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Abstract
Objective: Electronic health records (EHRs) provide opportunities for the development of computable predictive tools. Conventional machine 
learning methods and deep learning methods have been widely used for this task, with the approach of usually designing one tool for one clini-
cal outcome. Here we developed PheW2P2V, a Phenome-Wide prediction framework using Weighted Patient Vectors. PheW2P2V conducts 
tailored predictions for phenome-wide phenotypes using numeric representations of patients’ past medical records weighted based on their 
similarities with individual phenotypes.
Materials and Methods: PheW2P2V defines clinical disease phenotypes using Phecode mapping based on International Classification of Dis-
ease codes, which reduces redundancy and case-control misclassification in real-life EHR datasets. Through upweighting medical records of 
patients that are more relevant to a phenotype of interest in calculating patient vectors, PheW2P2V achieves tailored incidence risk prediction of 
a phenotype. The calculation of weighted patient vectors is computationally efficient, and the weighting mechanism ensures tailored predictions 
across the phenome. We evaluated prediction performance of PheW2P2V and baseline methods with simulation studies and clinical applica-
tions using the MIMIC-III database.
Results: Across 942 phenome-wide predictions using the MIMIC-III database, PheW2P2V has median area under the receiver operating charac-
teristic curve (AUC-ROC) 0.74 (baseline methods have values ≤0.72), median max F1-score 0.20 (baseline methods have values ≤0.19), and 
median area under the precision-recall curve (AUC-PR) 0.10 (baseline methods have values ≤0.10).
Discussion: PheW2P2V can predict phenotypes efficiently by using medical concept embeddings and upweighting relevant past medical histor-
ies. By leveraging both labeled and unlabeled data, PheW2P2V reduces overfitting and improves predictions for rare phenotypes, making it a 
useful screening tool for early diagnosis of high-risk conditions, though further research is needed to assess the transferability of embeddings 
across different databases.
Conclusions: PheW2P2V is fast, flexible, and has superior prediction performance for many clinical disease phenotypes across the phenome of 
the MIMIC-III database compared to that of several popular baseline methods.

Lay Summary
Electronic health records (EHRs) can help improve healthcare outcomes through the development of computable predictive tools. To leverage 
EHR data and inspired by word embeddings in natural language processing, we developed PheW2P2V, a Phenome-Wide prediction framework 
using Weighted Patient Vectors. PheW2P2V aims to conduct phenome-wide predictions in a computationally efficient way by taking a 2-step 
procedure, that is, medical concepts embedding plus tailored predictions with a novel weighting scheme. The proposed weighting scheme 
smartly give higher weights to a patient’s past medical records that are more relevant to an outcome of interest to achieve a tailored prediction 
for the outcome, while maintaining computational efficiency by separating embeddings and predictions. PheW2P2V is fast, flexible, generaliz-
able, and has better prediction performance than that of baseline methods including a LASSO regression model, a random forest classifier, a 
gradient boosted tree classifier, and P2V without weights, across the majority of the 942 phenome-wide predictions using the MIMIC-III data-
base. Also using simulation studies, we demonstrated (1) an improved prediction performance of PheW2P2V over the 4 baseline methods; and 
(2) numeric vectors of predictor medical concepts and outcome concepts can recover association signal strengths between them.
Key words: phenome-wide prediction; patient representations; electronic health records (EHRs). 

Introduction
The increasing adoption of electronic health records (EHRs) 
brings opportunities to develop new computational predictive 
tools.1–3 Conventional machine learning approaches such as 
regression-based, bagging, or boosting methods have been 
widely used to predict clinical outcomes such as heart failure, 

type 2 diabetes mellitus, hypertension, and others.4–8 We 
recently developed a flexible similarity-based algorithm and 
applied it to predict end stage kidney disease and severe 
aortic stenosis.9 With these conventional methods, usually 
one prediction tool is trained for one outcome, that is, they 
are outcome-specific, and only labeled data are used to train 
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the model, that is, they are fully supervised. In addition, these 
conventional methods usually take data that are well- 
structured without missing values.

