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Abstract
Point-of-care ultrasound (POCUS) is an essential skill in various specialties like anesthesiology, critical care,
and emergency medicine. Anesthesiologists utilize POCUS for quick diagnosis and procedural guidance in
perioperative and critical care settings. Key applications include vascular ultrasound for challenging venous
and arterial catheter placements, gastric ultrasound for aspiration risk assessment, airway ultrasound,
diaphragm ultrasound, and lung ultrasound for respiratory assessment. Additional utilities of POCUS can
include multi-organ POCUS evaluation for undifferentiated shock or cardiac arrest, ultrasound-guided
central neuraxial and peripheral nerve blocks, focused cardiac ultrasound, and novel applications such as
venous excess ultrasound. This review highlights these POCUS applications in perioperative and intensive
care and summarizes the latest evidence of their accuracy and limitations.
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Keywords: gastric ultrasound, airway ultrasound, perioperative pocus, anaesthesiology, bedside ultrasound, pocus
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Introduction And Background
Point-of-care ultrasound (POCUS) is increasingly being utilized across various acute specialties, including
emergency medicine, critical care, and anesthesiology, as a diagnostic and therapeutic tool [1,2]. It includes
focused, goal-directed bedside sonographic examinations of various organs, including the lungs, diaphragm,
gastric antrum, heart, airway, pelvic organs, and vascular system [3]. Unlike consultative imaging, the
physician performing POCUS is responsible for all aspects of image acquisition, interpretation, and
formulating the management plan. Incorporating POCUS into routine bedside evaluation has gained
substantial recognition, driven by a growing body of evidence demonstrating its superior diagnostic accuracy
compared to traditional examination and assessment tools [4]. The perioperative period begins from the
patient’s admission, through anesthesia and surgery, to the first 24 hours after the procedure [5].
Anesthesiologists are responsible for patient care and management during this time, making POCUS a vital
skill for them. This narrative review summarizes the applications of POCUS in perioperative and intensive
care settings, its relevance to anesthesiologists, and the latest evidence related to diagnostic accuracy and
validity.

Review
Vascular ultrasound
Vascular ultrasound is employed for the placement of peripheral and central intravenous catheters and
arterial catheters and to identify deep venous thrombosis intraoperatively as well as in critically ill patients.

Peripheral Venous Access and Arterial Line Placement

POCUS proves instrumental in locating deep-seated peripheral veins, which are not readily visible or
palpable, including the cephalic, antebrachial, median cubital, and basilic veins [6]. In cases involving
patients with difficult intravenous access, ultrasound-guided cannulation demonstrates an impressive
success rate, consistently exceeding 90%, compared to the conventional technique, which typically achieves
success rates of only 25-30% [7]. This reduces the need for more invasive central venous catheters [8]. These
benefits also extend to the pediatric patient population, in whom obtaining peripheral venous access is
particularly challenging [9]. Furthermore, POCUS also facilitates the insertion of arterial lines through real-
time visualization of landmarks, improving first-pass success rates [10-12]. In a recent randomized
controlled trial with 201 participants, arterial line placement was successful on the first attempt in 83.3% of
patients in the ultrasound group compared to 55.6% in the digital palpation group (p-value 0.02) [12].

Central Venous Access
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The traditional method of obtaining central venous access has been the use of anatomical landmarks to
guide needle puncture. However, this method becomes challenging for certain patients with obesity, a
history of intravenous drug abuse or chemotherapy, and chronic medical conditions like cancer and
peripheral vascular diseases. However, POCUS-guided central venous cannulation is now considered the
standard of care [11]. It provides numerous benefits, including preprocedural assessment of vein patency,
real-time visualization of the targeted vessel during the procedure, reduced attempts at venipuncture, and
the detection of complications such as malpositioned guidewire [13] (Figure 1).

