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Summary
Background Melanoma is a heterogeneous cancer influenced by the plasticity of melanoma cells and their dynamic
adaptations to microenvironmental cues. Melanoma cells transition between well-defined transcriptional cell states
that impact treatment response and resistance.

Methods In this study, we applied single-cell RNA sequencing to interrogate the molecular features of
immunotherapy-naive and immunotherapy-resistant melanoma tumours in response to ex vivo BRAF/MEK
inhibitor treatment.

FindingsWe confirm the presence of four distinct melanoma cell states - melanocytic, transitory, neural-crest like and
undifferentiated, and identify enrichment of neural crest-like and undifferentiated melanoma cells in
immunotherapy-resistant tumours. Furthermore, we introduce an integrated computational approach to identify
subsets of responding and nonresponding melanoma cells within the transcriptional cell states.

Interpretation Nonresponding melanoma cells are identified in all transcriptional cell states and are predisposed to
BRAF/MEK inhibitor resistance due to pro-inflammatory IL6 and TNFɑ signalling. Our study provides a framework
to study treatment response within distinct melanoma cell states and indicate that tumour-intrinsic pro-inflammatory
signalling contributes to BRAF/MEK inhibitor resistance.
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Introduction
The overall survival rate of patients with advanced
melanoma has tripled to over 50% in the last 10 years as
a result of molecular and immune checkpoint in-
hibitors.1,2 Almost 70% of patients with BRAFV600-
mutant melanoma will respond to combination BRAF
and MEK molecular inhibitors but less than 20% will
have durable responses lasting longer than five years.3

Immune checkpoint inhibitors targeting CTLA-4 and
PD-1 result in 5-year survival rates of 26% and 44%,
*Corresponding author. Macquarie Medical School, Faculty of Medicine, He
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respectively, while the combination of CTLA-4 and PD-1
inhibitors results in a 5-year survival rate of 52%.4 Un-
fortunately, 20–30% of patients responding to PD-1 in-
hibitors will develop resistance and progress within 1–2
years.5

Response and resistance to treatment are influenced
by the heterogeneity and plasticity of melanoma cells,
which can transition between several phenotypic states.
For instance, the transcriptionally-defined undifferenti-
ated and neural crest-like states reflective of
alth and Human Sciences, Macquarie University, Australia.
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Research in context

Evidence before this study
Despite effective molecular and immune-based therapies for
patients with advanced melanoma, treatment resistance
remains a common and intractable challenge. Treatment
resistance is partly driven by the heterogeneity and plasticity
of melanoma cells to transition between differentiated and
dedifferentiated phenotypic states. However, the precise
response and role of melanoma cell states in treatment
outcomes remain complex and incompletely understood.

Added value of this study
We dissected the impact of melanoma states in response to
molecular therapies using single-cell RNA sequencing of
ex vivo-treated patient-matched tumour biopsies coupled
with a unique single-cell computational biology approach. We
show that melanoma dedifferentiation does not determine
resistance to BRAF/MEK inhibitors, but rather, tumour-

intrinsic pro-inflammatory IL6 and TNFɑ signalling confer
BRAF/MEK inhibitor resistance. Our study provides a valuable
framework to delineate molecular mechanisms underlying
heterogeneity in treatment response and identify therapeutic
targets and biomarkers for treatment resistance.

Implications of all the available evidence
Our finding that dedifferentiated melanoma cells are not
inherently resistant to treatment, but rather, are predisposed
to BRAF/MEK inhibitor resistance due to pro-inflammatory
signalling, represents a conceptual advance and highlights
pro-inflammatory pathways as promising targets for
combination treatment. Indeed, several ongoing and planned
clinical trials (NCT05034536, NCT04652258) are
investigating the safety and efficacy of anti-TNFα and anti-
IL6 in combination with clinical therapies for melanoma.
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dedifferentiated melanoma6 are more resistant to
BRAF/MEK inhibitors7 and immune-based therapies8,9

compared to differentiated melanoma. Single-cell
sequencing analyses of melanoma biopsies confirmed
the co-existence of distinct differentiated and dediffer-
entiated melanoma cells within primary and metastatic
melanoma tumours. These cell states can be identified
by the expression of MITF and AXL and their pro-
portions may be influenced by therapy. For instance,
MITFlow/AXLhigh dedifferentiated melanoma cells are
enriched in melanoma tumours after BRAF/MEK in-
hibitor therapy,10 indicating dynamic adaptation and
rapid selection of resistant phenotypes in response to
treatment. Despite significant advances in single-cell
RNA sequencing, there have been few studies utilizing
tumour dissociates to examine treatment-induced ef-
fects at the single-cell level. As such, the precise
response and role of each melanoma cell state in treat-
ment outcomes have yet to be fully elucidated.

In this study, BRAFV600-mutant melanoma tissue
dissociates derived from tumour biopsies of treatment-
naive patients (n = 5) and patients who had progressed
on immune checkpoint inhibitors (n = 5) were treated
ex vivo with combination BRAF/MEK inhibitors dabrafe-
nib and trametinib, and single-cell RNA sequencing (sc-
RNAseq) was used to dissect the molecular features of
response in differentiated and dedifferentiated melanoma
cells within the same tumour lesion. Discrete melanoma
cell states were identified and scored in each tumour bi-
opsy, and an integrated computational approach revealed
their unique transcriptomic responses to BRAF/MEK in-
hibitors. Significantly, we now report that dedifferentiated
melanoma cells are not inherently resistant to BRAF/MEK
inhibitors, but rather are prone to resistance as a result of
intrinsic pro-inflammatory signalling. Our study confirms
that melanoma-intrinsic pro-inflammatory IL6 and TNFɑ
signalling confer BRAF/MEK inhibitor resistance and
provides a framework to study tumour heterogeneity in
treatment response.
Methods
Patient and sample selection
A total of ten patients with advanced metastatic cuta-
neous melanoma were included in this study. Patients
were selected based on availability of tumour samples;
fresh tumour biopsies were collected from patients with
melanoma following surgical resection. Tumour bi-
opsies were mechanically and enzymatically processed
and dissociated into single-cell suspensions using the
Tumour Dissociation Kit (Miltenyi Biotec, Australia, Cat
no: 130-095-929) and gentleMACS Octo Dissociator
(Miltenyi Biotec, Cat no: 130-096-427), according to the
manufacturer’s instructions. Single-cell tumour sus-
pensions were frozen in 10% dimethyl sulfoxide
(DMSO) in human male AB serum (Sigma, St. Louis,
MO, USA). Tumour dissociates were initially screened
by flow cytometry using Live/Dead NIR and antibodies
to detect CD45 and SOX10 (Supplementary Table S1).
The following criteria were required for downstream
single-cell transcriptome sequencing: >40% viability and
>50% tumour content. Patients with melanoma with
suitable tumour dissociates were included in the study.

