants had no effect on the 
mRNA structure stability (Fig. 7B) (Supplementary Mate-
rial S9, Table S9). Furthermore, a collective analysis of 
5’ UTR and 3’ UTR variants effect on mRNA stability is 
depicted in Fig. 7C.

Fig. 4  Comparative analysis of TFBS by Alibaba web server for wild type and variant. (A) illustrates the comparative analysis of 5’ UTR for wildtype and 
variant, (B) showcases the mutant TFBS induced by 5’ UTR variants (rs1389053287, rs1282623960, rs192386882, and, rs57743955) C) displays the compara-
tive study of the 3’ UTRs for wildtype and variant and (D) illustrates the mutant TFBs induced by 3’ UTR variants (rs1017752535, rs755735985, rs375170466, 
rs1006027187, and rs371058786)

 

Fig. 3  UTR variants included for further analysis based on score and rank. A) selected 5’ UTRs along with their score probability, (B) selected 3’ UTRs along 
with their score probability, (C) the identified variant’s class ranking, and (D) the percentage distribution of both 5’ and 3’ UTR variants across the rank 
classes
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Analyzing the impact of UTR variants on expression by 
eQTLs
The GTEx portal revealed that only one variant, 
rs17777295, was found to be expressed in the lungs and 
thyroid with a p-value of 1.9e-116 and 1.5e-19, respec-
tively (Table 3).

Analyzing variation tolerance
The Human Gene Database revealed that PRKCZ had 
a high probability of intolerance, with scores of 8.25% 
and 1.63%, respectively (Table 4). In practical terms, this 
means that genetic variants could impactPRKCZ func-
tionally that could increase the likelihood of disease 
onset. Specifically, the database indicated that as gene 

damage increases, the probability of the gene-to cause 
disease decreases.

Discussion
Gene variations in UTR regions have been linked to vari-
ous diseases. Literature has highlighted the involvement 
of UTR variants in several neurological and oncological 
disorders [45–48]. These regions are of extreme signifi-
cance due to their essential function in regulating gene 
expression through the addition, deletion, or modifica-
tion of transcription factors and transcription binding 
sites. However, the literature does not contain data con-
cerning the role of PRKCZ UTR variants in disease onset. 
Experimental procedures can be inefficient in terms of 
both time and cost. Therefore, the present study utilized 

Fig. 5  PRKCZ signaling schematic representation constructed using the KEGG database. P13K, MAPK, NFKB WNT canonical and planner polarity pathway 
regulate PRKCZ transcription. Furthermore, PRKCZ interacts with ERK and CDC42/RAC1 to maintain positive feedback
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in-silico approaches to determine the effect of UTR 
variations in PRKCZ. The present study has examined 

the impact of PRKCZ UTR variants on interactions with 
transcription factors and miRNA. RNA secondary struc-
ture, eQTLs, gene network, and variation tolerance anal-
ysis were also done.

The study presented here filtered out PRKCZ UTR 
variants with a high probability of functional dysregula-
tions. The results are consistent with the past studies that 

Table 1  List of PRKCZ 3’ UTR variants impacting 3’ UTR region interaction with miRNA binding sites along with functional class and 
context + score analyzed through PolymiRTS tool
Variant rsID Location Ancestral allele Derived allele miRNA ID Functional class context+

score change
rs80119748 1:2116455 G G hsa-miR-3186-3p D 0.002
rs11553733 1:2116510 C C has-miR-4746-3p D -0.268

hsa-miR-876-3p D -0.218
T hsa-miR-140-5p C -0.182

hsa-miR-6499-3p C -0.144
rs113534097 1:2116556 C T hsa-miR-188-5p C -0.074

hsa-miR-6866-3p C -0.074
rs143864233 1:2116570 G G hsa-miR-1307-3p D -0.461

hsa-miR-1469 D -0.366
hsa-miR-4638-5p D -0.162

A hsa-miR-6722-5p C -0.208
rs202100130 1:2116709 G G hsa-miR-3943 D -0.241

hsa-miR-4313 D -0.193
A hsa-miR-3127-3p C -0.144

hsa-miR-6769a-3p C -0.116
hsa-miR-6756-3p C -0.201

rs1050601 1:2116746 A A hsa-miR-132-5p D -0.247
hsa-miR-3148 D 0.027
hsa-miR-6124 D 0.018

C hsa-miR-1180-3p C -0.227
hsa-miR-4497 C -0.28
hsa-miR-4664-3p C -0.223
hsa-miR-4668-5p C -0.063
hsa-miR-6784-5p C -0.293

Table 2  PRKCZ 5’ UTR variants modulating the miRNA TFBS 
analyzed through SNPinfo
Variant rsID Location Allele TFBS
rs57743955 1: 1,971,873 C/T Y