FIGURE 1: Ultrasound of the internal jugular vein for guiding central
venous access placement
(A) Needle tip in the vein (arrow). (B) Guidewire in the vein (arrow). (C) Thrombus (arrow) in the internal jugular
vein detected prior to catheter placement.

Image credit: Abhilash Koratala

In a systematic review of 35 trials (involving 5,108 participants) comparing ultrasound-guided jugular
venous catheter placement to landmark technique, ultrasound guidance increased the success rate from
91.7% to 97.6% (RR: 1.12, 95% CI: 1.08-1.17), enhanced the rate of successful first attempts from 50.1% to
82.2% (RR: 1.57, 95% CI: 1.36-1.82), reduced cannulation time, lowered complication rates from 13.5% to
3.4% (RR: 0.29, 95% CI: 0.17-0.52), and decreased inadvertent arterial punctures from 9.4% to 2.0% (RR:
0.28, 95% CI: 0.18-0.44) [14]. However, a few randomized controlled trials reported that the benefits of
ultrasound-guided femoral and subclavian vein (SCV) cannulation did not parallel the improved outcomes
seen with internal jugular vein cannulation [15]. Subsequently, a meta-analysis of six randomized controlled
trials (953 patients) reevaluated the success and safety of ultrasound-guided SCV catheterization compared
to the landmark technique. The real-time ultrasound-guided dynamic approach increased the overall success
rate for SCV cannulation, improved the success rate at the first attempt, reduced the total number of
attempts, lowered the complication rate, and shortened the time required for a successful procedure [16].
Similar improved outcomes have been shown with the use of ultrasound for femoral vein cannulation as
well [11,16].

Deep Vein Thrombosis (DVT)

POCUS is a useful tool for the quick bedside diagnosis of lower and upper extremity DVT. This is particularly
important in the context of catheter-associated thrombi and suspected cases of acute pulmonary embolism.
In a meta-analysis of 43 studies, the sensitivity and specificity to diagnose cases of suspected DVT via
proximal compression ultrasound were 90.1% (95% CI: 86.5-92.8) and 98.5% (95% CI: 97.6-99.1),
respectively [17]. Figure 2 illustrates a common femoral vein DVT.
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FIGURE 2: Compression ultrasound for evaluating lower extremity DVT
(A) Normal common femoral vein that is fully compressible with transducer pressure (B). (C) Common femoral
vein with a hyperechoic thrombus in the lumen (arrow), which is non-compressible (D).

DVT: deep vein thrombosis

Image credit: Abhilash Koratala

Gastric ultrasound
Gastric POCUS facilitates individualized risk assessment of aspiration of gastric contents, which is a major
factor contributing to anesthesia-related morbidity and mortality [18,19]. The risk assessment is based on a
validated mathematical model established by Perlas et al., which measures the cross-sectional area of the
gastric antrum in the right lateral decubitus position [20]. Figure 3 shows the view of the stomach in
different states in axial and parasagittal views.
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FIGURE 3: Gastric ultrasound for evaluation of gastric contents
(A, B) Ultrasound probe location and orientation for parasagittal and axial views of the gastric antrum. Parasagittal
(C, E, G, I) and axial (D, F, H, J) views of the gastric antrum: empty stomach (C, D); one hour after ingestion of
clear liquids (E, F); one minute after drinking approximately 500 mL (16 oz) of clear liquids, showing an expanded
lumen with hypoechoic contents (G, H); immediately after a meal with a characteristic “ground-glass” appearance
(I, J).

A: antrum; Ao: aorta; D: duodenum; IVC: inferior vena cava; L: liver; NPO: nil per os; P: pancreas; Py: pylorus;
SMA: superior mesenteric artery

Created with BioRender.com.