Of the ten patients, five had progressive disease
while on treatment with immunotherapy (nivolumab
3 mg/kg every 2 weeks or nivolumab 1 mg/kg plus
ipilimumab 3 mg/kg every 3 weeks for four doses fol-
lowed by nivolumab 3 mg/kg every 2 weeks) while five
patients were treatment naive, from the Melanoma
Institute Australia (MIA) and Westmead Hospital.
Written consent was obtained from all patients (Human
Research ethics approval from Royal Prince Alfred
www.thelancet.com Vol 107 September, 2024
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Hospital–Protocol ×15-0454 & HREC/11/RPAH/444).
Patient demographics and clinicopathologic features
including age, sex, BRAF mutation status, prior treat-
ments and disease distribution were collected. Sex was
self-reported by study participants.

Flow cytometric profiling of tumour dissociates
Tumour dissociates were thawed into TIL media (Ros-
well Park Memorial Institute-1640 media supplemented
with 10% heat-inactivated human serum (Sigma), 2 mM
glutamine (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA), 25 mM HEPES (Gibco), 100 U/ml penicillin
and 0.1 mg/ml streptomycin (Gibco) and 50 μg/ml
gentamicin (Sigma)), washed and viable cells enriched
using the Dead Cell Removal kit (Miltenyi Biotec, Cat
no: 130-090-101) and MS columns (Miltenyi Biotec, Cat
no: 130-042-201) as per manufacturer’s instructions.
Viable cells were counted and plated in 24-well plates at
2.5–10 × 105 cells/well in 500 μl TIL media, which help
preserve viability of both melanoma and immune cell
cultures.11 Adhered melanoma cells and suspension
immune cells were treated with 10 nM dabrafenib and
1 nM trametinib or DMSO control and incubated for
48 h. Drug concentration was selected based on previ-
ously optimized cell culture conditions.12 Adherent and
suspension cell cultures were trypsinised and collected
after treatment, washed in PBS and incubated on ice for
30 min with fluorescently labelled monoclonal anti-
bodies (Supplementary Table S1) and Fc block (BD
Biosciences, Australia). For intracellular staining, cells
were fixed and permeabilized using the Transcription
buffer Fixation/Permeabilization kit (ThermoFisher
Scientific), stained with antibodies against the intracel-
lular proteins (Supplementary Table S1), then washed.
Samples were acquired on a 5 laser BD LSR Fortessa X-
20 flow cytometer (BD Biosciences) as previously
described.13 Gating strategy for major cell populations
are shown in Supplementary Figure S13.

The MEK1/2 inhibitor trametinib (GSK1120212) and
BRAF inhibitor dabrafenib (GSK2118436) were pur-
chased from Selleck Chemicals (Houston, TX, USA)
and prepared as 1 mM stocks in DMSO.

Single-cell transcriptome sequencing
Single-cell tumour dissociates were thawed into TIL
media, washed, counted and plated (up to 1 × 106 cells/
well in 500 μl TIL media) in 24-well plate prior to
treatment with 10 nM dabrafenib and 1 nM trametinib
or DMSO control for 48 h. Adherent (melanoma) and
suspension (immune cells) cell cultures were trypsi-
nised and collected after treatment, washed in PBS, and
enriched for viable cells using the Dead Cell Removal kit
(Miltenyi Biotec, Cat no: 130-090-101) and MS columns
(Miltenyi Biotec, Cat no: 130-042-201) as per manufac-
turer’s instructions. Viable cells were resuspended in
0.04% BSA in PBS, filtered through a 30 μm filter and
resuspended to a final concentration of 1000 cells/μl.
www.thelancet.com Vol 107 September, 2024
Single-cell RNA sequencing libraries were generated
using the 10× Genomics Chromium Single Cell 3′ Kit vs
3.1 and the 10× Chromium Controller according to
manufacturer’s protocol (10× Genomics, Pleasanton,
CA, USA). Briefly, approximately 10,000 single cells
were loaded to the Chromium Controller with a targeted
recovery of at least 5000 cells. The cells were partitioned
into Gel Beals in Emulsion Sequencing and quality
control of the libraries was performed on a NovaSeq S4
by the Australian Genome Research Facility (AGRF,
Australia). On average, 200 Gb of raw data were
generated for each sample.

Melanoma cell culture
Tumour dissociates were plated into 24-well plates
(1 × 106 cells/well) to isolate short-term patient-derived
melanoma cell lines. Melanoma cell lines were main-
tained in complete DMEM (Dulbecco’s Modified Eagle
medium) supplemented with 10% heat-inactivated fetal
bovine serum (Sigma), 4 mM glutamine (Sigma), and
20 mM HEPES (Sigma) at 37 ◦C in 5% CO2. Cell
authentication and profiling of cell lines were confirmed
using the StemElite ID system from Promega. All cells
tested negative for mycoplasma (MycoAlert Mycoplasma
Detection Kit, Lonza, Basel). RNA sequencing data of
the cell lines has been previously generated13 and
deposited in the Sequence Read Archive under the
accession code PRJNA818797.