Fig. 6  PRKCZ RNA secondary prediction and positional entropy by RNAFold. (A) Shows RNA secondary structure for both wild type (W) and mutant 
(M) for 3’ UTR variants, while (B) Shows RNA secondary structure for both wild type (W) and mutant (M) for 5’ UTR variants. Positional entropy entropy is 
denoted with different colors; red depicts the highest, and blue represents the lowest positional entropy
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identified UTR variants in PRKCE, PKCI, and XRCC1 
with functional implications [49–51]. Another study 
identified 97 non-coding SNPs involved in coronary 
artery disease development [52]. TFBS analysis revealed 
that 5’ UTR variants added YY1, repressor, and Oct1, 
whereas 3’ UTR variants added AP-2alpha, AhR, Da, GR, 
and USF binding sites. YY1 is a zinc finger transcription 
factor that regulates diverse functions such as prolifera-
tion, differentiation, and embryogenesis [53]. A previous 
study found that YY1 is closer to the translation start and 
had activator and repressor roles in gene regulation [54]. 
Repressor on the other hand, is a transcription factor that 
represses transcription by blocking the binding of dif-
ferent transcription factors to the promoter. The Oct1 
transcription factor is pro-oncogenic and is involved in 
immune modulation, cytotoxic, and oxidative resistance, 
as well as metabolic reprogramming [55]. The role of AP-
2alpha is significant in maintaining equilibrium between 
growth and differentiation. Its association with epidermal 

growth factor is direct, and studies showed that it causes 
hyperproliferation in epidermal cancers [56]. AhR tran-
scription factors play a role both in immunity toxicity 
and T cell development [57]. Da has an attachment site 
downstream of the transcription site where polymerase 
binds [58]. Da binding to the site where polymerase nor-
mally attaches affects gene expression regulation [59]. GR 
TF binding to glucocorticoid response elements (GREs) 
controls many physiological processes, such as devel-
opmental, metabolic, and immune [60, 61]. The USF 
transcription factor family is involved in various cellu-
lar processes, for example, iron homeostasis, embryonic 
development, and carcinogenesis [62]. Our findings sup-
port the conclusions of earlier studies that explored the 
functional implication of varying TFBS due to non-cod-
ing variants [49, 50, 63].

The current study identified 5’ and 3’ UTR variants 
affecting miRNA binding. 5’ and 3’ UTR variants disturb 
miRNA binding sites, affecting the translation process 
and leading to various pathologies [64]. A previous study 
found that 3’ UTR SNP rs2229295 introduced binding 
sites for miR214-5p and miR550-5p, causing abnormal 
glucose metabolism [65]. MicroRNAs are essential com-
ponents that play a crucial role in regulating the stabil-
ity of mRNA [6]. The present study found that 3’ UTR 

Table 3  PRKCZ UTR variant single tissue eQTL analysis by GTEx 
portal with the p-value
Varian ID Organ p-value
rs17777295 Lungs 1.9e-116

Thyroid 1.5e-19

Table 4  Genetic variation tolerance of PRKCZ along with residual variation intolerance score, Gene Damage Index Score and its 
impacts analyzed by the human Gene Database
Name Residual Variation Intolerance Score Impact Gene Damage Index Score Impact
PRKCZ 8.25% Likely to be disease-causing 1.63% Likely to be disease-causing

Fig. 7  Minimum Free Energy calculation by RNAFold due to UTR variants (A) variation in MFE in 5’ UTR mutations, (B) variation in MFE in 3’ UTR, and (c) 
shows a collective analysis of the decrease, increase, and no change in mRNA stability upon 5’ UTR and 3’ UTR variations
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caused variation in miRNA binding, which could affect 
the translation process. 3’ UTR SNP impact miRNA. 
In the past study, FOXC2 3’ UTR SNPs (rs201118690, 
rs6413505, and rs201914560) caused binding site varia-
tion in miRNA (impact on three miRNA, hsa-miR-
6886-5p, hsa-miRS-6886-5p, and hsa-miR-6720-3p) [66]. 
3’ UTR (rs12516, rs3092995 and rs8176318) in BRCA1 
impacted interaction with miR-103 seed sequence [65]. 
Another study showed that UTR variants impacted the 
binding of miRNA with PRKCE mRNA, causing PRKCE 
overexpression [49]. These findings align with prior stud-
ies that analyzed the impact of the 3’ UTR variant on 
miRNA binding site and gene expression [45–48]. A pre-
vious study identified 110 3’ UTR SNPs in 67 genes that 
impacted miRNA binding sites [67]. Both 3’ and 5’ UTR 
variants impacted mRNA secondary structure and stabil-
ity. It had been emphasized in the literature that mRNA 
stability is a crucial factor for mRNA regulation and pro-
cessing [68]. An in-silico study reported that the 3’ UTR 
variant mutation was responsible for mRNA destabiliza-
tion in the LIF gene, correlated to schizophrenia devel-
opment [69]. The present study found that one variant 
was associated with tissue eQTLs. GTEx analysis had 
largely been employed in different studies to find the link 
between tissue eQTLs with coronary arteries, diabetes, 
and schizophrenia [70, 71]. According to the variation 
tolerance analysis conducted by the human gene data-
base, it had been determined that the PRKCZ gene was 
intolerant, which put it at a higher risk of genetic varia-
tion. The GDI and residual intolerance score metrics are 
invaluable sources for determining the risk of genetic 
variation of a gene in the disease pathogenesis [72].

Conclusion
Our scientific investigation has employed in-silico 
approaches to determine the functional impact of UTR 
variants in PRKCZ. The present study has examined the 
involvement of TFs in regulating the expression of the 
PRKCZ gene. The PRKCZ UTR variants affected miRNA 
binding sites and mRNA stability. eQTLs analysis indi-
cated that only one UTR variant showed expression in 
specific human tissues. Gene tolerance analysis revealed 
that PRKCZ is an intolerant gene that is prone to a high 
degree of genetic variation.

Limitations and Future Perspectives
It is imperative to validate the findings of the current 
study at the population level through genotyping follow-
ing high-throughput sequencing techniques. Addition-
ally, these discoveries can also be investigated in in-vitro 
and in-vivo models to determine the impact of varia-
tions in complex biological systems. Future studies may 
explore the potential correlation between identified TFs 
and PRKCZ by analyzing their co-expression.
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