Deep learning algorithms for natural language processing 
(NLP) have also been used for clinical decision making with 
EHR, because patients’ sequences of medical records are sim-
ilar to sequences of words in text documents. Historically 
developed for NLP tasks such as machine translation to fully 
use sequence information, recurrent neural network 
(RNN)10,11 has been widely used in EHR to predict health 
outcomes. With the word2vec algorithm being introduced12

in 2013, which represents words with numeric vectors, medi-
cal records embeddings can be pre-trained and combined 
with prediction models such as RNN or logistic models, 
either in a 2-step fashion without fine-tuning embeddings, 
that is, frozen embeddings plus prediction, or in a 1-step fash-
ion that fine-tunes embeddings based on outcomes. In a 1- 
step approach, RNN models fine tune pre-trained embed-
dings together with RNN parameters to predict outcomes 
such as clinical diagnoses or readmissions.13–16 Thus, 1-step 
models are outcome-specific, fully-supervised, and computa-
tionally intensive. On the other hand, 2-step models are not 
outcome-specific, not fully supervised as unlabeled data can 
be used for embedding and embedding is done once and is 
combined with a prediction model to predict outcomes. Two- 
step models are thus computationally efficient. Farhan et al 
proposed a 2-step model,17 where a patient’s sequence of 
medical records was numerically represented by summing up 
their medical concept embeddings and was subsequently used 
to predict the patient’s risks of different diagnoses. However, 
the prediction performance is only slightly better than that of 
logistic regressions because all medical records were treated 
equally regardless of the diagnoses to be predicted.

To improve prediction performance and computational effi-
ciency, the Transformer model18 was developed, which uses a 
position embedding and self-attention layers to capture relative 
contributions of words in a sentence and conducts predictions 
in a 1-step fashion. BERT (Bidirectional Encoder Representa-
tions from Transformers)19 was subsequently developed to 
improve Transformer through pre-training a Transformer 
encoder by predicting randomly masked words. BERT can be 
combined with different prediction models, such as RNNs or 
Transformer decoders, either in a 2-step fashion, or a 1-step 
fashion. BERT has also been applied in EHR. The Med-BERT 
model20 was pre-trained on a large external dataset with 28 
million patients, and the model was fine-tuned using RNN to 
predict 2 diseases, heart failure among diabetic patients and 
onset of pancreatic cancer. However, the prediction gains of 
Med-BERT through pre-training using such a large external 
dataset are minimal compared to the computational cost.

Here we aim to conduct phenome-wide predictions with 
computational efficiency while maintain good prediction per-
formance for individual phenotypes. The prospective 
phenome-wide predictions could be useful as a screening tool 
to flag patients with high-risk conditions in early stages which 
may be missed overwise. Specifically, we propose PheW2P2V, 
a Phenome-Wide prediction framework that uses Weighted 
Patient Vectors. PheW2P2V is the first phenome-wide predic-
tion framework that takes a 2-step procedure, that is, embed-
ding plus prediction, thus is computational efficient. To 
maintain good prediction performance for individual pheno-
types, PheW2P2V uses a novel weighting scheme on medical 
concept embeddings so that predictions based on patient 

embeddings are tailored to individual phenotypes. Since diag-
nosis concepts in EHR are usually coded using International 
Classification of Disease (ICD) terminology, which is designed 
for billing and administrative functions but not for case- 
control studies,21 PheW2P2V first maps patients’ ICD codes 
to clinical disease phenotypes called phenotype codes (pheco-
des). Phecodes are originally developed for phenome-wide 
association studies (PheWAS), where patients’ phenotypes are 
identified by grouping ICD codes that represent common eti-
ologies, with a purpose of reducing the redundancy and better 
defining cases and controls.21,22 To predict a clinical disease 
phenotype in the phenome, after generating medical concepts 
embeddings using word2vec, PheW2P2V represents each 
patient as a single numeric patient vector where patient’s med-
ical concepts that are more correlated with the phenotype of 
interest are upweighted. The patient vector is then used to pre-
dict the incidence risk of the phenotype of the patient.

Unlike the 1-step model where embeddings are fine-tuned 
for one outcome of interest, PheW2P2V introduces weights 
on medical concepts to improve computational efficiency 
while tailors predictions to a phenotype of interest to main-
tain good phenome-wide prediction performance. Unlike tra-
ditional supervised methods that only use labeled data to 
supervise predictions, PheW2P2V uses labeled and unlabeled 
training samples for embeddings, which are then used for pre-
dictions. This can mitigate the overfitting problem that most 
supervised methods encounter.

Using simulation studies, we showed an improved predic-
tion of PheW2P2V over that of 4 baseline methods including 
a regression-based model, a random forest classifier, a gra-
dient boosted tree classifier, and the P2V model without 
weights.17 We applied all methods to the MIMIC-III data-
base23 to predict patients’ incidence risks of 942 phenotypes 
at the latest visit using medical records from past visits. We 
observed better predictions of PheW2P2V consistently across 
most phenotypes over that of baseline methods. We also dem-
onstrated several clinical examples in which PheW2P2V can 
predict less-common conditions that could be diagnostically 
challenging or missed on a routine clinical work up, such as 
chronic pericarditis. Automated suggestions provided by 
PheW2P2V that such conditions should be considered in the 
differential diagnosis and in the work up of high-risk patients 
could be clinically impactful.