MTT metabolic assay
Melanoma cells were pre-treated with TNFα (1000 U/
ml, PeproTech, Rocky Hill, NJ, USA Cat no: 300-01),
IL-6 (25 ng/ml, PeproTech, Cat no: 200-06) or 0.1% BSA
control for 72 h, then seeded in 96-well plates (1.5–
2.0 × 103 cells/well) in complete DMEM. Media was
removed the following day and melanoma cells exposed
to increasing concentrations of the BRAF inhibitor
dabrafenib (0, 1, 2.5, 5, 10, 50, 100, 500, 1000 and
5000 nM) and the MEK inhibitor trametinib (0, 0.1,
0.25, 0.5, 1, 5, 10, 50, 100 and 500 nM) at a 10:1 ratio for
72 h in the presence or absence of TNFα (1000 U/ml) or
IL-6 (25 ng/ml). Cell viability was measured using the
Luminescent CellTiter-Glo® 2.0 Assay reagent (Prom-
ega, Madison, WI, USA). Luminescence readings were
acquired on a PHERASTAR FS microplate reader (BMG
LABTECH, Germany). Cell viability was calculated as a
percentage normalized to controls after background
subtraction. A minimum of three independent viability
assays were performed for each cell line in triplicate.
The IC50 (half maximal inhibitory concentration) was
generated from dose–response curves fitted using a
comparison of three-parameter regression fit or four-
parameter regression fit in GraphPad PRISM software
(GraphPad). Area under curve (AUC) analysis was per-
formed in GraphPad and the AUC values were used for
statistical comparison (unpaired t-test, compared to
control treatment).
3
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Western blotting
Melanoma cells were pre-treated with TNFα (1000 U/
ml, PeproTech, Rocky Hill, NJ, USA Cat no: 300-01), IL-
6 (25 ng/ml, PeproTech, Cat no: 200-06) or 0.1% BSA
control for 72 h, then collected for western blot analysis.
Total cellular proteins were extracted, resolved on 10%
SDS-polyacrylamide gels and transferred to PVDF-FL
membranes (Millipore) for 2 h. Western blots were
blocked for 1 h with 5% skim milk in Tris buffered
saline (TBS) and probed with antibodies against total
STAT (1:1000, Cell Signaling Technology; Cat no: 9139,
AB_331757), phosphorylated STAT (1:1000, Cell
Signaling Technology; Cat no: 9145, AB_2491009), IκBα
(1:1000, Cell Signaling Technology; Cat no: 4814,
AB_390781) and β-actin (1:6000, Sigma, Cat no: A5316,
AB_476743). Secondaries used were goat anti-mouse
immunoglobulin HRP and goat anti-rabbit immuno-
globulin HRF (1:6000, Agilent Dako, Santa Clara, CA)
and blots were imaged using ChemiDoc MP.

Analysis of hallmark signatures in melanoma cell
cultures
Transcriptome data of previously RNA-sequenced mel-
anoma cell lines were retrieved from the Sequence Read
Archive under accession code PRJNA818797. FPKM
values were used for ssGSEA14 to derive the absolute
enrichment scores using the gene sets from the Mo-
lecular Signature Database version 6.215 and to deter-
mine the melanoma differentiation transcriptome
subtypes (undifferentiated, neural crest-like, transitory
and melanocytic) using the support vector machine
“top-scoring pairs” scripts kindly provided by Dr T.
Graeber.6 These transcriptome subtypes correspond to
the differentiated (melanocytic and transitory) and de-
differentiated melanoma phenotypes (neural crest-like
and undifferentiated).6,16

scRNA-seq data processing and quality control
scRNA-seq counts were generated using the CellRanger
10× pipeline (v 3.1.0) to map the reads on to the human
reference genome (GRCh38). We first performed qual-
ity control to include cells with number of total UMI less
than 80,000 and greater than 500, number of genes
greater than 400 and mitochondria genes expressed less
than 20%, resulting in 168,599 cells for the downstream
analysis. We then used Bioconductor R package scater to
perform the data processing step.17 The counts matrix
was first size-factor standardized and log-normalized
using logNormCount function. Next, we selected the
top 2000 highly variable genes (HVGs) using function
across patients. UMAP embedding was then generated
on the top 20 PCs generated using the top HVGs for
visualization.

Cell type annotation
We used scClassify18 to annotate the broad cell types
using two published melanoma datasets as
reference19,20 with a two-step procedures: In the first
step, the cells are annotated by scClassify trained from
the two reference separately; In the second step, the
cells with the consistent annotations across two
datasets are used to train a new scClassify model and
annotate the cells with inconsistent annotations from
the first step. We performed Numbat (v1.1.0)21 to infer
allele-specific CNV in single cells using 1000G hg38
Genome reference and SNP VCF. The reference
expression profile is generated based on scClassify
annotation.

Malignant cell state annotation
We focused on the cells that are classified as malig-
nant cells in both scClassify and Numbat. The initial
analysis reveals that apart from melanoma cell states,
there are other cell states, including cell cycle, in-
flammatory and drug treatment effect in the full
datasets which hinder clustering methods to identify
melanoma subcellular states. There is also a lack of
existing single-cell reference datasets of melanoma
cell states. Therefore, we developed an approach to
annotate the malignant cell state using a combination
of unsupervised and supervised learning techniques.
Firstly, we selected the cells from the DMSO control
samples without high cell cycle score and inflamma-
tory score as a reference dataset. The cell cycle score is
based on the cell cycling signature provided by
Seurat22 and the inflammatory score is based on the
Hallmark_Inflammatory_Response gene set.15 This
approach ensures that the analysis is not biased by cell
cycle and inflammatory signals and minimally alters
the original gene expression matrix. The threshold of
high cell cycling score is determined by fitting a
normal mixture model on both scores of G2M phase
and S phase respectively and the threshold of in-
flammatory score is set as 0.4. To annotate the cell
states of the DMSO control reference dataset, we first
performed scMerge223 to remove the patient effect
using the unsupervised setting, with number of un-
wanted variation to be removed set as 20, number of
neighbour set as 10 and highly variable genes set as
the melanoma cell states markers. Next, we per-
formed principal component analysis on the inte-
grated data and visualized the data by performing
UMAP on the first 10 principal components. Then we
built a shared nearest neighbour graph with K equal
to 30 using buildSNNGraph function in scran package
and performed clustering using Louvain clustering
with cluster_louvain function in igraph package,
resulting in four clusters in total.24 We then annotated
the four clusters as melanocytic, transitory, neural
crest-like and undifferentiated, based on the cell type
markers reported in.6 Finally, we trained a scClassify
model using the annotated DMSO control reference
dataset to predict and obtain annotations for the
remaining malignant cells in the dataset.
www.thelancet.com Vol 107 September, 2024
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Characteristics NAIVE (n = 5) IO PROG
(n = 5)

Agea, median (range) 60 (25–78) 46 (31–77)

Sex, n (%)

Male 4 (80) 4 (80)

Female 1 (20) 1 (20)

Prior treatment, n (%)

None 5 (100)

