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Abstract
Insulin resistance (IR) was found to be a critical element in the pathogenesis of Parkinson’s disease (PD), facilitating 
abnormal α-synuclein (α-Syn) aggregation in neurons and thus promoting PD development. However, how IR contributes 
to abnormal α-Syn aggregation remains ill-defined. Here, we analyzed six PD postmortem brain transcriptome datasets to 
reveal module genes implicated in IR-mediated α-Syn aggregation. In addition, we induced IR in cultured dopaminergic (DA) 
neurons overexpressing α-Syn to identify IR-modulated differentially expressed genes (DEGs). Integrated analysis of data 
from PD patients and cultured neurons revealed 226 genes involved in α-Syn aggregation under IR conditions, of which 
53 exhibited differential expression between PD patients and controls. Subsequently, we conducted an integrated analysis 
of the 53 IR-modulated genes employing transcriptome data from PD patients with different Braak stages and DA neuron 
subclasses with varying α-Syn aggregation scores. Protein tyrosine phosphatase receptor type O (PTPRO) was identified 
to be closely associated with PD progression and α-Syn aggregation. Experimental validation in a cultured PD cell model 
confirmed that both mRNA and protein of PTPRO were reduced under IR conditions, and the downregulation of PTPRO 
significantly facilitated α-Syn aggregation and cell death. Collectively, our findings identified PTPRO as a key regulator in 
IR-mediated α-Syn aggregation and uncovered its prospective utility as a therapeutic target in PD patients with IR.
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Introduction

Insulin resistance (IR), characterized by impaired cellular 
response to insulin, is a typical feature of type 2 diabetes 
mellitus (T2DM) [1]. The occurrence of IR is not limited 
to specific organs and can be observed in various tissues, 
including the brain, contributing to the pathogenesis of 
multiple diseases [2]. Given the brain is an insulin-sensi-
tive organ, understanding insulin signaling in the brain has 
recently received increased attention [3]. An emerging body 
of evidence reveals the presence of IR in the brains of indi-
viduals with neurodegenerative diseases, such as Parkinson’s 
disease (PD) and Alzheimer’s disease (AD), even in the 
absence of concurrent T2DM [4, 5]. Dysregulation of insulin 
signaling is considered a crucial factor in the pathogenesis 
and development of these neurodegenerative disorders [6–8].

PD stands out as the most common motoric neuro-
degenerative disease, and its prevalence is on the rise [9, 
10]. Peripheral IR is demonstrated in 60% of PD patients, 
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accompanied by a rapid and worsening progression of PD 
[11, 12]. Notably, brain IR can occur prior to peripheral IR 
in PD, evidenced by a reduction in insulin receptor sub-
strate-1 (IRS-1) expression in neurons [13–15]. Phosphoryl-
ation at serine residue 312 of IRS-1 (IRS-1pS312) promotes 
the proteasomal degradation of IRS-1, leading to impaired 
functional insulin signaling [16]. Increased IRS-1pS312 has 
been detected in the substantia nigra of PD patients [17], 
correlating with a higher severity of tremor [18]. These find-
ings underscore the importance of brain IR in the progres-
sion of PD, highlighting the essential need to comprehend 
the molecular mechanisms underlying IR.

Misfolded and aggregated α-synuclein (α-Syn), which 
forms the Lewy bodies in midbrain dopaminergic (DA) 
neurons, is a prominent feature of PD [19]. The aggregation 
of α-Syn is implicated in the loss of DA neurons, another 
key pathological feature of PD [20]. α-Syn aggregation dis-
rupts the function of multiple organelles, such as mitochon-
dria, endoplasmic reticulum (ER), Golgi, lysosomes, and 
autophagosomes, ultimately leading to the degeneration of 
DA neurons [21]. Previous research has revealed that IR can 
facilitate the aggregation of α-Syn. In mice with T2DM, the 
α-Syn accumulation can be observed in the midbrain and 
substantia nigra [22]. Additionally, elevated expression and 
phosphorylation of α-Syn occur in IR cell models, contribut-
ing to its aggregation [23]. These findings uncover the sig-
nificant role of IR in α-Syn aggregation, thereby impacting 
the progression of PD, although the underlying mechanism 
remains incompletely understood.