Nguyen et al. (2023) [21]; Creative Commons Attribution (CC BY) license

Apart from healthy adults, this model has been tested in various patient populations, including morbidly
obese individuals and pregnant patients [22-24]. Gastric POCUS has a sensitivity of 1.0 (95% CI: 0.925-1.0)
and a specificity of 0.975 (95% CI: 0-0.072) to detect or rule out a full stomach [25]. POCUS is particularly
valuable when the preoperative fasting status is uncertain or in the setting of high aspiration-risk conditions
like gastroparesis, diabetic autonomic neuropathy, glucagon-like peptide 1 receptor agonist use, small bowel
or gastric outlet obstruction, gastroesophageal reflux disease, increased intraabdominal pressure, and
morbid obesity [26,27]. However, gastric ultrasound should only be used as an adjunct rather than a
substitute for the standard recommendations for fasting. Further, the ultrasound findings may not be valid
in patients with a large hiatus hernia and previous gastric surgery [19].

Gastric ultrasound may also be useful in the intensive care unit to evaluate gastric residual volume following
enteral feeding, but it has not been well validated in this setting. While the Perlas mathematical model
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effectively estimates gastric volume after the intake of clear fluids, ongoing research is focused on
developing new models for estimating gastric volume in patients receiving thick enteral feeds [28].

Airway ultrasound 
Identification of the Cricothyroid Membrane (CTM)

Surgical cricothyrotomy is a life-saving procedure performed to secure the airway after failed tracheal
intubation [29]. Since this procedure is performed infrequently, the conventional method of digital
palpation to locate the CTM has more chances of misidentification and failure. POCUS guidance can help
improve the accuracy of this procedure [30] (Figure 4).

FIGURE 4: Airway ultrasound for identifying the CTM
Cricoid cartilage, thyroid cartilage, and CTM in a longitudinal plane.

Cc: cricoid cartilage; CTM: cricothyroid membrane; Tc: thyroid cartilage

Osman and Sum (2016) [31]; Creative Commons Attribution (CC BY) license

In a comprehensive meta-analysis conducted by Hung et al., the authors reported a significantly reduced
failure rate in CTM identification when employing ultrasound guidance, with a pooled RR of 0.50 (95% CI:
0.33-0.76). Additionally, the study showed a reduced procedural time of 21.8 seconds (95% CI: -1.4 to 45.1),
further supporting the efficacy of this technique [32].

Confirmation of Endotracheal Tube (ETT) Placement

Unrecognized esophageal intubation is not uncommon in emergency situations and can lead to serious
patient harm [33]. Even when promptly detected, it is associated with a risk of severe hypoxemia, pulmonary
aspiration, cardiac arrest, and, in rare instances, gastric or esophageal rupture [34]. Although capnography is
considered a reference standard for the verification of ETT, airway POCUS allows easy detection of ETT tube
location (Figure 5, Figure 6).
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FIGURE 5: Airway ultrasound showing tracheal intubation
The arrow indicates the anterior aspect of the ETT.

ETT: endotracheal tube; T: trachea

Gottlieb et al. (2024) [35]; Creative Commons Attribution (CC BY) license
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FIGURE 6: Airway ultrasound showing esophageal intubation
In the case of esophageal intubation, a curvilinear structure that mimics the trachea (T) is seen to the right of the
trachea. This is the ETT within the esophagus (E) [35].

ETT: endotracheal tube

Gottlieb et al. (2024) [35]; Creative Commons Attribution (CC BY) license

This is particularly useful in certain emergency situations where capnography may become unreliable, like
cardiopulmonary arrest, bronchospasm, and pulmonary thromboembolism [36].

Studies have confirmed the high accuracy of tracheal ultrasound in confirming the correct placement of an
ETT. In adult patients, it has a sensitivity of 98.7% and a specificity of 97.1%. In pediatric patients, the
sensitivity ranges from 92% to 100%, with a consistent specificity of 100% [36,37]. The accuracy remains
consistent even in challenging scenarios, such as cardiac arrest [38,39]. In some patients, airway POCUS may
be challenging, such as those with a cervical collar, a short neck, or subcutaneous emphysema that extends
up to the head and neck [38].