PD-1 inhibitor 1 (20)

PD-1+CTLA-4 inhibitor 4 (80)

Mutation, n (%)

BRAF V600E 5 (100) 5 (100)

LDH, n (%)

Normal 3 (60) 4 (80)

Elevated 2 (40) 1 (20)

Site, n (%)

Lymph node 3 (60) 4 (80)

Bowel 1 (20) 1 (20)

Articles
Quantification of the MAPK activity and responder
classification
We used the common genes in two published MAPK
signalling gene sets25,26 to quantify the MAPK activity
score for each cell. The cell-level MAPK activity scores
are calculated from the trimmed mean expression of the
genes from the selected gene set, with the 10% low
expressed genes trimmed. We consider the cells in the
DT samples with MAPK activity scores greater than 20%
quantile of the patient-matched DMSO-treated cell state
as nonresponder cells and less than 5% quantile as
responder cells to generate equivalent numbers in both
responder vs nonresponder groups for subsequent
comparison. This comparison was further validated by
varying the threshold for defining responder and
nonresponder cells and by using a continuous variable.
To determine whether the change of MAPK activity
score is significantly different across cell type, we first
calculated the cell-type specific difference of the average
MAPK activity score for each patient. We then per-
formed linear mixed model with ∼cell_type + (1|patient)
using function lmer from R package lmerTest.27

Differential expression analysis of responder and
nonresponder cells
We aggregated cell type-specific expression profile of
each patient across the responder and nonresponder cell
groups by summing up the counts within each group.
Therefore, for each cell type, we have a responder and a
nonresponder gene by sample expression profile. We
then performed edgeR with responder or nonresponder
as covariates to identify the genes that are differentially
expressed between responder and nonresponder cells.
The genes are then ranked by logFC. The preranked
based gene set enrichment analysis (GSEA) of the
Hallmark gene sets15 is performed using the fgsea
function in the R package fgsea v1.22.0.28

Statistical analysis
Statistical analysis was performed in GraphPad Prism
software v10 or using the R statistical software v4.
Figure legends specify the statistical analyses used and
define error bars.

Role of funders
The funders had no role in study design, data collection,
interpretation, or writing of this work for publication.
Subcutaneous chest 1 (20)

Stage at diagnosis, n (%)

Stage I 3 (60)

Stage II 2 (40) 1 (20)

Stage III 3 (60)

Stage IV 1 (20)

aAge at time of biopsy shown.

Table 1: Baseline clinicopathologic features of patients with
melanoma.
Results
Treatment naive and immune checkpoint inhibitor-
resistant melanoma tumours show heterogenous
response to BRAF/MEK inhibitors
To explore the molecular features of BRAF/MEK in-
hibitor response in differentiated and dedifferentiated
melanoma, we selected ten patients with metastatic
BRAFV600−mutant cutaneous melanoma; five patients
www.thelancet.com Vol 107 September, 2024
were treatment naive (NAIVE) and five patients had
progressed on first-line anti-PD-1 based therapy (IO
PROG; anti-PD-1 monotherapy [nivolumab]: n = 1; anti-
PD-1 and anti-CTLA-4 combination therapy
[ipilimumab + nivolumab]: n = 4). Patient clinicopath-
ologic features are shown in Table 1 and selection of
patients and samples are detailed in Materials and
Methods. The median patient age was 60 years (range
25–78) for the NAIVE group and 46 years (range 31–77)
for the IO PROG group. The two treatment groups had
the same proportions of males (80%), and all patients
had a BRAFV600E mutation. Melanoma biopsies were
derived from lymph node (7/10, 70%), bowel (2/10;
20%) and subcutaneous chest (1/10, 10%) and were
processed into single-cell dissociates. Dissociates were
treated ex vivo with DMSO vehicle control or combina-
tion BRAF/MEK inhibitors (DT; 10 nM dabrafenib and
1 nM trametinib). Forty-eight hours post treatment, the
dissociates were analysed by flow cytometry and single-
cell RNA sequencing (scRNA-seq) (Fig. 1a).

Initial flow cytometric profiling of the tumour dis-
sociates revealed a range of melanoma and immune T
cell content that did not reflect prior treatment. For
instance, melanoma content ranged from 49 to 94% and
18–88% in the baseline NAIVE and IO PROG samples,
respectively. Similarly, T cell content was variable, and
ranged from 2 to 24% (CD4+ T cells) and 1–14% (CD8+
5
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Fig. 1: Flow cytometric profiling of tumour dissociates. a) Schematic of the study design. b) Percentage of melanoma (CD45−/SOX10+),
CD4+ (CD45+/CD4+) and CD8+ (CD45+CD8+) T cells in tumour dissociates of patients with melanoma (n = 5, treatment naive, NAIVE, blue;
n = 5, progressed on PD-1-based therapy, IO PROG, red) following treatment with DMSO control or combination BRAF/MEK inhibitors dab-
rafenib and trametinib (DT, 10 nM and 1 nM, respectively). Percentages shown as a proportion of live viable cells in the samples. Cell frequencies
for each sample are shown in Supplementary Table S2 and gating strategy of cells shown in Supplementary Figure S13. c) Boxplots showing fold
change in phosphorylated S6 and Ki67 levels (median fluorescence intensity (MFI) of DMSO control/MFI DT) in NAIVE (blue) and IO PROG (red)
tumour dissociates. Dotted line indicates a 1.5-fold difference. Data comparison between DMSO and DT performed using paired t-test while
comparison between IO PROG and NAIVE performed using unpaired t-test; ns, not significant.
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T cells) in all tumour dissociates. As expected, short-
term treatment with DT did not significantly or
consistently change tumour (SOX10+ melanoma cells)
or T cell (CD4+ and CD8+) proportions in the NAIVE or
the IO PROG samples (Fig. 1b, Supplementary
Table S2). Approximately 80% of tumour samples
showed a decrease in phosphorylated S6 in melanoma
cell populations after DT treatment (median reduction
2.1-fold, range 1.0–5.5-fold), indicative of MAPK sig-
nalling inhibition (Fig. 1c). Only the NAIVE sample
from Patient 7 and IO PROG sample from Patient 8
showed minimal change in phosphorylated S6 with DT
treatment. Two samples (IO PROG from Patient 6, and
NAIVE from Patient 1) showed a notable decrease (3.4-
fold and 1.8-fold, respectively in Ki67 expression; me-
dian 1.2-fold, range 0.9–3.4-fold), suggesting minimal
downstream proliferative arrest in the majority of sam-
ples within the 48 h treatment time frame (Fig. 1c).
These data confirm that DT-induced signalling changes
can be examined ex vivo in melanoma single-cell
dissociates.