In this study, we conducted a comprehensive transcrip-
tome analysis focused on the modulators involved in IR-
mediated α-Syn aggregation, utilizing both single-nucleus 
RNA-Seq (snRNA-Seq) and bulk transcriptome data. Our 
findings uncovered that PTPRO serves as an IR-mediated 
modulator influencing α-Syn aggregation in DA neurons, 
thus contributing to the progression of PD. Notably, PTPRO 
expression was significantly reduced in the PD cell model 
under IR conditions, and its downregulation promoted α-Syn 
aggregation in the PD cell model. Intervention targeting 
PTPRO might be a promising therapeutic strategy against 
PD with IR conditions.

Materials and methods

Data collection and processing

The transcriptome sequence data from the human substantia 
nigra (SN) of PD patients and controls were acquired from 
the Gene Expression Omnibus (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) database. The following six independ-
ent datasets were used, GSE20141, GSE20163, GSE20164, 
GSE20292, GSE24378 and GSE7621, and integrated into a 

combined dataset with batch correction using the "ComBat" 
algorithm. Additionally, we enrolled the GSE49036 data-
set, which includes RNA sequencing data and corresponding 
Braak stage information, as well as the GSE178265 dataset, 
which contains single-nucleus transcriptomics data. Moreo-
ver, the GSE8397, GSE20186, and GSE26927 datasets were 
incorporated to validate the expression of PTPRO in PD. 
The IR-related gene set and the α-Syn aggregation-related 
gene set were obtained from KEGG (https://​www.​kegg.​jp/​
kegg/) and GeneCards (https://​www.​genec​ards.​org/), respec-
tively (Supplementary Table 1).

Gene set variation analysis (GSVA)

GSVA, a nonparametric and unsupervised approach, was 
adopted to interrogate the variations in concerning molecu-
lar features among groups based on transcriptomic data. The 
gene set enrichment scores for individual samples were cal-
culated by “GSVA” R package.

Consensus clustering analysis

Consensus clustering, an unsupervised method of clustering, 
was utilized to classify the PD samples into distinct subtypes 
that are associated with IR based on the IR-related genes 
using “ConsensusClusterPlus” R package.

Weighted correlation network analysis (WGCNA)

Scale-free co-expression networks were inferred using the 
"WGCNA" R package. Gene modules that exhibited high 
correlation with IR-related PD subtypes that had high α-Syn 
aggregation were identified within the combined dataset. 
Furthermore, gene modules that were highly associated with 
Braak stage were identified in the GSE49036 dataset.

Functional enrichment analysis

The “clusterProfiler” R package was utilized to operate 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis and Gene Ontology (GO) analysis.

RNA sequencing

Total RNA was extracted from differentiated Lund Human 
Mesencephalic (LUHMES) cells in the negative control 
(siCon) and IRS-1 siRNA (siIRS-1) groups using TRIzol 
reagent (Invitrogen, USA), with each group consisting of 
three replicates. The integrity and concentration of RNA 
were measured by Agilent 2100 bioanalyzer (Agilent Tech-
nologies, USA). After library preparation and quality con-
trol, RNA samples were sequenced on the Illumina Novaseq 
platform.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.kegg.jp/kegg/
https://www.kegg.jp/kegg/
https://www.genecards.org/
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Fig. 1   Schematic workflow of the study
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Differential expression analysis

Differentially expressed genes (DEGs) between the PD and 
control groups were identified using the “limma” R package 
with the cut-off criteria of p < 0.05. DEGs between α-Syn 
overexpressing DA neurons with IR and control cells were 
analyzed using the “DESeq2” R package with significance 
criterion of |log2FC|≥ 0.6 and p < 0.05.

Single‑nucleus RNA sequencing analysis

The single nuclei transcriptome of postmortem human sub-
stantia nigra pars compacta (SNpc) of both PD patients and 
matched controls were acquired from the GEO database 
(GSE178265). This dataset included both NR4A2-positive 
and -negative nuclei profiles and the NR4A2-positive pro-
files were enrolled in our study. Cells were clustered using 
R package “Seurat” and annotated based on marker genes 
reported previously. The α-Syn aggregation score was cal-
culated using the GSVA method. Based on this score, the 
DA neurons were categorized into four subsets (agg1, agg2, 
agg3, agg4). The “FindAIIMarkers” function of “Seurat” R 
package was used to determine the DEGs of each cluster.