Methods
Overview of PheW2P2V
The PheW2P2V framework is illustrated in Figure 1 with 4 
steps: (1) identifying case-control status of phenome-wide 
clinical disease phenotypes by mapping diagnosis ICD codes 
to phenotype codes (phecodes) and constructing patient 
sequences; (2) generating medical concepts embeddings using 
word2vec; (3) calculating weighted patient vectors with 
weights capturing correlations between past medical records 
and a phenotype of interest; and (4) conducting tailored 
phenome-wide predictions using weighted patient vectors to 
predict incidence risks of individual patients.

Step 1: phenome-wide case-control identifications
Phenotype mapping using Phecode map21 (with R package 
“PheWAS”24) aims to reduce the redundancy of ICD codes 
and more accurately define case-control status of clinical phe-
notypes, for the purpose of phenome-wide analysis. With 
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phecode mapping, over 14 000 codes in the ICD-9 system 
were grouped into approximately 1600 phenotype codes 
(phecodes).22 Using the MIMIC-III database, for each 
patient’s visit, PheW2P2V maps patient’s ICD-9 codes to 
phecode-defined “case groups,” that is, case status of mean-
ingful clinical phenotypes. A list of disease-specific exclusion 
phecodes was also specified for each “case group.” A patient 
without any ICD-9 code in this list is defined as the “control 
group.” This mapping ensures that patients with comparable 
diseases are not categorized as controls. For example, a 
patient with an unknown arrhythmia cannot be considered as 
a control for atrial fibrillation.24

Step 2: medical concepts embeddings
Word2vec is a NL embedding algorithm that is computation-
ally efficient.12 With a large corpus of text, it uses a neural 
network to generate numeric vectors for unique words in the 
corpus. These numeric vectors have the same dimension and 
are thus embedded in a vector space. A patient’s sequence of 
medical concepts that contains phenotype codes, lab test 
codes, and medication codes can be considered as a sentence 
with words. PheW2P2V applies word2vec to learn numeric 
vectors for medical concepts. The clinical similarity between 
2 medical concepts can be captured by the cosine similarity 
between the 2 corresponding numeric vectors.

Step 3: weighted patient vectors tailored for a 
phenotype
For each phenotype, we calculate cosine similarities between 
the numeric vector of the phenotype and numeric vectors of 
all other medical concepts. Suppose an EHR database has K 
unique medical concepts, among which there are J phenotype 
codes. We build a correlation matrix with dimension J×K to 
capture correlations between J phenotypes and K medical 
concepts. To conduct tailored predictions, a patient’s past 
medical records are summarized into a numeric patient vec-
tor, which is a weighted average of numeric vectors of the 
patient’s past medical concepts using phenotype-specific 
weights to up-weight medical concepts that are most relevant 
to the phenotype: 

PVweight
ij

� � �!

¼
1

XKi

k¼1

r2
jk

XKi

k¼1
r2

jkVk
� � �!

;

rjk ¼ cosine Phej
� � �!

;Vk
� � �!

� �

:

(1) 

Here we calculate the weighted patient vector PVweight
ij

� � � !

for 
patient i tailored for phenotype j, where Ki is the number of 

Figure 1. The workflow of the proposed PheW2P2V framework.
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concepts of patient i, Vk
� � � !

is the vector representation of medi-

cal concept k, Phej
� � � !

is the vector representation of phenotype 
j, and rjk is the cosine similarity between medical concept 

k Vk
� � � !

and phenotype j Phej
� � � !

. The weight of medical concept k 

tailored for phenotype j for patient i is defined as 
r2
jkPKi

k¼1
r2
jk

, 

where we treat negative and positive correlations equally. We 
note that a negative rjk suggests a negative association 
between medical concept k and phenotype j, which helps pre-
diction similarly as a positive association.

Step 4: phenome-wide risk predictions
To predict risk of phenotype j for a test sample t, we compute 

the test sample’s patient vector PVweight
tj

� � � !

using eqn (1) and the 
following risk score, which is the cosine similarity between 

the patient vector and the phenotype vector Phej
� � � !

: 

Stj ¼ cosine PVweight
tj

� � �!

;Phej
� � �!

� �

: (2) 

Stj ranges from −1 to 1, with higher values indicating 
higher risks of the phenotype.

Baseline methods and evaluation metrics
We considered 4 baseline methods, (1) a LASSO regression 
model, (2) a random forest classifier, (3) a gradient boosted 
tree classifier, and (4) P2V without weights. For LASSO and 
random forest, we used the Python library “scikit-learn” and 
set the LASSO regularization strength C¼1.0 and the num-
ber of trees in random forest n¼ 500 with Gini impurity as 
the split criterion. For the gradient boosted tree, we used the 
Python library “xgboost” with the number of rounds 
n¼ 100. For LASSO, random forest, and gradient boosted 
tree, we constructed a data matrix with rows representing 
patients and columns representing counts of medical concepts 
from past admissions before the latest visit.