Single-cell transcriptome analysis identifies
dedifferentiated melanoma states enriched in
immunotherapy progressing tumours
Single-cell transcriptome sequencing (scRNA-seq) was
performed on the tumour dissociates after treatment
with DMSO control or DT. In order to interrogate
melanoma cell state-specific responses to DT, we
developed a framework that combined supervised and
unsupervised learning to leverage information from two
public scRNA-seq datasets19,20 and melanoma cell state
signatures6 (Fig. 2a). In the first component of our
framework, the broad cell types present in each tumour
biopsy were annotated using scClassify18 with two
previously-published scRNA-seq datasets19,20 as refer-
ence. After quality control (Supplementary Figure S1),
this process identified nine main cell types, including B
www.thelancet.com Vol 107 September, 2024
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Fig. 2: Composition of malignant and non-malignant cell types in tumour dissociates. a) Schematic showing the analytical framework
applied to the scRNA-seq data combining supervised and unsupervised learning. b) UMAP (Uniform Manifold and Projection) plot of stromal,
immune and melanoma cell types in the tumour dissociates. The nine clusters were annotated into cell types using differentially expressed gene
sets and inferred copy number variations. c) Proportion of cell types in individual tumour samples treated with DMSO control or DT. d) Changes
in cell type proportions in matched DMSO control or DT-treated tumour dissociates. Orange symbols indicate NAIVE while green symbols
indicate IO PROG patient samples. Data comparison between DMSO vs DT, and NAIVE vs IO PROG performed using the linear mixed effect
model; p values shown in Supplementary Table S3.
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cells, endothelial cells (ECs), fibroblasts, macrophages,
monocytes, natural killer (NK) cells, plasma cells, T cells
and melanoma cells (Fig. 2b); cell type annotations were
supported by the expression of known cell type markers
(Supplementary Figure S2). Annotation of melanoma
cells was further confirmed by applying Numbat,21 a
computational algorithm that inferred large-scale copy
number variations (CNV) in the tumour cell clusters
(Supplementary Figure S3), where 98.1% of cells an-
notated as tumour by scClassify were confirmed by
Numbat. Fig. 2b gives a visual representation of the
data, where melanoma cells formed separate clusters
according to patient tumour while non-malignant cells
clustered primarily by cell type (Fig. 2b, Supplementary
Figure S4). Proportions of melanoma and T cells an-
notated using scClassify correlated well with the
CD45−/SOX10+ melanoma (r = 0.70, Pearson correla-
tion) and CD45+ CD4+ and CD8+ T cells (r = 0.73,
Pearson correlation) identified by flow cytometric
profiling (Supplementary Figure S5). In each tumour
sample, we detected melanoma, stromal and immune
www.thelancet.com Vol 107 September, 2024
cell types (Fig. 2c) with melanoma cells representing the
predominant cell type (range 39–91%, median 71% of
total cells). Cell type proportions, with the exception of
NK cells, did not significantly change in response to DT
treatment and were not significantly different between
NAIVE and IO PROG groups (Fig. 2d, Supplementary
Table S3). Only one tumour sample (IO PROG, Pa-
tient 6) showed a considerable decrease in melanoma
cell numbers with DT treatment, and this aligned with
the ∼3-fold reduction in Ki67 expression and ∼1.8-fold
reduction in S6 phosphorylation (Fig. 1C) in this
sample.

We next focused on characterizing and enumerating
the distinct melanoma cell states. Due to the lack of a
single-cell melanoma differentiation state cohort, we
generated a reference subset from the DMSO control-
treated tumour dissociates after adjusting for patient
effect using scMerge29 (Fig. 3a, Supplementary
Figure S6). This was done by first separating the cell
states using unsupervised clustering followed by anno-
tating each cluster using previously defined, trajectory-
7
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Fig. 3: Distinct melanoma cell states identified in tumour biopsies. a) UMAP plot of aggregated (from all 20 samples) malignant melanoma
cells showing four cell clusters, annotated as melanocytic, transitory, neural crest-like and undifferentiated. b) UMAP plot and c) heatmap
showing the relative expression of the progressive differentiation gene signatures6 in the four cell clusters. Scale bars shows relative high (red) vs
low (blue) expression of the signatures. d) Proportion of melanoma cell states in individual tumour samples treated with DMSO control or DT.
e) Changes in cell state proportions in matched DMSO control or DT-treated tumour dissociates. Orange symbols indicate NAIVE while green
symbols indicate IO PROG patient samples. Data comparison between DMSO and DT, and NAIVE vs IO PROG performed using the linear mixed
effect model; p values shown in Supplementary Table S4.
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informed transcriptomic signatures of melanoma dif-
ferentiation states.6 This resulted in identification of
four discrete melanoma cell states; melanocytic, transi-
tory, neural crest-like and undifferentiated (Fig. 3b and
c, Supplementary Figure S7). We validated this
approach using published melanoma scRNA-seq data-
sets20,30 and identified the same four cell states in these
datasets (Supplementary Figure S7). Importantly, we
also confirm the quality of our scRNA-seq data which
was derived from 3000 to 12,500 melanoma cells per
tumour sample, far exceeding tumour cell numbers
sequenced (∼50–2000) in previous studies.20,30 This
enabled the detailed analyses of individual melanoma
cell states and treatment effects at the single-cell level.

Next, we built a melanoma cell state model using the
annotated tumour cell states from DMSO control as
reference, and annotated the remaining tumour cells in
the DT-treated samples (see methods for additional
details). Examination of the expression of key differen-
tiation markers (e.g., AXL, MITF, SOX10 and NGFR)
further confirmed differences in cell states in the four
clusters (Supplementary Figure S8).