Cell culture

As described previously [24], proliferating LUHMES cells 
were maintained in proliferation medium consisted of 

Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 
Ham (DMEM/F-12; Sigma-Aldrich, USA) with 1 × N-2 
supplement (STEMCELL, CA) and 40 ng/mL recombinant 
human FGF-basic (Biolegend, CA). Cells were cultured in 
a humidified incubator containing 5% CO2 at 37 °C. To start 
differentiation, the medium was replaced with differentia-
tion medium containing DMEM/F-12 supplemented with 
1% N-2 supplement, 1 µg/ml tetracycline (Sigma-Aldrich, 
USA), 0.5 µg/ml N6,2′-O-Dibutyryladenosine 3′,5′-cyclic 
monophosphate sodium salt (Dibutyryl cyclic-AMP; Sigma-
Aldrich, USA), and 2 ng/mL recombinant human GDNF 
(PeproTech, USA). Cell culture flasks and dishes (Thermo 
Fisher Scientific, USA) were pre-coated with 0.1 mg/mL 
poly-l-ornithine solution (PLO; Sigma-Aldrich, USA) for 
cell proliferation and differentiation. For cell differentia-
tion, an additional coating with 5 µg/ml bovine fibronectin 
(Sigma-Aldrich, USA) was applied. High insulin-induced 
IR in differentiated dopaminergic neurons was achieved by 
administration of insulin at 3 μM for 24 h, as previously 
described [25].

Lentivirus transfection and RNA interference

To achieve the overexpression of α-Syn in differentiated 
LUHMES cells, adenoviruses serotype 5 (AV5)-α-Syn 
purchased from VectorBuilder (China) was added to the 
cell culture medium at a multiplicity of infection (MOI) 
of 50. After 24 h, the medium containing the virus was 
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replaced with fresh differentiation medium. Transient 
knockdown of IRS-1 and PTPRO was achieved by using 
small interfering RNAs (siRNAs) from GenePharma 
(Shanghai, China). Cells were transfected utilizing Lipo-
fectamine 3000 reagent (Invitrogen, USA) according to the 
manufacturer’s protocols.

Quantitative real‑time PCR (qRT‒PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen, 
USA). cDNA was prepared utilizing reverse transcription 
kit (Toyobo, China) according to the manufacturer’s instruc-
tions. qRT‒PCR was performed on Mx-3000P Quantita-
tive PCR System with SYBR Green Real-time PCR System 
Mix (Toyobo, China). The comparative CT method (2−ΔΔCT) 

was used for relative gene expression analysis. β-actin was 
used as the internal control. qRT-PCR was performed on 
three biological replicates, each consisting of three technical 
replicates. The sequences of primers used were as follows: 
PTPRO-F: 5’-ATG​ACT​TCA​GCC​GTG​TGA​GA-3’, PTPRO-
R: 5’-TGT​TGC​AGG​ACC​ATC​TTC​CA-3’; β-actin-F: 
5′-GAC​AGG​ATG​CAG​AAG​GAG​AT-3′, β-actin-R: 5′-TGA​
TCC​ACA​TCT​-GCT​GGA​AGGT-3′.

Western blotting

Protein was extracted from differentiated LUHMES 
cells. Western blotting was performed as described pre-
viously [26]. The primary antibodies used were: PTPRO 
(Proteintech Group, 67,000–1-Ig), IRS-1 (Cell Signaling 
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Technology, 3407), α-Syn (Thermo Fisher Scientific, 
701,085), and β-actin (Cell Signaling Technology, 14,074).

Identification of potential therapeutic small 
molecule compounds

The Connectivity Map (CMap) database (https://​clue.​io/) 
offers predictive capabilities for molecularly targeted drugs 
base on differential gene expression profiles. In this study, 
150 upregulated and 150 downregulated DEGs between the 
high-PTPRO expression group and the low-PTPRO expres-
sion group were submitted to the CMap database. Com-
pounds with negative score were screened as potential small 
molecule drugs that may counteract PTPRO downregulation. 
The 3D protein structures of the compounds were obtained 
from the PubChem accessible chemical database (https://​
pubch​em.​ncbi.​nlm.​nih.​gov/).

