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Learning chemical sensitivity reveals
mechanisms of cellular response
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Chemical probes interrogate diseasemechanisms at themolecular level by linking genetic changes to
observable traits. However, comprehensive chemical screens in diverse biological models are
impractical. To address this challenge, we develop ChemProbe, a model that predicts cellular
sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and
chemical structures. UsingChemProbe,we infer the chemical sensitivity of cancer cell lines and tumor
samples and analyze how the model makes predictions. We retrospectively evaluate drug response
predictions for precision breast cancer treatment and prospectively validate chemical sensitivity
predictions in new cellular models, including a genetically modified cell line. Our model interpretation
analysis identifies transcriptome features reflecting compound targets and protein network modules,
identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that
allows researchers to measure cellular response to diverse compounds, facilitating research into
molecular mechanisms of chemical sensitivity.

Chemical probes are highly potent small molecules that selectively target
known mechanism-of-action proteins1. These tools are crucial for
understanding the role of specific proteins in biological processes and
diseases, and have been instrumental in investigating a range of functions
such as those related to the cell cytoskeleton, immunosuppression,
mTOR signaling, protein kinase dynamics, and have often served as the
starting point for drug development1–3. In addition to their primary use as
therapeutic agents, drugs can serve as chemical probes in complex dis-
eases like cancer. Addressing cancer heterogeneity necessitates precision
clinical treatment strategies and research into the mechanisms that
control disease resistance and sensitivity4,5. By improving our under-
standing of gene expression patterns contributing to variance in drug
response, we can develop better solutions for cancer patients exploiting
specific tumor vulnerabilities.

Ideally, we could test large libraries of chemicals on disease models,
engineered cell lines, and patient samples to probe disease mechanisms.
However, screening biological samples against a large library of chemical
probes is resource-prohibitive. To overcome this problem, a variety of
traditional machine-learning methods have been applied to predict drug
response, including support vector machines (SVMs), random forests
(RFs), and multi-layer perceptrons (MLPs)6. Early approaches often
relied on a single cellular feature set, such as mutation status or gene

expression profile7. However, significant improvements have been
achieved by incorporating multimodal information, such as chemical
structure and pharmacological features8,9. These advancements have
demonstrated the value of integrating diverse types of data to enhance
drug response prediction.

Deep learning has become a way to effectively represent and integrate
diverse feature sets. These methods commonly employ separate feature
encoders that learn rich representations prior to integration10,11. For
example, variational auto-encoders (VAEs) can leverage pretraining for
transfer learning12–15. More broadly, neural networks are adaptable to novel
inputs, such as graph representations for chemical structures16–18, and their
composability enables feature integration techniques like cross-
attention18,19.

Interpreting the computational structure of predictive models
themselves can inform on the underlying biology of compound response.
On one hand, ensemble models offer confidence scores, and direct
interpretation of model coefficients (e.g., attention matrices) reveals
feature relationships19–22. Gradient-based attribution methods can also
help identify features driving a particular prediction15. On the other hand,
integrating biological priors into neural networks effectively reduces the
feature space and incorporates interpretable features, such as gene
ontologies and pathway annotations23–25. By imposing constraints
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through priors, learning operates in the context of existing biological
knowledge. However, this approach can limit a model’s capacity to learn
novel gene combinations and systems mechanisms that are not well
understood.

We developed a conditional deep-learning model that predicts the
sensitivity of new cellular samples to a panel of chemicals along with a
framework for understanding the gene features implicated in the
response. While previous research has addressed the tradeoffs among
various input feature modalities, few studies explore how diverse feature
sets are integrated. Moreover, little work has been done to explore if the
features relied on by well-performing models indeed reflect expected
biological relationships. Our work investigates methods for integrating
biological and chemical features to improve drug sensitivity prediction
and assesses the utility of model interpretation methods for advancing
biological discovery. ChemProbe learns to combine cellular tran-
scriptomes and chemical structures to predict sensitivity. The model can
be applied to new biological samples and leverages integrated gradients to
generate interpretable learned gene features relevant to known com-
pound mechanisms. ChemProbe accurately models chemical response
without biological priors, enabling in silico chemical screening of biolo-
gical models and mechanistic interpretation of learned gene
dependencies.

Results
Conditional modeling enhances cellular drug sensitivity
prediction
We hypothesized that a deep neural networkmodel could learn to combine
gene expression with chemical structure to predict cellular sensitivity
(Fig. 1a). We leveraged publicly available datasets to match cancer cell line
basal transcriptomes with a large-scale chemical screen. The Cancer Ther-
apeuticsResponsePortal (CTRP) reports the viability of 842cancer cell lines
in response to 545 compounds and compound pairs across a range of
concentrations26,27. These compounds span cell circuitry targets, offering a
nuanced view of cellular response to pathway perturbations across a broad
range of cellular components. The Cancer Cell Line Encyclopedia (CCLE)
provides basal transcriptomic characterizations of all 842 CTRP cell lines28.
We combined compound structures and concentrations from the CTRP
with protein-coding gene transcriptomes from the CCLE to create a dataset
of compound-cell line pairs consisting of approximately 5.8 million labeled
examples (Methods).