The proportions of each melanoma cell state remain
largely unaffected by DT treatment (Fig. 3d and e,
Supplementary Table S4). However, we noted enrich-
ment of both neural crest-like and undifferentiated
melanoma cells in IO PROG compared to NAIVE
samples. For instance, the median proportion of neural
crest-like cells at baseline in the IO PROG group was
60% compared to 12.8% in the NAIVE group, and
similarly, the median proportion of undifferentiated
cells was 16.3% vs 9.3% in IO PROG and NAIVE,
respectively (Supplementary Figure S9). The proportion
of dedifferentiated cells (neural crest-like and undiffer-
entiated combined) was significantly higher in the IO
PROG group compared to the NAIVE group (unpaired
www.thelancet.com Vol 107 September, 2024
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t-test, p = 0.0324, Supplementary Figure S9A). Inter-
estingly, the proportions of transitory cells in each
tumour sample at baseline positively correlated with the
degree of phosphorylated S6 reduction (r = 0.6344,
p = 0.049, Pearson correlation), while the proportion of
neural crest-like and undifferentiated cells was nega-
tively correlated with the degree of phosphorylated S6
reduction (r = −0.2385 and r = −0.2001, respectively,
Pearson correlation), although this was not significant
(Supplementary Figure S9B). It is important to note that
not all patient samples contained cells representing all
four differentiation states, and in fact, it was rare to find
all four cell states co-existing in a tumour sample. For
example, tumour from Patient 8 consisted of predomi-
nantly undifferentiated cells (98% of total melanoma
cells at baseline) whereas Patient 3 and Patient 4 tu-
mours contained predominantly melanocytic cells (92%
and 86% of total melanoma cells at baseline, respec-
tively; Fig. 3d). Because melanocytic cells were largely
present in only two patient samples, and given that
melanocytic and transitory melanoma cells have similar
differentiation marker profiles6, we grouped these two
states and henceforth refer to this group as differenti-
ated cells.

Discriminating melanoma cell state-specific
responses using a computational framework
To examine tumour-associated signalling changes
resulting from ex vivo DT treatment, we first compared
gene expression profiles of DMSO control vs DT-treated
tumour cells. Critically, gene set enrichment analysis
confirmed the DT-induced downregulation of Hallmark
proliferative gene sets (E2F_Targets, G2M_Checkpoint,
MYC_targets_V1, MYC_targets_V2) and MAPK signal-
ling gene sets25,26 in all cell states (Supplementary
Figure S10).

We extended the analyses to examine tumour cell
responses to DT within each cell state. A computational
framework was developed to infer the treatment-specific
effects in tumour cells using two published MAPK
signalling gene sets25,26 as a surrogate score for MAPK
pathway activity. The differentiated, neural crest-like
and undifferentiated tumour cell states showed com-
parable baseline MAPK activity (Fig. 4a). However,
MAPK activity was significantly downregulated in
differentiated (linear mixed effect model, p = 0.023) and
neural crest-like cells (linear mixed effect model,
p = 0.017) compared to undifferentiated cells in
response to DT treatment (Fig. 4a). MAPK activity
suppression was variable between patient tumours and
overall, undifferentiated cells appear least responsive
compared to other cell states within the same tumour
(Supplementary Figure S11). However, undifferentiated
cells also show variable responses to DT. For instance,
Patient 8 tumour consisted of 98% undifferentiated cells
and these cells showed minimal downregulation (∼0.9-
fold) of MAPK activity score in response to DT
www.thelancet.com Vol 107 September, 2024
treatment (Supplementary Figure S11). The scRNA-seq
data are concordant with the flow cytometry analysis
of this sample, showing limited suppression of phos-
phorylated S6 (Fig. 1c). In contrast, Patient 6 tumour
consisted of 84% neural crest and 16% undifferentiated
cells, and both cell states were responsive to DT,
showing a 2.7 and 2.0-fold reduction in MAPK activity
score post DT treatment, respectively (Supplementary
Figure S11). It is worth noting that this tumour also
showed the greatest reduction in cell proliferation (∼3.4-
fold) and considerable decrease in phosphorylated S6
(∼1.8-fold) in response to DT treatment (Fig. 1d).

Our data suggests that the undifferentiated mela-
noma state is not inherently resistant to DT. Indeed, in
most tumour samples, treatment with DT decreased
MAPK activity in undifferentiated melanoma cells. In
order to define the signalling networks associated with
DT response and resistance, melanoma cells were
stratified into two categories: responding or non-
responding. Responding and nonresponding tumour
cell states were defined as having a MAPK activity score,
post DT treatment, within the lowest 5% or highest 20%
MAPK activity score of the patient-matched DMSO-
treated cell state, respectively. This approach identified
responding and nonresponding tumour cells in all cell
states (Fig. 4b), although there were more non-
responding undifferentiated cells (nonresponding cells
comprise 75% undifferentiated, 9.7% neural crest-like
and 14.8% differentiated cells in DT-treated tumours).
Importantly, approximately 7% of undifferentiated
tumour cells (∼6% of all responding cells in DT-treated
tumours) responded to DT, and these responsive cells
showed a DT-induced decrease in MAPK activity score
equivalent to responding differentiated tumour cells.

Gene set enrichment analysis (GSEA) of the Hall-
mark signatures was performed on the responding and
nonresponding cells within each cell state in the DT-
treated samples, and a normalized enrichment score
(NES) was derived based on the size of the gene sets and
the enrichment score (Fig. 4c). All nonresponding cells
regardless of cell state showed enrichment in the Hall-
mark inflammatory response, IL6, IL2 and TNFA sig-
nalling, hypoxia and epithelial to mesenchymal gene
sets, suggesting that these nonresponding cells may
induce inflammatory transcriptional programs that
contribute to their resistance to treatment. In contrast,
only differentiated responding cells showed consistent
enrichment of Hallmark proliferative gene sets (e.g.,
oxidative phosphorylation, E2F targets), suggesting that
highly proliferative differentiated melanoma cells may
be more responsive to DT treatment.