We evaluate model performance using area under the 
receiver operating characteristic curve (AUC-ROC), max F1- 
score, and area under the precision-recall curve (AUC-PR). 
An ROC curve is created by plotting the true positive rate 
(also called sensitivity or recall) and false positive rate (1-spe-
cificity) at various discrimination thresholds to illustrate the 
prediction ability of a binary classifier. In general, an AUC- 
ROC of 0.5 suggests the classifier is uninformative and 
assigns labels randomly. PR curves are similar to ROC 
curves, with precision and recall as the axes. A random classi-
fier has an AUC-PR (also called average precision) equal to 
the percentage of positive samples, that is, the percentage of 
cases pcase for a phenotype. F1-score is the harmonic mean of 
precision and recall F1 ¼ 2× precision× recall

precisionþ recall. A dummy classifier 
that identifies all samples as cases would have a F1-score ¼
2pcase

pcaseþ1. A discrimination threshold is needed to calculate the 
F1-score. Since different methods might have different opti-
mal thresholds for different phenotypes, we compute the 
maximum F1-score across all possible discrimination thresh-
olds for each method.

Phenome-wide predictions using the MIMIC-III 
database
MIMIC-III data preprocessing
We conducted a phenome-wide prediction using the MIMIC- 
III database and aim to predict incidence risks of phenotypes 
across the phenome at the latest visit using past medical 
records. MIMIC-III is a freely accessible critical care data-
base.23 We used medical concepts from 3 clinical domains, 
diagnoses history (ICD-9 codes), prescriptions, and lab tests. 
There are 46 520 patients in MIMIC-III, among which 
39 001 had only 1 admission and 7519 had ≥2 admissions. 
There are in total 58 951 admissions with 6984 ICD-9 codes, 
3267 prescriptions, and 710 lab tests. For prescriptions and 
lab tests, we used binary information of whether a patient 
ever had been prescribed a specific drug and whether a 
patient ever had a specific lab test during an admission. With 
phecode mapping, the 6984 ICD-9 codes were mapped to 
1693 phenotype codes in Step 1 of PheW2P2V. To have good 
numeric representations of medical concepts using word2vec, 
we removed rare medical concepts who appeared in fewer 
than 50 admissions. Similar procedures were taken by other 
studies with medical concept representations using word2-
vec.17 After these steps, we have 956 phenotype codes, 1348 
prescriptions, and 490 lab tests. We used these medical con-
cepts to construct patient sequences, which are medical con-
cepts sequences sorted by admissions. We assume orders of 
medical concepts from 1 admission do not affect predictions. 
Therefore, we randomly shuffled medical concepts within 1 
admission, and used a window size 500 (a hyperparameter in 
word2vec to define the maximum distance between the cur-
rent word and its context word within a sentence) because 
the maximum number of concepts within 1 admission in 
MIMIC-III is 497. Table 1 summarizes patients and medical 
concepts in the MIMIC-III data after processing.

Incident cases identification for phenome-wide predictions
Our goal is to predict patients’ incidence risks of phenome- 
wide phenotypes at the latest visit using patients’ medical his-
tory from past visits. We define incident cases at the latest 
visit as patients who (1) had at least 2 visits, (2) were identi-
fied as cases of a phenotype at the latest visit, and (3) had 
never been identified as the case of the phenotype in past vis-
its. Valid controls are patients who met the conditions (1) 
and (3) and were identified as controls of the phenotype at 
the latest visit. For each phenotype, incident cases and valid 
controls are labeled subjects, while other patients are unla-
beled subjects (including patients with one visit, and patients 
being neither incident cases nor valid controls) which can be 
used in medical concept embeddings. We calculated pheno-
type prevalence as the percent of incident cases among all 

Table 1. Summary of the MIMIC-III database after data processing.

MIMIC-III  
database

Admissions 58 951
Unique patients 46 520
Patients with only 1 admission 39 001
Patients with at least 2 admissions 7519
Unique medical concepts  

excluding rare ones
Phenotype codes 956
Prescriptions 1348
Lab tests 490

Phenotype codes for predictions (prevalence ≥0.05%) 942
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labeled subjects at the latest visit. Among 956 phenotype 
codes, 14 have prevalence less than 0.05% and were removed 
from phenome-wide predictions. We predicted the rest 942 
phenotypes (Table 1).

For each phenotype, we split labeled subjects with 50% as 
training data and 50% as test data (Figure 2). Training sam-
ples included patients without labels and 50% of labeled 
patients, while test samples are the other 50% labeled 
patients (Figure 2). We repeated the random training/test split 
10 times to obtain average AUC-ROC, AUC-PR, and max 
F1-score in test sets. Note that for different phenotypes, there 
are different numbers of labeled subjects.