Statistical analysis

Statistical analyses were performed by R 4.2.0. Wilcoxon 
test and Student’s t test were conducted to compare dif-
ferences between two groups, dependently. One-way 
ANOVA was performed to compare differences in more 
than two groups. P-value < 0.05 was considered statistically 
significant.

Results

IR is positively associated with α‑Syn aggregation 
in PD patients’ transcriptome profile

The overall research workflow systematically describes our 
study (Fig. 1). Previous research has presented evidence that 
IR contributes to α-Syn aggregation in neuronal cells [23]. 
To comprehensively investigate the effect of IR on α-Syn 
aggregation at the transcriptome level, six independent data-
sets containing transcriptome data from human substantia 
nigra (SN) of PD patients were enrolled in our research. 
The datasets were integrated and batch corrected using the 
“ComBat” algorithm from the "sva" R package to obtain a 
combined dataset, which contains 59 PD patients and 58 

control samples (Fig. 2A). The IR scores, assessed in all 
samples using gene set variation analysis (GSVA) based on 
IR-related genes, were significantly higher in PD patients 
than those observed in control samples (Fig. 2B). The PD 
samples were then stratified into high IR group and low 
IR group based on their IR scores. The α-Syn aggregation 
scores in PD patients were calculated by GSVA based on 
α-Syn aggregation-related genes. The results indicated that 
the group with high IR scores exhibited a greater α-Syn 
aggregation score (Fig. 2C), suggesting the modulation of 
α-Syn aggregation by IR.

Analysis of gene modules involved in IR‑mediated 
α‑Syn aggregation in PD

To investigate alterations in the transcriptome features 
influenced by IR in PD patients, consensus clustering was 
applied to categorize the gene expression profiles for 59 PD 
samples into distinct subclasses based on IR-related genes 
(Fig. 3A, B). According to the cumulative distribution func-
tion (CDF), four was determined as the optimal number of 
clusters. When k = 4, the consensus matrix heatmap dem-
onstrated clear boundaries, indicating the stability of the 
cluster across multiple iterations (Fig. 3C). The heatmap 
unveiled the discrepancies in the expression profiles among 
the four clusters (Fig. 3D). Cluster 1 (C1) and cluster 2 (C2) 
exhibited higher scores of α-Syn aggregation calculated by 
GSVA (Fig. 3E). These findings indicate that the signature 
genes in C1 and C2 subtypes may be involved in the regula-
tion of α-Syn aggregation through IR.

Subsequently, weighted gene co-expression network 
analysis (WGCNA) was employed to assess the signature 
genes within the C1 and C2 subtypes. The determination of 
the soft-threshold value, set at 9, was based on the scale-free 
topology model and mean connectivity (Fig. 4A). Follow-
ing this, a hierarchical clustering algorithm yielded ten co-
expression modules (Fig. 4B). The blue and green modules 
displayed a positive correlation with the C1 subtype, and 
the same for the brown and pink modules with the C2 sub-
type (Fig. 4C). Furthermore, we conducted GO and KEGG 
enrichment analyses with genes in the aforementioned four 
modules (Fig. 4D, E). GO enrichment analysis revealed 
that these signature genes were predominantly enriched in 
synaptic vesicle-related biological process, which can be 
disrupted by α-Syn aggregation [27], and protein folding 
chaperone function, which may regulate α-Syn conformation 
and aggregation [28]. Furthermore, KEGG pathway enrich-
ment analysis demonstrated that these signature genes were 
principally enriched in protein degradation related pathways 
such as autophagy, ubiquitin mediated proteolysis, and pro-
tein processing in endoplasmic reticulum. Taken together, 

Fig. 4   Identification of modules in PD subtypes with high α-Syn 
aggregation score. A Soft thresholds determined based on the scale-
free fit index and the mean connectivity. B Hierarchical cluster tree 
of co-expression modules. C Correlations between module genes 
and PD subtypes. D GO analysis of the high α-Syn aggregation PD 
subtypes-related module genes on biological processes, cellular com-
ponents, and molecular functions. E KEGG pathways enriched in the 
module genes related to PD subtype with high α-Syn aggregation