Tumour-intrinsic pro-inflammatory IL6 and TNFα
signalling contributes to BRAF/MEK inhibitor
resistance
Given that IL-6 and TNFα signalling pathways were
significantly elevated in nonresponding cells and
9
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Fig. 4: Cell-state specific responses to DT treatment. a) MAPK activity score (assessed using the expression of common genes in two MAPK
pathway gene sets25,26) in DMSO control (blue) and DT-treated (orange) differentiated, neural crest-like and undifferentiated cells. Data
comparison performed using the linear mixed effect model. b) Proportion of responding (teal) and nonresponding (red) cells in each patient’s
DT-treated tumour samples, arranged by cell state. c) Gene set enrichment analysis of the Hallmark signatures in responding and non-
responding melanoma cells in DT-treated samples, analysed using edgeR. Comparison separated by cell state and normalized enrichment score
(NES) and p values shown. d) Expression of the Hallmark IL6 and TNFA signalling gene sets in responding (teal) and nonresponding (red)
melanoma cells categorized by cell state. Data comparison performed using the linear mixed effect model.
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enriched in the undifferentiated cell state (Fig. 4d), we
investigated whether activation of these pathways
contribute to DT resistance. A panel of short-term
melanoma cell lines (n = 13) with matched tran-
scriptome data were assessed for their sensitivity to DT
using MTT metabolic assays. Trametinib IC50 values
were derived from the MTT assays and correlated with
the Hallmark gene sets, with the Hallmark Apoptosis,
TNFA and IL6 signalling gene sets showing significant
and strong positive correlation (r > 0.85, p < 0.001,
Pearson correlation, Fig. 5a) with trametinib IC50

values. In particular, melanoma cell lines with elevated
ssGSEA scores for the Hallmark TNFA and IL-6 sig-
nalling gene sets also showed high trametinib IC50

values, and the IC50 values were significantly correlated
with the ssGSEA scores (r = 0.8692, p = 0.0001 and
r = 0.8619, p = 0.0002, respectively, Pearson correlation,
Fig. 5b). It is also worth noting that undifferentiated cell
lines, which were classified based on their tran-
scriptome profiles,6 also showed higher Hallmark TNFA
and IL-6 signalling gene set expression (Fig. 5b). Simi-
larly, we found positive correlation between the trame-
tinib IC50 values and ssGSEA scores for the Hallmark
TNFA and IL-6 signalling gene sets in the Cancer Cell
Line Encyclopedia (CCLE) dataset (r = 0.24 and r = 0.21,
respectively, Pearson correlation, Supplementary
Figure S12). Overall, these data indicate that sensitivity
to DT is associated with TNFα and IL-6 pathway activity
and these pathways are enriched in nonresponding
undifferentiated cells.

To further validate that activation of tumour-intrinsic
IL6 and TNFα signalling pathways influence melanoma
response to DT, melanoma cells were pre-treated with
TNFα (1000 U/ml) or IL-6 (25 ng/ml) for 72 h, then
treated for a further 72 h with increasing concentration
of combination DT in the presence or absence of IL6 or
www.thelancet.com Vol 107 September, 2024
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Fig. 5: TNFα and IL-6 signalling influence response to BRAF/MEK inhibitors. a) Correlation between the MAPK inhibitors dabrafenib and
trametinib IC50 values and Hallmark gene sets. Data analysed using Pearson correlation, correlation with p < 0.01 shown and Pearson r co-
efficient values plotted on the x axis. b) Scatterplots showing correlation of the Hallmark TNFA and IL-6 signalling gene sets with dabrafenib
and trametinib IC50 values in melanoma cell lines (n = 13). Undifferentiated melanoma cell lines highlighted in red. Pearson correlation is shown.
c) Cell viability plots showing change in dabrafenib and trametinib IC50 values. Cells were pre-treated with IL6 (25 ng/ml) or TNFα (1000 U/ml)
for 72 h, followed by treatment with increasing concentrations of dabrafenib + trametinib (DT, at 10:1 ratio) ± IL6 (25 ng/ml, green) or TNFα
(1000 U/ml, blue) in the SMU11-0270 and SMU11-0376 M4 melanocytic and SMU17-0132 undifferentiated cell lines compared to control (0.1%
BSA, black). Area under curve (AUC) analysis was performed and the AUC values were used for statistical comparison (unpaired t-test, IL6 or
TNFα compared to control treatment, dabrafenib and trametinib IC50 values and p values shown). At least three biological replicates were
performed for each cell line.
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TNFα. Treatment with IL6 increased pSTAT (Tyr705)
accumulation in the melanocytic SCC11-0270 and
SMU11-0376 M4 cell lines, but not in the undifferenti-
ated SMU17-0132 cell line, while treatment with TNFα
decreased IkBα expression in all cell lines and this was
more apparent in the SMU17-0132 cell line
(Supplementary Figure S12).

Exposure to TNFα or IL6 induced marginally higher
trametinib IC50 values in the melanocytic SMU11-0270
(1.5-fold difference for TNFα, p = 0.0007 and 2.5-fold
difference for IL-6, p = 0.0160 compared to control,
unpaired t-test) and SMU11-0376 M4 (1.7-fold differ-
ence for TNFα, p < 0.0001 and 2.5-fold difference for IL-
6, p = 0.0667 compared to control, unpaired t-test) cell
lines. In the undifferentiated SMU17-0132 cell line,
exposure to TNFα alone, but not IL6, induced a 7-fold
increase in IC50 value compared to control
www.thelancet.com Vol 107 September, 2024
(p = 0.0101, unpaired t-test Fig. 5c). These results sug-
gest that tumour-intrinsic pro-inflammatory IL6 and
TNFα signalling influence response to DT, but the
impact of treatment response may be tumour and cell
line-specific, and dependent on the intrinsic and
inducible levels of the pro-inflammatory signals.
Discussion
Immune checkpoint and BRAF/MEK inhibitors have
significantly improved the survival of patients with
advanced and high-risk early melanoma although treat-
ment resistance remains a common challenge.2,3,5

Studies uncovering treatment resistance mechanisms
have relied on bulk genomic and transcriptomic data
from tumour biopsies11,31–34 but these analyses do not
adequately account for heterogeneity within a tumour
11
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biopsy. This has been mitigated in recent years with the
introduction of single-cell sequencing technologies that
enable assessment of genomic and molecular changes
within individual cells.