We formulated the cellular drug sensitivity prediction task as a con-
ditional model y ¼ f ðxjnÞ, where y is cellular viability, x is a matrix of
standardized RNAabundance values, n is amatrix of chemical features, and
f is parameterized by a neural network (Methods). Thus the model’s pre-
diction of cellular viability depends on a cell’s transcriptomic profile in the

Fig. 1 | ChemProbe design and model interpretation. aWorkflow of model
training, validation, prediction, dose-response modeling, and feature attribution.
We trained a deep neural network model to predict drug sensitivity at specific
compound concentrations and fit log-logistic models to predictions. We derived
compound pharmacodynamics from dose-response curves and applied integrated
gradient saliency mapping to predicted IC50 to derive input feature attributions.
IC50, inhibitory concentration of compound at 50% cellular viability. bArchitecture

of the conditional neural network (ChemProbe) trained to predict cell line viability
frommolecular features and compound structure. ChemProbe learns an embedding
of protein-coding gene expression features conditioned by parameters learned from
an embedding of compound structure and concentration. c Decomposition of
learned conditioning parameters. Points represent compound-concentration sam-
ples; color indicates compound; size indicates concentration; and shape indicates
parameter.
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context of a chemical structure and concentration. ChemProbe predicts
viability by learning to use chemical features to modulate gene expression
through linear transformations of internal gene expression representations
(Fig. 1b). This enables a logic akin to chemical substructures modulating
gene products (proteins). We tested several ways to combine cellular fea-
tures and chemical information within a single model, as assessed by the
average maximum coefficient of determination (R2). Accounting for com-
parable model sizes, we trained, validated, and hyperparameter-optimized
differentmodel architectures acrossfivedata folds stratifiedby cell line (five-
fold cross-validation, Methods). We compared three methods of learned
feature conditioning against a baseline feature concatenationapproach29.All
conditioning approaches outperformed feature concatenation by a notable
margin (Table 1 and Supplementary Data 1). Among the conditioning
models, scaling, shifting, and linearly modulating gene expression by che-
mical features performed similarly. A t-distributed stochastic neighbor
embedding (t-SNE) decomposition of learned parameters demonstrated
that scaling and shifting operations encoded distinct chemical features
(Fig. 1c; Supplementary Data 2). Hierarchical clustering of scaling (γ)
parameters grouped compounds by identity (Supplementary Fig. 1a and
Supplementary Data 3), whereas compound concentration correlated with
the first principal component of shifting (β) parameters (p = 1.72e-55;
Supplementary Fig. 1b and Supplementary Data 3). Thus the learned
conditioning parameters interpretably reflected compound structure and
concentration in the drug-response modeling task as an emergent property
of model learning.

Cellular response commonly follows a sigmoidal relationship to
drug concentration. To quantify whether compound dosage alone was
driving drug sensitivity predictions, we performed a feature ablation
experiment, wherein we purposefully removed crucial data from the
model’s training and compared it to the actual model. For the “straw
model,”30,31 we replaced chemical fingerprints with unique but structu-
rally uninformative and randomized numerical values. The “straw
model” trained on ablated features failed, underscoring the importance of
compound structural features in the modeling task (Table 1 and Sup-
plementary Data 1)31. Explicitly modeling chemical information as
conditioning provides a valuable inductive bias for chemical sensitivity
prediction and gives insights into the predictive mechanisms of the
model. We hyperparameter-optimized 5 FiLM models across cell-line
stratified data folds and used this ensemble (0.7173 ± 0.0052 R2) of
models in subsequent experiments (Methods).

ChemProbe predicts breast cancer patient response
Wenext askedwhether learned transcriptional patterns would generalize to
an in vivo cellular context. We measured how well ChemProbe, trained
solely on cell line expression profiles, could predict drug response in clinical
tumor samples. We used gene expression and patient-drug response data
from the I-SPY2 adaptive, randomized, phase II clinical trial of neoadjuvant
therapies for early-stage breast cancer (NCT01042379)32,33. I-SPY2 assigned
patients to treatment arms based on biomarkers such as hormone receptor
status, human epidermal growth factor receptor-2 expression, and Mam-
maPrint status. The absence of invasive cancer in the breast and regional
lymph nodes at the time of surgery defined the endpoint of pathological
complete response (pCR) (nonresponse, pCR = 0; response, pCR = 1).