◂

https://clue.io/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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α-Syn were detected via WB. B Quantification of (A). ***P < 0.005, 
**P < 0.01. Data are shown as the means ± SEMs. C Heatmap of 
significantly differentially enriched pathways between the siCon and 

siIRS-1 groups. D Venn diagram of the intersection of DEGs between 
the PD cell model with and without IR and IR-related module genes. 
E Heatmap visualization of 53 overlapping genes obtained by inter-
secting IR-modulated genes and DEGs in the combined dataset 
between PD and control samples
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the gene modules that contribute to IR-induced aggregation 
of α-Syn were identified and analyzed in PD patients.

Identification of IR‑modulated genes implicated 
in α‑Syn aggregation in DA neurons

Considering that DA neurons are essential in the degen-
eration process of PD, we conducted further research using 
LUHMES cells, a type of neuronal cell known for their 

ability to differentiate into human DA neurons [24]. DA 
neurons differentiated from LUHMES cells overexpress-
ing α-Syn were employed as the PD cell model. A previ-
ous study showed that heterozygous knockout of IRS-1 
leads to IR in mice [29]. Our previous research has dem-
onstrated that elevated IRS-1 expression can alleviate IR 
[25]. Thus, IRS-1 was silenced by siRNA to induce IR in 
the PD cell model. Enhanced aggregation of α-Syn was 
detected in the PD cell model under IR condition (Fig. 5A, 
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B). Subsequently, bulk RNA sequencing was performed 
on the PD cell model induced with and without IR. The 
pathway enrichment scores of all the samples were quan-
tified by GSVA. The result revealed significantly different 
enriched pathways between the PD cell model induced with 
and without IR (Fig. 5C). Pathways related to inflammation, 
oxidative phosphorylation, and cellular proteostasis were 
enriched, which are involved in α-Syn aggregation [30–33]. 
The DEGs between α-Syn overexpressing LUHMES cells 
with and without IR were identified using “DESeq2” R 
package. The identified DEGs were then intersected with 
module genes that contribute to IR-mediated aggregation of 
α-Syn in the combined dataset, yielding 226 IR-modulated 
genes associated with α-Syn aggregation in DA neurons 
(Fig. 5D). Among these, 53 genes exhibit differential expres-
sion between PD and control samples, suggesting their criti-
cal roles in IR-mediated PD pathogenesis (Fig. 5E).

PTPRO serves as a regulator for IR‑mediated α‑Syn 
aggregation and the progression of PD

To further assess the role of the 53 genes in regulating α-Syn 
aggregation and the progression of PD, the GSE49036 
dataset containing 28 samples from PD patients with Braak 
stage information was enrolled. Genes associated with PD 
progression were identified using WGCNA. Soft threshold 
value was determined as 8, according to scale-free topology 
model and mean connectivity (Fig. 6A). Sixteen co-expres-
sion modules were generated by a hierarchical clustering 
algorithm (Fig. 6B). Positive correlations were observed 
between Braak stage and the red module as well as the yel-
low module, whereas a negative correlation was detected 
between Braak stage and the turquoise module (Fig. 6C). 
The Braak stage-related module genes were intersected with 
the DEGs identified between the PD and control samples in 
GSE49036 dataset, the results were then intersected with the 
53 genes that may contribute to α-Syn aggregation under IR 
condition in the PD cell model to obtain 20 genes that asso-
ciated with PD progression mediated by IR. (Fig. 6D). The 
expression of the twenty genes is indicated in the heatmap, 
reflecting an evident variation in gene expression pattern 
across different Braak stages (Fig. 6E).