Prediction of a Difficult Airway

Difficult intubation poses a challenge in perioperative management, affecting approximately 4.5-7.5% of
cases in the operating room [18]. Predicting difficult intubation becomes particularly complex, and early
identification of the risk factors for difficult intubation is crucial to minimizing adverse events.

Traditionally, physical examination of the airway has been the primary method for predicting difficult
intubation. This involves evaluations like the modified Mallampati score (with a sensitivity of 53% and a
specificity of 80%), the upper lip bite test (with a sensitivity of 67% and a specificity of 92%), and the
thyromental distance (with a sensitivity of 37% and a specificity of 89%) [40,41]. Although these methods are
valuable, they have their limitations. Airway ultrasound can be used as a complementary tool to clinical
assessment in predicting a difficult airway.

Preoperative bedside ultrasound involves measuring distances and ratios between reference points,
including the hyomental distance in both neutral position and extension, the skin-to-epiglottis distance
(SED), the distance from the skin to the hyoid bone, and the distance from the skin to the vocal cords [31]. A
meta-analysis by Benavides-Zora et al. revealed that SED and the hyomental distance measured in extension
position exhibited a sensitivity of 75% and 61% and a specificity of 86% and 88%, respectively. Notably, the
ratio of the pre-epiglottic distance to the epiglottic distance at the center point of the vocal cords was most
accurate in predicting difficult laryngoscopy, with a sensitivity of 82% and a specificity of 83% [42]. Another
meta-analysis by Carsetti et al., involving 15 studies, highlighted SED as the most extensively studied
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parameter for predicting difficult intubation [43]. Hence, adding these tools to routine airway evaluation can
significantly improve preoperative assessment.

Other Uses

Airway POCUS finds additional clinical applications, such as aiding in percutaneous tracheostomy by
identifying suitable puncture sites and assessing blood vessels [44]. It also assists in determining the
appropriate size of a double-lumen tube by measuring the width of the trachea at the sternoclavicular joint
[45]. Further, it plays a role in assessing vocal cord function for identifying recurrent laryngeal nerve palsy,
as well as detecting tracheal stenosis and tracheal invasion by thyroid cancer [46,47].

Diaphragm ultrasound
The diaphragm is the main inspiratory muscle [48]. Prolonged intubation, the use of muscle relaxants, and
sepsis can lead to diaphragmatic muscle weakness in a critically ill patient. Diaphragmatic dysfunction (DD)
is defined as a partial (weakness) or complete (paralysis) loss of muscle function, which leads to a reduction
in inspiratory capacity and a decrease in respiratory muscle endurance [49]. DD can impact either the
hemidiaphragm or both. DD frequently remains undiagnosed in clinical practice due to its nonspecific
symptoms, and ultrasound can facilitate an easy bedside assessment of diaphragmatic function [50].

There are two approaches for assessing the diaphragm: the intercostal approach is used to measure
parameters like muscle thickness and thickening fraction (TFDi), while the subcostal approach is utilized to
gauge diaphragmatic excursion (DE) [51]. Diaphragm muscle weakness is established when DE of less than
10-15 mm during tidal breathing or a maximum TFDi of less than 20% is noted [52]. Diaphragm muscle
weakness is a predictor of weaning failure in the ICU and can also be suggestive of increased work of
breathing in chronic pulmonary conditions [53]. The diaphragm ultrasound is also useful in cardiac surgery,
cervical spine procedures, and after the placement of upper limb blocks (e.g., interscalene blocks) to identify
an iatrogenic phrenic nerve injury [51].

In a meta-analysis conducted by Parada et al., including 19 studies (1,204 participants), the sensitivity of
diaphragm ultrasound for evaluating diaphragm excursion was 0.80 (95% CI: 0.77-0.83), while the specificity
was 0.80 (95% CI: 0.75-0.84). Regarding the assessment of the diaphragm thickening fraction, the sensitivity
was 0.85 (95% CI: 0.82-0.87), while the specificity was 0.75 (95% CI: 0.69-0.80) [54]. Although diaphragm
ultrasound is reliable, there remain issues related to standardization because of the significant variability in
image acquisition and methodology [55].