Results
Simulation studies
We conducted simulation studies to evaluate the prediction 
performance of PheW2P2V and baseline methods. We consid-
ered binary present/absent medical concepts. Specifically, we 
simulated a population pool of 20 000 patients each with a 
binary phenotype concept C0 and 150 correlated binary medi-
cal concepts, including 10 signal predictor concepts 
(C1;C2; . . . ;C10) that predict C0 and 140 noise concepts 
(C11;C12; . . . ;C150), to mimic correlations between medical 
concepts. Detailed data generation steps were included in Sup-
plementary Materials A (Figure S1). The outcome phenotype 
concept C0 was generated using a logistic model using the 10 
signal concepts, where we set the same β coefficients for them 
and considered different association strengths ranging β from 
0.2 to 0.8 with a grid of 0.1. We set the intercept so that the 
probability of having outcome C0 is around 0.5. Therefore, 
there will be roughly 10 000 cases and 10 000 controls in the 
population pool of 20 000 patients. As we do not consider 
temporal information in a patient sequence, we randomly 
shuffled medical concepts of each patient. To mimic pheno-
type prevalence in the MIMIC-III database, we set the case- 
control ratio as 1:19 in both training and test sets to have a 
phenotype prevalence 5% and randomly sampled 10 cases 
and 190 controls from the pool of 20 000 patients. We 
repeated this procedure 1000 times and obtained prediction 
results from 1000 test sets. We considered other case-control 
ratios 1:1, 3:7, and 1:9 (with a prevalence of 50%, 30%, and 
10%), and included results in Supplementary Materials A.

We summarized medians, 25th and 75th percentiles of 
AUC-ROC, max F1-score, and AUC-PR for PheW2P2V and 
baseline methods across 1000 test sets in Figure 3. We can 
see that AUC-ROC, max F1-score, and AUC-PR of all 5 
methods increase as β increases as expected. PheW2P2V out-
performs all baseline methods, especially when signals are 
weak. Results for different case-control ratios were 

summarized in Supplementary Materials A (Figure S3), where 
similar patterns were observed. We observed a bigger 
improvement of PheW2P2V over LASSO regression, random 
forest, and gradient boosted tree for rare phenotypes because 
the imbalance between cases and controls affects the predic-
tion performance of regression-based and tree-based methods 
more25,26 than that of P2V methods.

We also conducted simulation studies to demonstrate that 
medical concept embeddings using word2vec can recover the 
association strength between a signal medical concept 
and a phenotype. Results are included in Supplementary 
Materials A (Figure S2).

Phenome-wide predictions using the MIMIC-III 
database
Phenome-wide prediction results across all 942 phenotypes 
binned with 300 phenotypes ranked by prevalence from the 
MIMIC-III database was summarized (Table 2) with 
medians, 25th and 75th percentiles of AUC-ROC, max F1- 
score, and AUC-PR from 10 training/test splits. Across the 
phenome, PheW2P2V has a median AUC-ROC 0.74 (baseline 
methods have values ≤0.73), a median max F1-score 0.20 
(baseline methods have values ≤0.19), and a median AUC- 
PR 0.10 (baseline methods have values ≤0.10). There is a 
decreasing trend in prediction performance for all methods as 
phenotypes become rarer as expected. PheW2P2V has bigger 
improvements over baseline methods when phenotypes are 
rare, which is consistent with simulation results. Results in  
Table 2 were also plotted in Figure 4 for a better visualization 
where we can see that the proposed PheW2P2V has the high-
est AUC-ROC, max F1-score, and AUC-PR in almost all bins 
of phenotypes. Table 3 summarizes numbers of phenotypes 
in the phenome that PheW2P2V performs better than baseline 
methods within each bin of phenotypes. These results clearly 
demonstrate the advantages of PheW2P2V. We also 
plotted prediction performance for 50 phenotypes randomly 
selected from each bin in Supplementary Materials A 
(Figures S6-S8). Full prediction results and descriptions 
across the phenome of 942 phenotypes are included in Sup-
plementary Materials B.