Next, we analyzed a snRNA-seq dataset with PD cohort 
(GSE178265), to gain in-depth insights into the role of the 
20 hub genes on α-Syn aggregation in DA neurons. In the 
GSE178265 dataset, DA neuron nuclei were enriched using 
fluorescence-activated nuclei sorting (FANS) with NR4A2 
as the specific marker. Then, the NR4A2-positive cells were 
clustered and annotated based on cell-specific marker genes 
reported in previous studies [34–38] (Fig. 7A). Six main 
cell types, including astrocytes, endothelial cells (endo), 
oligodendrocyte progenitor cells (OPCs), microglia, oligo-
dendrocytes (ODCs) and neurons, were identified (Fig. 7B). 
DA neurons were further distinguished among neuron sub-
types based on characteristic marker genes [36] (Fig. 7C, D). 
Subsequently, the DA neurons were divided into four sub-
sets based on the α-Syn aggregation score, among which the 
agg4 subset exhibited the highest α-Syn aggregation score 
(Fig. 7E). We observed that 5 out of the 20 hub genes were 
present in the DEGs that identified between agg4 subset and 
other subsets, implying the importance of the 5 genes in 
α-Syn aggregation (Fig. 7F). Through evaluating the expres-
sion of these genes in groups across different Braak stages 
in the GSE49036 dataset, only PTPRO exhibited a negative 
correlation with Braak stages (Fig. 7G). PTPRO was sig-
nificantly downregulated in the agg4 subset as compared to 
other subsets (Fig. 7H), exhibiting consistent alterations with 
the α-Syn aggregation score and highlighting its potential 
role in α-Syn aggregation.

Decreased PTPRO expression promotes α‑Syn 
aggregation

To validate the role of PTPRO in IR-mediated α-Syn aggre-
gation, we scrutinized PTPRO expression in the PD cell 
model under IR condition. The decreased mRNA expres-
sion and protein level of PTPRO were observed in the PD 
cell model induced with IR (Fig. 8A–C). Furthermore, we 
explored the impact of PTPRO down-regulation on α-Syn 
aggregation. The decreased PTPRO markedly promoted 
α-Syn aggregation and cell death in the PD cell model 
(Fig. 8D–F). Conversely, overexpression of PTPRO signifi-
cantly attenuated α-Syn aggregation in our PD cell model 
under IR conditions (Fig. 8G, H), further substantiating the 
critical role of PTPRO in IR-mediated α-Syn aggregation. 
Moreover, we employed an additional model of high insu-
lin-induced IR. Consistent with our previous observations, 
induction of IR through high insulin treatment in the PD 
cell model resulted in increased α-Syn aggregation and con-
comitant decrease in PTPRO expression levels. Importantly, 
overexpression of PTPRO in this high insulin-induced IR 
model also led to a significant reduction in α-Syn aggre-
gation (Fig. 8I, J), mirroring our previous findings. These 
results collectively underscore the importance of PTPRO in 
modulating IR-mediated α-Syn aggregation in PD cellular 

Fig. 7   SnRNA-seq revealed a significant correlation between PTPRO 
and α-Syn aggregation. A Violin plots of marker genes for the six cell 
subtypes. B UMAP plot of cell identity. C UMAP plots of specific 
markers (SLC6A3 and TH) for DA neurons. D UMAP plot of neuron 
subtype identity. E UMAP plot of four DA neuron subsets classified 
by the α-Syn aggregation score. F The DEGs of each cluster were 
identified by the FindAllMarkers function of the Seurat package. Five 
out of the twenty hub genes were indicated in the agg4 subset-spe-
cific DEGs. G The expression of PTPRO, ITPR1, SCG3, PID1, and 
PFK in groups across different Braak stages in GSE49036. H PTPRO 
expression in DA neurons displayed in the UMAP plot
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models. To better understand the function of PTPRO in 
α-Syn aggregation, the PD patients in the combined data-
set were divided into two groups based on PTPRO expres-
sion. Following this, KEGG pathway enrichment analysis 
on DEGs between the two groups was performed. KEGG 
analysis revealed that the DEGs were abundant in pathways 
linked to neurodegenerative disease, metabolism and protea-
some (Fig. 8K). These findings suggested that disordered 
metabolism and abnormal degradation of target proteins in 
DA neurons might be responsible for the downregulation of 
PTPRO which promotes α-Syn aggregation.