Lung ultrasound (LUS)
LUS is a valuable bedside diagnostic tool for assessing various respiratory pathologies [56,57]. Although LUS
cannot directly image lung tissue as the air in the lungs scatters the ultrasound beam, the interpretation of
artifacts and specific patterns can aid in the diagnosis [58]. It exhibits better diagnostic accuracy than
auscultation and chest radiography in detecting pleural effusion, pneumothorax, acute respiratory distress
syndrome (ARDS), and cardiogenic pulmonary edema [59]. According to a meta-analysis of nine studies, for
detecting cardiogenic pulmonary edema, the sensitivity of LUS was 0.92 (95% CI: 0.84-0.97), and the
specificity was 0.87 (95% CI: 0. 82-0.91) [60]. Another meta-analysis conducted by Ding et al. showed that
LUS had more sensitivity (0.88) compared to chest X-rays (0.52) with the same specificity for the diagnosis of
pneumothorax [61].

Normal LUS shows a shimmering (sliding) hyperechoic pleural line followed by horizontal reverberation
artifacts, parallel to the pleural line, known as the A-lines [62,63]. Absent pleural sliding should raise
suspicion for pneumothorax since the air in between the pleural layers abolishes sliding. However,
visualizing the junction where the pleura transitions from normal sliding to absent sliding, known as the
“lung point,” is more specific [62]. Effusions are identified as anechoic collections between the parietal and
visceral pleura, first appearing in the dependent zone and then in other regions when extensive [64].

The presence of vertical hyperechoic artifacts, known as B-lines, that move with pleural sliding is the
hallmark of interstitial syndrome. The interstitial syndrome includes any pathological condition leading to
increased density in the interstitial space between alveoli. This includes pulmonary edema, pneumonia,
ARDS, COVID-19, or pulmonary fibrosis [65]. In consolidation, the lung tissue appears like the liver (also
called hepatization), often surrounded by some pleural effusion. Atelectasis appears similar to consolidation,
and clinical context helps in differentiating these two conditions [64]. Some signs, such as mobile air in the
airways (dynamic air bronchograms), favor consolidation over atelectasis. Some common ultrasonographic
signs seen in lung pathologies are shown in Figure 7.
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FIGURE 7: LUS
(A) Normal lung showing horizontal artifacts, i.e., A-lines (arrows). (B) Vertical artifacts (arrows) known as B-lines
indicate interlobular septal thickening, typically seen in congestion. (C) Pleural effusion (asterisk) as seen on a
lateral scan. (D) Right pleural effusion (asterisk) as seen from the subxiphoid scanning window.

IVC: inferior vena cava; LUS: lung ultrasound

Turk et al. (2023) [66]; Creative Commons Attribution (CC BY) license

POCUS for the evaluation of patients with undifferentiated shock and
cardiac arrest
Perioperative cardiac arrest is a rare but potentially catastrophic event. According to the UK-wide
prospective 7th National Audit Project (NAP7), the incidence of perioperative cardiac arrest is
approximately three in 10,000, mostly occurring during non-elective, complex surgeries, while the incidence
of potentially serious complications is one in 18 (6%) cases [67]. POCUS in undifferentiated shock or cardiac
arrest can identify treatable causes (such as hypovolemia, hypoxia, cardiac tamponade, pneumothorax, and
pulmonary embolism), assess the quality of chest compressions during CPR, and differentiate true pulseless
electrical activity (PEA) from pseudo-PEA [68]. It can also provide prognostic information regarding the
possibility of a return to spontaneous circulation and survival [69]. Established protocols like RUSH, POCUS-
CA, SHoc-ED, and FATE offer algorithmic frameworks for sonographic assessment [68,70-72]. Yoshida et al.
conducted a meta-analysis of 12 studies with 1132 patients and concluded that the sensitivity and specificity
of POCUS in determining the type of shock were 0.82 and 0.98 for obstructive shock, 0.78 and 0.96 for
cardiogenic shock, 0.90 and 0.92 for hypovolemic shock, and 0.79 and 0.96 for distributive shock,
respectively [73]. The current cardiopulmonary resuscitation guidelines recommend that POCUS be
considered an extra diagnostic tool in cases where experienced personnel can perform it without disrupting
CPR, particularly when there is a clinical suspicion of a specific reversible cause [74].