Examples of clinical disease phenotype predictions 
in the MIMIC-III database
We investigated individual phenotypes to understand the 
clinical significance of PheW2P2V for phenome-wide predic-
tions and highlighted 5 phenotypes from 2 different clinical 
categories with their prediction performance in Table 4. The 
first category includes common medical conditions that are 
potentially preventable or treatable, such as atherosclerosis 
(phenotype code: 440) and diabetic retinopathy (phenotype 

Figure 2. MIMIC-III sample splitting procedures for training and test samples.
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code: 250.7). These disorders are frequently under-diagnosed 
and under-treated despite the fact that effective preventive 
and therapeutic strategies exist.27,28 PheW2P2V has the best 
prediction performance for these conditions. For example, 
for diabetic retinopathy, PheW2P2V has an AUC-ROC 0.957 
(baseline methods have values ≤0.943) and a max F1-score 
0.524 (baseline methods have values ≤0.515), suggesting that 
PheW2P2V has the potential to identify high risk patients 
with diabetic retinopathy. The second category includes rare 
disorders that may be diagnostically challenging, and thus 
may be missed if not considered in the differential diagnosis. 
Here, we considered chronic pericarditis (phenotype code: 
420.22), meningitis (phenotype code: 320), and aneurysm of 
iliac artery (phenotype code: 442.2). PheW2P2V has superior 
prediction performance for these conditions. For example, 
for chronic pericarditis, PheW2P2V has an AUC-ROC 0.825 

(baseline methods have values ≤0.786) and a max F1-score 
0.271 (baseline methods have values ≤0.194), suggesting that 
PheW2P2V can help diagnose this rare disorder. These exam-
ples demonstrate that PheW2P2V is powerful in phenome- 
wide predictions and is capable of providing clinically- 
relevant data-driven risk stratification that could be useful as 
a screening tool to identify and flag patients with high-risk 
conditions in early stages which may be missed overwise. 
Note that studies have observed that prediction tools usually 
have low F1-scores to predict rare outcomes,29–31 which is 
also observed in our simulation studies with different case- 
control ratios summarized in Supplementary Materials A.

Computation time
To show the computational efficiency of PheW2P2V on a 
phenome-wide prediction task, we compared computation 

Prediction performance of different methods in a simulation study with case:control = 1:19

PheW2P2V P2V regression random forest gradient boosted tree
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Figure 3. Simulation results of medians, 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR of the proposed PheW2P2V, the LASSO 
regression, the random forest classifier, the gradient boosted tree classifier, and the unweighted version P2V with regression coefficient β ranges from 
0.2 to 0.8, under the scenario of 1:19 case-control ratio.

Table 2. Medians and 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR of the 942 phenotypes binned by 300 from most to least 
prevalent phenotypes in the MIMIC-III database.

Prevalence rank of phenotypes

1-300 301-600 601-942 All

Prevalence median (Q1, Q3)a 0.042 (0.025, 0.075) 0.008 (0.006, 0.011) 0.003 (0.001, 0.003) 0.007 (0.003, 0.024)
AUC-ROC median (Q1, Q3)a

PheW2P2V 0.78 (0.68, 0.87) 0.75 (0.68, 0.82) 0.69 (0.61, 0.80) 0.74 (0.66, 0.83)
P2V 0.71 (0.65, 0.79) 0.68 (0.63, 0.75) 0.65 (0.57, 0.73) 0.68 (0.62, 0.76)
Regression 0.72 (0.60, 0.85) 0.68 (0.59, 0.80) 0.59 (0.50, 0.78) 0.66 (0.57, 0.81)
Random forest 0.78 (0.67, 0.89) 0.73 (0.64, 0.83) 0.63 (0.56, 0.79) 0.72 (0.61, 0.84)
Gradient boosted tree 0.76 (0.64, 0.89) 0.71 (0.62, 0.82) 0.62 (0.54, 0.80) 0.70 (0.60, 0.84)
Max F1-score median (Q1, Q3)a

PheW2P2V 0.37 (0.22, 0.61) 0.20 (0.11, 0.33) 0.08 (0.03, 0.20) 0.20 (0.09, 0.38)
P2V 0.24 (0.15, 0.40) 0.08 (0.06, 0.13) 0.04 (0.02, 0.07) 0.09 (0.04, 0.20)
Regression 0.32 (0.18, 0.63) 0.18 (0.08, 0.46) 0.05 (0.02, 0.29) 0.19 (0.06, 0.46)
Random forest 0.39 (0.20, 0.66) 0.18 (0.07, 0.48) 0.06 (0.02, 0.25) 0.19 (0.06, 0.50)
Gradient boosted tree 0.37 (0.19, 0.66) 0.18 (0.07, 0.48) 0.06 (0.02, 0.30) 0.19 (0.06, 0.50)
AUC-PR median (Q1, Q3)a