Validation of downregulated PTPRO expression 
in multiple PD datasets, and prediction 
of compound targeting for PTPRO

The downregulated expression of PTPRO was validated 
across three external PD datasets. A consistently significant 
downregulation of PTPRO expression was observed in PD 
patients (Fig. 9A–C), implying its potential significance in 
the progression of PD. Targeting PTPRO may therefore pre-
sent as an effective strategy to mitigate the progression of 
PD facilitated by IR. To screen small molecule compounds 
capable of counteracting PTPRO dysregulation and poten-
tially slowing PD progression, we utilized the CMap data-
base to predict promising drugs based on the DEGs between 
the high-PTPRO expression group and the low-PTPRO 
expression group. Among the top 10 drugs exhibiting signif-
icantly negative enrichment scores, indicative of their ability 
to counteract gene expression changes induced by PTPRO 
downregulation, dibenzoylmethane and captopril emerged 
as promising candidates for PD treatment (Fig. 9D–F). Pre-
vious studies have demonstrated that dibenzoylmethane 
exhibit a neuroprotective effect in neurodegenerative mouse 

models [39, 40]. Similarly, captopril, an angiotensin-con-
verting enzyme (ACE) inhibitor, has demonstrated neuro-
protective effects in animal models of PD by suppressing the 
overproduction of reactive oxygen species [41, 42]. These 
findings suggest that these two compounds may impede the 
progression of PD associated with insulin resistance through 
counteracting PTPRO downregulation. Collectively, these 
results underscore the potential of PTPRO as a promising 
therapeutic target for personalized treatment approaches in 
PD patients with IR.

Discussion

In this study, we provided a comprehensively analysis 
of the modulation of α-Syn aggregation by IR. Firstly, 
the module genes in PD patients regulated by IR were 
explored in PD subtypes exhibiting high α-Syn aggrega-
tion scores. Through the combination of analyses involv-
ing DEGs in the PD cell model modulated by IR, genes 
within IR-related modules from PD patients, and DEGs 
between PD and control samples, we successfully iden-
tified 53 IR-modulated genes in DA neurons associated 
with α-Syn aggregation. Subsequent investigations were 
focused on the functions of these 53 genes in PD progres-
sion and α-Syn aggregation. PTPRO emerged as a key 
regulator in IR-mediated α-Syn aggregation and PD pro-
gression. In the PD cell model, increased α-Syn aggrega-
tion and enhanced cell death were observed subsequent 
to PTPRO silencing. Moreover, PTPRO might serve as a 
promising therapeutic target for the individualized treat-
ment in PD patients with IR.

Numerous identified risk factors contribute to the onset 
and progression of PD. One prominent risk factor for PD is 
the compromised insulin signaling in the brain [43], which 
is strongly correlated with the progression of PD, suggest-
ing a crucial role of IR in the development of PD [44]. 
Previous research has exhibited an exacerbation of α-Syn 
accumulation within the midbrain and substantia nigra of 
mice with T2DM [22]. Another study observed that IR 
enhances the expression and phosphorylation of α-Syn, 
leading to its aggregation in an insulin-induced IR cell 
model [23]. Despite these findings, the precise mechanism 
through which IR promotes α-Syn aggregation remains to 
be elucidated.

In our research, the functional enrichment analysis of 
module genes revealed that pathways altered in IR-related 
PD subtypes with high α-Syn aggregation scores were 
notably enriched in biological processes related to syn-
aptic vesicles and the chaperone function of protein fold-
ing. α-Syn is typically associated with synaptic vesicles 
in presynaptic terminals [45], and is believed to play a 
role in regulating neurotransmitter release and maintaining 

Fig. 8   Reduced PTPRO expression detected under IR condition facil-
itates α-Syn aggregation in the PD cell model. siIRS-1 or siCon was 
transfected into α-Syn overexpressing LUHMES cells. The mRNA 
expression of PTPRO was analyzed using RT-qPCR (A), and the pro-
tein was determined using WB (B). C Quantification of (B). D α-Syn 
overexpressing LUHMES cells were transfected with PTPRO siRNA 
(siPTPRO) or negative control (siCon). WB was performed to detect 
PTPRO, as well as monomeric and oligomeric α-Syn. E Quantifica-
tion of (D). F LDH assay was applied to assess cell death. G Lentivi-
rus expressing PTPRO or control was introduced into LUHMES cells 
overexpressing a-Syn under control or IRS-1 knockdown conditions. 
WB assay was performed to assess the protein levels of monomeric 
and oligomeric α-Syn, PTPRO, and IRS-1. H Quantification of (G). I 
LUHMES cells overexpressing α-Syn were transduced with lentivirus 
expressing PTPRO or control, and treated with or without 3 μM insu-
lin as indicated. Protein levels of monomeric and oligomeric α-Syn, 
PTPRO, and IRS-1 were assessed by WB assay. J Quantification of 
(I). K KEGG pathway analysis was conducted on DEGs between 
the high-PTPRO expression group and the low-PTPRO expression 
group in PD patients from the combined dataset. ****P < 0.0001, 
***P < 0.005, **P < 0.01, *P < 0.05. The data are shown as the 
means ± SEMs