POCUS for regional anesthesia
Neuraxial Ultrasound 

Central neuraxial blocks (CNBs), such as spinal, epidural, and combined spinal epidural blocks, depend on
surface anatomical landmarks, tactile perception, and optimal patient positioning for procedural success.
Hence, these blocks can be challenging for certain patient subsets, such as obese patients, the elderly,
pregnant patients, and those with spinal deformities like scoliosis [75,76].

Ultrasound has become a valuable tool for performing safe CNBs by providing real-time images of the spinal
anatomy to guide the procedure. It is useful in pre-procedural scanning, aiding in midline localization,
identification of intervertebral spaces, depth measurement, and anticipation of potential challenges [77-79].
It can also guide real-time needle placement, improve success rates, and enhance patient comfort [80].
However, image acquisition skills for neuraxial ultrasound have a steep learning curve and may be especially
challenging in elderly patients with calcifications and obese patients [79]. Figure 8 and Figure 9 show the
transverse and sagittal views of the spine required for conducting neuraxial ultrasound.
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FIGURE 8: Sagittal views of the lumbar spine
(A) Sagittal transverse process view. (B) Sagittal articular process view. (C) Sagittal lamina view. (D) Sagittal
spinous process view. (E) Parasagittal oblique view.

AC: anterior complex; AP: articular process; L: lamina; PC: posterior complex; SC: spinal canal (intrathecal
space); SP: spinous process; TP: transverse process

Yoo et al. (2020) [79]; Creative Commons Attribution (CC BY) license
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FIGURE 9: Transverse views of the lumbar spine
(A) Transverse spinous process view. (B) Transverse interspinous process view. (C) Tilted transverse interspinous
process view.

AC: anterior complex; AP: articular process; L: lamina; PC: posterior complex; SC: spinal canal (intrathecal
space); SP: spinous process

Yoo et al. (2020) [79]; Creative Commons Attribution (CC BY) license

Ultrasound-Guided Regional Nerve Blocks 

Ultrasound guidance for performing regional nerve blocks is now the standard of care. It facilitates real-time
visualization of neural structures, monitoring needle placement, and assessing the spread of the local
anesthetic agent. Compared to the traditional landmark method, ultrasound-guided blocks have higher
success rates, decreased procedure times, a lesser anesthetic agent dose requirement, and a lower incidence
of inadvertent vascular punctures and complications like pneumothorax [81-85].

In a comprehensive meta-analysis of 23 trials with more than 2,000 peripheral nerve blocks, the utilization
of ultrasound guidance, either in isolation or in addition to nerve stimulation, showed a significant decrease
in the incidence of vascular puncture, decreased procedural pain, and a lower requirement for additional
analgesia or anesthesia [86]. However, there was no reduction in the occurrence of postoperative
neurological complications. A recent consensus statement strongly advocates the utilization of ultrasound
for regional anesthesia, supported by a high level of certainty in the available evidence [87].

Focused cardiac ultrasound (FoCUS) and hemodynamic assessment
FoCUS is a valuable tool in evaluating hemodynamically unstable patients in the perioperative period and
intensive care [88,89]. Unlike formal transthoracic echocardiography (TTE), FoCUS aims at a point-of-care,
limited cardiac evaluation that quickly recognizes specific ultrasound signs, which can help in narrowing
down the differential diagnosis. The competence achieved in FoCUS can either be basic critical care
echocardiography (CCE) or advanced CCE, depending on the training received [90].