PheW2P2V 0.28 (0.14, 0.55) 0.10 (0.04, 0.22) 0.02 (0.01, 0.10) 0.10 (0.03, 0.27)
P2V 0.15 (0.08, 0.32) 0.03 (0.02, 0.05) 0.01 (0.00, 0.02) 0.03 (0.01, 0.11)
Regression 0.24 (0.10, 0.60) 0.09 (0.02, 0.31) 0.01 (0.00, 0.15) 0.09 (0.02, 0.35)
Random forest 0.30 (0.11, 0.65) 0.08 (0.02, 0.34) 0.01 (0.00, 0.11) 0.10 (0.02, 0.39)
Gradient boosted tree 0.29 (0.11, 0.64) 0.08 (0.02, 0.35) 0.01 (0.01, 0.17) 0.10 (0.02, 0.39)

a Q1 is the 25th percentile and Q3 is the 75th percentile.
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time of PheW2P2V to that of random forest and gradient 
boosted tree. PheW2P2V is trained once and used for predic-
tion across a phenome with N phenotypes with a total com-
putation time: training time þ N�prediction time. Random 
forest and gradient boosted tree are trained individually for 
each phenotype with a total computation time for the phe-
nome: N�(training time þ prediction time). With a machine 
of Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, a 
phenome-wide predictions took 91þ3�N seconds for 
PheW2P2V, 5�N seconds for random forest, and 21�N sec-
onds for gradient boosted tree. PheW2P2V will be much 
faster when predicting a large number of phenotypes N.

Discussion
We developed PheW2P2V, a phenome-wide prediction frame-
work that efficiently predicts phenotypes across a phenome 
by taking a 2-step procedure, that is, medical concept 

embeddings followed by tailored predictions with a novel 
weighting scheme. To better define phenome-wide case-con-
trol status, PheW2P2V maps ICD diagnosis codes to pheno-
type codes. PheW2P2V generates tailored patient vectors for 
individual phenotypes for tailored predictions. When com-
puting patient vectors, the proposed weighting scheme 
upweights past medical histories that are most relevant to a 
phenotype of interest and thus tailors the prediction to the 
phenotype. The computational efficiency of phenome-wide 
predictions is achieved by separating embeddings and predic-
tions, making phenome-wide predictions feasible. PheW2P2V 
is fast, flexible, and has better prediction performance than 
major popular baseline methods consistently across most of 
the 942 phenotypes in the MIMIC-III database. PheW2P2V 
takes advantages of the word2vec algorithm to numerically 
represent patients’ medical concepts which avoids imputing 
missing concepts to convert patients’ medical concepts to a 
sparse data matrix that is needed by most conventional 

Prediction performance of different methods on 942 phenotypes in the MIMIC−III database

PheW2P2V P2V regression random forest gradient boosted tree
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Figure 4. Medians, 25th and 75th percentiles of AUC-ROC, max F1-score, and AUC-PR across binned 300 phenotypes with descending prevalence in the 
MIMIC-III databases for the proposed PheW2P2V, the LASSO regression, the random forest classifier, the gradient boosted tree classifier, and the 
unweighted P2V.

Table 3. Numbers of phenotypes that PheW2P2V performs better than the corresponding baseline method, across all 942 phenotypes binned by 300 
from most to least prevalent in the MIMIC-III database.

Rank of phenotypes by prevalence

1-300 301-600 601-942 All

Prevalence median (Q1, Q3)a 0.042 (0.025, 0.075) 0.008 (0.006, 0.011) 0.003 (0.001, 0.003) 0.007 (0.003, 0.024)
AUC-ROC
PheW2P2V better than P2V 291 289 283 863
PheW2P2V better than regression 254 232 249 735
PheW2P2V better than random forest 150 183 210 543
PheW2P2V better than gradient boosted tree 191 206 215 612
Max F1-score
PheW2P2V better than P2V 291 282 282 855
PheW2P2V better than regression 234 160 186 580
PheW2P2V better than random forest 145 162 177 484
PheW2P2V better than gradient boosted tree 178 157 172 507
AUC-PR
PheW2P2V better than P2V 273 282 279 834
PheW2P2V better than regression 217 170 199 586
PheW2P2V better than random forest 131 165 181 477
PheW2P2V better than gradient boosted tree 148 165 178 491

a Q1 is the 25th percentile and Q3 is the 75th percentile.
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supervised learning methods. Note that PheW2P2V does not 
use labeled data to directly link predictors and outcomes but 
uses both labeled and unlabeled data for embeddings. This 
helps reduce the overfitting problem of traditional supervised 
learning methods, and overcomes the problem of limited 
labeled data, especially for rare phenotypes. Thus, 
PheW2P2V performs much better than baseline methods for 
rare phenotypes. We demonstrated several clinical examples 
in which PheW2P2V can predict less-common conditions that 
could be diagnostically challenging or missed on a routine 
clinical work up, such as chronic pericarditis. Therefore, 
PheW2P2V could be useful as a screening tool to prospec-
tively identify and flag patients with high risks conditions in 
early stages which may be missed otherwise, such as early 
atherosclerosis, which is preventable with medications and 
lifestyle changes. We conducted additional experiments using 
MIMIC-III and investigate the performance of PheW2P2V as 
a screening tool. Results in Supplementary Materials A 
(Tables S2 and S3, Figures S4 and S5) suggest that the pro-
posed PheW2P2V is a better screening tool.