In this study, we utilized tumour dissociates derived
from patients who have progressed on immunotherapy
and treatment-naive patients, to examine the molecular
features of response to BRAF/MEK inhibitors in distinct
melanoma differentiation states. Short-term ex vivo
treatment of the tumour dissociates with DT effectively
recapitulated early treatment-induced effects seen in
patients,12 with potent downregulation of ribosomal
protein S6 signalling in melanoma cells indicative of
MAPK activity suppression.35,36

To uncover mechanisms underlying response to DT,
tumour dissociates were scRNA-seq following ex vivo
DT treatment. Although the sample size (n = 20) was
limited, the comprehensive single-cell data generated,
from patient-matched ex vivo-treated specimens, and the
abundance of tumour cells (3000–12,500 melanoma
cells per sample; Supplementary Figure S7B) afforded a
unique opportunity to rigorously analyse the treatment-
induced effects and influence of melanoma cell states at
the individual cell level. To effectively compare the data,
we first developed and implemented an integrated
computational biology workflow 1) employing scClas-
sify16 combined with supervised annotation for more
iterative and precise identification of cell subsets and 2)
merging the melanoma cell transcriptome data using
scMerge18 for informed cell state annotation using pre-
viously defined transcriptome signatures.

Implementation of this integrated methodology
enabled identification of four discrete melanoma cell
states, and here, we report that dedifferentiated mela-
noma cells with neural crest-like or undifferentiated
transcriptomic signatures are enriched in tumour dis-
sociates from patients who have progressed on immu-
notherapy. Moreover, we show that each tumour
differed in the composition and proportion of these
melanoma states. For instance, of the 10 tumour bi-
opsies included in this study, only one biopsy (Patient 8)
consisted of a predominant undifferentiated cell state
while the majority contained a mixture of two or three
cell states. Hence, heterogeneity in treatment response
is likely due to the presence of these preexisting cell
states, each with differing signalling activity and treat-
ment responses.

Dedifferentiated melanoma cells have been reported
to be resistant to both immune-based and BRAF/MEK
inhibitor therapies.7–9 Dedifferentiated cells are enriched
after treatment with BRAF/MEK inhibitors10,37 and we
also identified abundant dedifferentiated cells in bi-
opsies of patients who have progressed on immuno-
therapy compared to treatment-naive patients. The
transition to dedifferentiated melanoma is stimulated by
the pro-inflammatory tumour microenvironment, with
elevated TNFα, TGFβ and IFNγ known to induce
melanoma dedifferentiation in vitro.11,38,39 Thus, treat-
ment with immunotherapy would heighten the
pro-inflammatory milieu, inducing melanoma dediffer-
entiation and the subsequent selection of immuno-
therapy and molecular therapy resistance. This model of
resistance is supported by data from the SECOMBIT
clinical trial40; patients with melanoma showed dimin-
ished response to BRAF/MEK inhibitors after progres-
sion on combination immune checkpoint inhibitors
compared to first-line BRAF/MEK inhibitor therapy
(overall response rate of 87% in first line vs 58% in
second line). Furthermore, BRAF/MEK inhibitor
response after progression on PD-1 inhibitor in the
KEYNOTE-006 cohort was only 30.5%.41 These clinical
trials highlight that the selection and sequencing of
these treatment modalities are critical for optimal
treatment response. For example, the DREAMseq trial
reported that combination CTLA-4/PD-1 inhibitors fol-
lowed by BRAF/MEK inhibitors is the preferred treat-
ment sequence for patients with metastatic BRAFV600-
mutant melanoma. The 2-year overall survival for pa-
tients receiving first-line ipilimumab/nivolumab was
71.8% (95% CI, 62.5–79.1%) compared to 51.5% (95%
CI, 41.7–60.4%) for patients treated initially with com-
bination dabrafenib/trametinib.42

Several treatment resistance mechanisms have been
proposed for dedifferentiated melanoma but these have
been mostly associative and based on bulk tumour data.
In this report, we developed an informed method to
monitor treatment perturbations, by combining our
computational biology workflow with known signatures
of MAPK pathway activity,25,26 to enable modelling of
treatment response vs nonresponse based on the level of
MAPK activity suppression. Using this approach, we
identified subsets of responding and nonresponding
cells in all cell states, and DT-responsive dediffer-
entiated cells were also identified. These data suggest
that melanoma dedifferentiation does not preclude
response to DT. In keeping with this, whilst dediffer-
entiated melanomas are attributed with treatment
resistance, other studies have shown that the prolifera-
tive and pigmentation gene markers representative of
the melanocytic differentiated state are associated with
poorer response to immunotherapy39 and poorer sur-
vival.43 Overall, these findings indicate that dedifferen-
tiation may not be sufficient to confer resistance as a
proportion of dedifferentiated melanoma cells continue
to respond to treatment.

Interestingly, comparison of responding and non-
responding cells revealed elevated expression of multi-
ple pro-inflammatory pathways including IL6 and TNFα
in the nonresponding cells, implicating these pathways
in BRAF/MEK inhibitor resistance. Circulating IL6 and
TNFα are elevated in patients with melanoma, particu-
larly after treatment with BRAF/MEK and immune
checkpoint inhibitors, and increased serum levels are
associated with poor survival and increased treatment-
www.thelancet.com Vol 107 September, 2024
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related adverse events.44–46 We propose that dediffer-
entiated melanomas are less responsive to DT due to the
higher pro-inflammatory activities. To address the lim-
itation of small sample size, we further confirmed these
findings in a large panel of melanoma cell lines (n = 13),
showing dedifferentiated melanoma cells to be more
resistant to DT treatment, and that these cell lines have
elevated IL6 and TNFα pathway activity. We also show
that activation of these pathways via exogenous IL6 and
TNFα stimulation induced melanoma cells to be more
resistant to DT, indicating that tumour-intrinsic IL6 and
TNFα signalling contribute to MAPK inhibitor resis-
tance. This finding aligns with a previous study report-
ing activation of NF-κB signalling by TNFα inducing
MAPK inhibitor resistance.47 Similarly, macrophage-
derived TNFα has been shown to contribute to MAPK
inhibitor resistance,48 suggesting that a pro-
inflammatory milieu propagates treatment resistance.
Furthermore, our analyses show that multiple pro-
inflammatory pathways are enriched in nonresponding
cells, and the impact and precise role of these pathways
in mediating treatment resistance warrant further
investigation, as targeting one pathway may not be
sufficient to overcome MAPK inhibitor resistance.

In conclusion, this study provides proof-of-concept
that ex vivo treatment of tumour dissociates coupled
with a unique single-cell computational biology
approach enabled dissection of melanoma cell state-
specific differences in treatment response. Our study
provides a valuable framework to facilitate a more pre-
cise understanding of molecular mechanisms underly-
ing heterogeneity in treatment response and assist in
the identification of therapeutic targets and biomarkers
for treatment resistance.
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