Basic CCE utilizes standard two-dimensional TTE and generally excludes the use of spectral Doppler
applications. Commonly used transthoracic views for this purpose are shown in Figure 10.
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FIGURE 10: Basic echocardiographic views
(A) Parasternal long axis. (B) Parasternal short axis. (C) Apical four-chamber. (D) Subxiphoid; (E) IVC.

The green arrows indicate the direction of the transducer orientation marker.

IVC: inferior vena cava; LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle

Argaiz et al. (2021) [91]; reproduced with permission from Wolters Kluwer Health

It involves assessment of overall left ventricular (LV) function and size, appreciation of regional wall motion
abnormalities, identification of pericardial effusion, evaluation of right ventricular (RV) function and size,
and detection of significant valvular lesions based on color Doppler. Basic CCE is aimed at rapidly
categorizing shock states and identifying life-threatening causes such as hypovolemic shock, cor pulmonale,
possible aortic dissection, and cardiac tamponade [90,92] (Figure 11).

FIGURE 11: Ascending aortic dissection with cardiac tamponade
Transthoracic echocardiogram in a patient with ascending aortic dissection and cardiac tamponade: (A) Subcostal
view showing a large pericardial effusion causing RV collapse. (B) A high-right parasternal view demonstrating the
intimal dissection flap in the ascending aorta.

RV: right ventricular

Image credit: Dinkar Bhasin

Advanced CCE provides a more comprehensive and quantitative assessment of cardiac function, including
parameters like cardiac output, valvular pathology, diastolic dysfunction, and pulmonary hypertension, for
optimizing hemodynamics at the bedside (Figure 12).
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FIGURE 12: Severe mitral stenosis in a patient with shock
(A) Apical four-chamber view demonstrates thickened mitral valve leaflets and a dilated left atrium (arrowheads).
(B) Color Doppler imaging across the mitral valve shows turbulent flow across the mitral valve in diastole. (C)
Parasternal short-axis view demonstrating thickened mitral valve leaflets (arrowheads) with commissural fusion
giving a fish-mouth appearance. Mild pericardial effusion can also be appreciated. (D) Continuous-wave Doppler
across the mitral valve demonstrates an elevated gradient. The valve area, as measured by pressure half-time, is
1 cm2.

Image credit: Dinkar Bhasin

In a meta-analysis of nine studies comparing the accuracy of clinical assessment with FOCUS for diagnosing
various conditions, FoCUS-based examination was more sensitive (84% vs. 43%) and specific (89% vs. 81%)
compared to clinical assessment for identifying LV dysfunction (LV ejection fraction <50%) [91].
Furthermore, FOCUS-based examination had a higher sensitivity (71% vs. 46%) for diagnosing aortic or
mitral valve disease (of at least moderate severity) compared to clinical examination, with both having a
similar specificity of 94% [93]. While not intended to replace existing diagnostic methods, FOCUS
complements traditional tools and exams that may miss important cardiac diagnoses [94]. In patients with
difficult transthoracic windows and during cardiopulmonary resuscitation, critical care transesophageal
echocardiography (TEE) is emerging as a valuable bedside tool [95].

Some practical tips for performing FoCUS can be useful. For critically ill patients, particularly those on
mechanical ventilation, obtaining good transthoracic views can be challenging. The subcostal window
provides good alternative views for assessing ventricular function and valvular lesions. The plane of the
subcostal four-chamber view is similar to the apical four-chamber view and gives an idea of the global LV
function. Rotating the echo probe counter-clockwise from the subcostal four-chamber view yields short-axis
views similar to the parasternal short-axis view and can help identify regional wall motion abnormalities.
The subcostal four-chamber view is also good for identifying pericardial effusions and the RV collapse in
cardiac tamponade. While TTE can facilitate early diagnosis of ascending aortic dissection by demonstrating
a dissection flap, the diagnostic yield is poor, and aortic dissection should not be ruled out based on a
negative TTE alone. The yield of TTE can be improved by employing high parasternal views, such as the
right parasternal views, as illustrated in Figure 6. However, when clinical suspicion is high, TEE, or
computed tomography, should be considered.