With extensive simulation studies, we demonstrated supe-
rior prediction performance of PheW2P2V over 4 baseline 
methods: LASSO regression, random forest, gradient boosted 
tree, and unweighted P2V. We also demonstrated that 
numeric vectors of signal medical concepts and outcome con-
cepts can recover association strengths of both directions 
between them (Supplementary Materials A). We further 
investigated the prediction performance of PheW2P2V using 
only medical concepts that are positively associated with phe-
notypes using MIMIC-III and observed a worse prediction 
performance (Supplementary Materials A—Table S1). This is 
promising as it suggests that information is preserved through 
embedding. In contrast to traditional supervised learning 
methods, patients without labels are informative and can be 
used to train numeric representations of medical concepts. 
This advantage enabled us to leverage 39 001 additional 
patients with only one admission in the MIMIC-III database 
to conduct the phenome-wide predictions. However, the 
transferability of medical concept embeddings from 1 EHR 
database to another need to be studied further.

Conclusion
In summary, PheW2P2V is the first phenome-wide prediction 
framework. We demonstrated its superior prediction perform-
ance and computational efficiency using simulation studies and 
clinical applications on phenome-wide prediction tasks using 
the MIMIC-III database. Several showcases of clinical pheno-
types suggested great potentials of PheW2P2V to serve as a 
computable predictive tool that can aid in clinical decisions 
through phenome-wide predictions in real-life clinical settings.
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Table 4. AUC-ROC, max F1-score, and AUC-PR of 5 highlighted clinical disease phenotypes in the MIMIC-III database. PheW2P2V outperforms all 
baseline methods across all three metrics.

Categorya Disease phenotypes Prevalence PheW2P2V P2V Regression Random forest Gradient boosted tree

AUC-ROC (std err)
I Atherosclerosis 0.052 0.862 (0.004) 0.806 (0.005) 0.780 (0.005) 0.840 (0.003) 0.839 (0.005)
I Diabetic retinopathy 0.025 0.957 (0.002) 0.911 (0.003) 0.864 (0.009) 0.943 (0.002) 0.934 (0.003)
II Chronic pericarditis 0.007 0.825 (0.015) 0.786 (0.018) 0.759 (0.016) 0.734 (0.027) 0.784 (0.014)
II Meningitis 0.004 0.833 (0.018) 0.802 (0.020) 0.612 (0.009) 0.694 (0.016) 0.689 (0.014)
II Aneurysm of iliac artery 0.002 0.890 (0.020) 0.844 (0.019) 0.847 (0.012) 0.833 (0.022) 0.857 (0.010)

Max F1-score (std err)
I Atherosclerosis 0.052 0.449 (0.006) 0.262 (0.004) 0.352 (0.006) 0.447 (0.006) 0.391 (0.007)
I Diabetic retinopathy 0.025 0.524 (0.008) 0.335 (0.007) 0.510 (0.009) 0.515 (0.005) 0.513 (0.006)
II Chronic pericarditis 0.007 0.271 (0.017) 0.130 (0.013) 0.194 (0.021) 0.190 (0.016) 0.188 (0.026)
II Meningitis 0.004 0.158 (0.011) 0.109 (0.005) 0.047 (0.005) 0.048 (0.005) 0.050 (0.010)
II Aneurysm of iliac artery 0.002 0.320 (0.067) 0.087 (0.013) 0.267 (0.036) 0.294 (0.023) 0.269 (0.041)

AUC-PR (std err)
I Atherosclerosis 0.052 0.363 (0.006) 0.168 (0.004) 0.250 (0.006) 0.337 (0.007) 0.310 (0.005)
I Diabetic retinopathy 0.025 0.470 (0.014) 0.209 (0.004) 0.420 (0.009) 0.420 (0.007) 0.435 (0.014)
II Chronic pericarditis 0.007 0.135 (0.017) 0.048 (0.008) 0.094 (0.015) 0.073 (0.012) 0.083 (0.021)
II Meningitis 0.004 0.065 (0.007) 0.046 (0.008) 0.010 (0.001) 0.012 (0.001) 0.013 (0.002)
II Aneurysm of iliac artery 0.002 0.185 (0.065) 0.023 (0.004) 0.150 (0.031) 0.156 (0.022) 0.106 (0.021)

a Category I includes common conditions amenable to screening and prevention, and Category II includes rare and diagnostically challenging conditions. 
These categories were selected to illustrate potential clinical utility of PheW2P2V predictions.
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