◂
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synaptic integrity [46–48]. Aggregated α-Syn was shown 
to disrupt normal synaptic function and axonal transport 
[27]. Protein folding chaperones, such as heat shock pro-
teins (HSPs), are implicated in preventing the misfolding, 
oligomerization and aggregation of α-Syn [28, 49].

Moreover, our KEGG analysis highlighted additional 
enriched pathways associated with protein degradation, 
such as autophagy, ubiquitin-mediated proteolysis, and 
protein processing in the endoplasmic reticulum [50–52]. 
These pathways are involved in α-Syn degradation and 
clearance, emphasizing that IR may promote α-Syn aggre-
gation in PD patients by compromising both protein fold-
ing and degradation mechanisms.

Furthermore, our investigation revealed that path-
ways related to inflammation, oxidative phosphorylation, 
and cellular proteostasis were enriched in DA neurons 

overexpressing α-Syn upon IR induction. Interferons medi-
ate inflammation, and alterations in their signaling pathway 
may induce neuroinflammation, potentially contributing to 
the aggregation of α-synuclein [30, 31]. Oxidative stress 
resulting from dysregulated oxidative phosphorylation also 
fosters α-Syn aggregation [32]. IR may disrupt cellular 
proteostasis, a process maintained by regulated control of 
protein folding, post-translational modification, and protein 
degradation [53], resulting in abnormal α-Syn aggregation.

We identified 53 genes that potentially facilitate α-Syn 
aggregation mediated by IR in DA neurons. Among those, 
PTPRO was identified as a significant regulator in IR-
mediated α-Syn aggregation and PD progression. PTPRO, 
a receptor-type protein tyrosine phosphatase, exhibits high 
expression in adult brain tissues [54], and is significantly 
associated with neurocognitive function [55]. Ptpro in the 
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hippocampus shows a negative correlation with aging, 
and its deletion is associated with increased susceptibil-
ity to hippocampal neuronal death in mice treated with 
doxorubicin (DOX) [56]. Our analysis revealed that 
DEGs related to PTPRO are abundant in pathways linked 
to neurodegenerative diseases, metabolism, and the pro-
teasome. While the precise mechanism through which 
PTPRO influences α-Syn aggregation remains to be fully 
elucidated, our pathway analysis suggests several poten-
tial mechanisms. PTPRO may be involved in regulating 
oxidative stress responses, as indicated by the enrichment 
of pathways related to reactive oxygen species, oxidative 
phosphorylation and glycolysis. Notably, oxidative stress 
related pathway was also identified in IR-related DEGs 
enriched pathways, contributing to the promotion of α-Syn 
aggregation, as previously discussed [32]. The enrich-
ment of the proteasome pathway suggests PTPRO may 
regulate α-Syn aggregation by influencing proteasomal 
function. Impaired proteasome activity can contribute to 
the abnormal aggregation of α-Syn [57]. These potential 
mechanisms are not mutually exclusive and may interact 
in complex ways, creating a multifaceted impact on α-Syn 
aggregation. Further experimental studies are needed to 
elucidate the specific roles of PTPRO in these pathways 
and their relation to α-Syn aggregation in the context of 
IR and PD progression.

In summary, our research uncovered PTPRO as a cru-
cial determinant in α-Syn aggregation mediated by IR. 
Nevertheless, it is important to note that the validation 
of PTPRO was confined to cultured DA neurons in the 
present study, and supporting evidence from mouse and 
human samples is still under investigation. Additionally, 
further exploration is needed to elucidate the molecular 
mechanism underlying the regulation of α-Syn aggrega-
tion by PTPRO and to evaluate the therapeutic potential 
of targeted small molecule drugs.
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