In recent times, there has been a growing awareness of the harmful effects of fluid overload, particularly in
critical illness scenarios where the empirical use of intravenous fluids is prevalent [96]. A systematic review
including 19,902 patients admitted to the intensive care unit revealed that non-survivors had a cumulative
fluid balance 4.4 L higher than survivors after one week of ICU stay. Additionally, adopting a restrictive fluid
management approach was linked to lower mortality rates compared to the outcomes associated with liberal
fluid administration [97]. A novel sonographic assessment known as venous excess ultrasound (VExUS) is
gaining prominence as a method to grade systemic venous congestion and monitor response to decongestive
therapy [98-100]. The VExUS protocol combines the use of inferior vena cava (IVC) ultrasound with pulsed-
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wave Doppler assessment of the hepatic, portal, and intrarenal veins to generate a numerical score, as
illustrated in Figure 13.

FIGURE 13: VExUS grading
When the diameter of the IVC is >2 cm, three grades of congestion are defined based on the severity of
abnormalities on the hepatic, portal, and renal parenchymal venous Doppler. Hepatic vein Doppler is considered
mildly abnormal when the systolic (S) wave is smaller than the diastolic (D) wave but still below the baseline; it is
considered severely abnormal when the S-wave is reversed. Portal vein Doppler is considered mildly abnormal
when the pulsatility is 30-50%, and severely abnormal when it is ≥50%. Asterisks represent points of pulsatility
measurement. Renal parenchymal vein Doppler is mildly abnormal when it is pulsatile with distinct S and D
components and severely abnormal when it is monophasic with a D-only pattern.

IVC: inferior vena cava; VExUS: venous excess ultrasound

Adapted from NephroPOCUS.com with permission

These IVC measurements and Doppler scans help assess the degree of venous congestion, categorizing it as
mild, moderate, severe, or none. VExUS can be a valuable adjunct to bedside hemodynamic assessment as a
noninvasive, individualized method to optimize fluid management in surgical and critically ill patients. In a
group of post-cardiac surgery patients, the identification of flow abnormalities in two or more veins (among
hepatic, portal, and kidney parenchymal veins) along with a full or dilated IVC (≥2 cm) has demonstrated the
ability to predict the risk of acute kidney injury with greater accuracy (HR: 3.69; 95% CI: 1.65-8.24; p =
0.001) compared to relying solely on isolated central venous pressure measurements [101]. Clinical trials
studying the utility of VExUS in various critically ill subgroups are currently underway [102].

Conclusions
POCUS is an essential skill for anesthesiologists in perioperative and critical care settings. It not only
complements the traditional physical examination for accurate assessment of the patient but also enhances
the procedural success rates of various invasive procedures where ultrasound guidance can be employed. In
the preoperative period, airway ultrasound can be used to anticipate challenging airways, and gastric
ultrasound can be utilized for aspiration risk assessment. During the intraoperative period, ultrasound can
be utilized to perform procedures like peripheral and central vascular access, arterial line placement, and
central neuraxial and peripheral nerve blocks. Multi-organ POCUS can provide useful clues in cases of
perioperative emergencies or peri-arrest states. In the postoperative period or in intensive care, VExUS,
FoCUS, and LUS may be helpful in the diagnosis of any pulmonary or cardiac complications and the
assessment of fluid status. The latest evidence supports that POCUS leads to better quality of care and
patient outcomes. As evidence of its benefits continues to grow, the use of POCUS in patient management is
set to increase, making it essential to include POCUS in the training programs and curricula for
anesthesiologists.
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