The I-SPY2 dataset introduced a significant change in the input data
modality and allowed us to assess the robustness of ChemProbe. Unlike the
CCLE training data, which quantified gene expression through high-
throughput RNA sequencing, I-SPY2 collected pre-treatment patient gene
expression by microarray. Microarrays have lower overall specificity and
sensitivity and capture a smaller dynamic rangeof gene abundance34.Neural
networks often fail on “out of distribution” samples whose features (gene
abundance values) come from different assays than their training data. To
determine the extent to which the I-SPY2 data was outside ChemProbe’s
training distribution,we compareddataset expressionprofiles across the top
two principal components. A subset of the I-SPY2 data fell outside the
training data distribution, consistent with the expectation that assay types
introduce systematicmeasurement effects (Methods, Supplementary Fig. 2a
and Supplementary Data 4).

We assessedwhether ChemProbe could retrospectively stratify I-SPY2
responders and non-responders despite these differences in datasets. We
comparedChemProbepredictionswith the original treatment allocations in
the I-SPY2 trial, which were determined by standard biomarkers of the
participants’ tumors. Five drugs from the I-SPY2 trial were in ChemProbe’s
panel. We first compared the magnitudes of ChemProbe’s sensitivity pre-
dictions between responders andnon-responders. For four out offive drugs,
ChemProbe predicted lower scaled-AUC values for the responder group
(Fig. 2a and Supplementary Data 5). Next, we generated receiver operating
characteristic (ROC) curves to compare the drug response predictions of
I-SPY2 and ChemProbe with the trial outcomes. We used the treatment
designations from I-SPY2 as a proxy for drug response prediction.
ChemProbe’s area under the ROC curve for each drug ranged from 0.60
(paclitaxel and neratinib) to 0.73 (veliparib), with a macro-average auROC
of 0.65 (Fig. 2b and Supplementary Data 5).

To evaluate the clinical utility of ChemProbe, we used it to classify
patients by treatment response: responders (+) and non-responders (−)
(ChemProbe+ /−). Since the model determines cellular viability by drug
concentration, we established a decision threshold for detecting responders
(Methods). ChemProbe+ /− classification accuracy significantly out-
performed I-SPY2 (p < 5e-2; Fig. 2c and Supplementary Data 5). Although
I-SPY2 predictions had a higher true positive rate (0.30, I-SPY2; 0.21,
ChemProbe), ChemProbe+ /− classifications massively reduced the false
positive rate (0.70, I-SPY2; 0.37, ChemProbe) with relatively few false
negatives (0.00, I-SPY2; 0.095, ChemProbe) (Supplementary Fig. 2b, c and
Supplementary Data 4). By correctly predicting a portion of patients with a
low likelihood of drug response, ChemProbe+ /− significantly increased
the true negative rate of drug-response classification relative to I-SPY2,
providing crucial information for clinical decision-making. Despite being
trained only on isogenic cell lines, these results support ChemProbe’s use
with heterogeneous tumors from clinical patient samples.

ChemProbe predicts cellular drug sensitivity
We conducted a prospective evaluation of ChemProbe’s ability to differ-
entiate drug sensitivity between two primary breast cancer cell lines,
HCC1806-Par and MDA-MB-231-Par35–38. We compared the gene
expression profiles of the two cell lines to their CCLE counterparts by
analyzing the top two gene-expression principal components. Our analysis
showed significant disparities in the gene expression patterns of the two cell
lines compared to the training data, highlighting the challenges of main-
taining consistency across cellular models (Supplementary Fig. 3a and
Supplementary Data 6). The observed differences, which make the pro-
spective testmore difficult but particularly informative,may be attributed to
variations in cell culture protocols, reagents, and genetic drift commonly
found between experimental settings39.

We predicted sensitivity at 32 drug concentrations (1e-3 µM–300 µM),
fit log-logisticmodels, anddetermined 50% inhibitory concentration (IC50)
values from each in silico dose-response curve (Fig. 3a). ChemProbe pre-
dicted thatHCC1806-Parwould bemore sensitive thanMDA-MB-231-Par
to 88.16% (201/228) of the compounds with fitted curves (Fig. 3b and
Supplementary Data 7). We focused on compounds with the largest

Table 1 | Predictive performance

Model R2

Concatenation 0.6066 ± 0.0165

Shift 0.7060 ± 0.0304

Scale 0.7113 ± 0.0081

FiLM 0.7089 ± 0.0040

Sructural ablation 0.3016 ± 0.0304

Average performance and standard error of 5 models trained across identical data folds.
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differences in IC50 between the cell lines, selecting four compounds pre-
dicted to have strong IC50s against HCC1806-Par (neratinib, ceranib-2,
CAY10618, and AZD7762) and two compounds with IC50s favoring
MDA-MB-231-Par (ML162 and 1S,3R-RSL-3) (Fig. 3c, d; Supplementary
Fig. 4 and Supplementary Data 7). In vitro, prospective testing confirmed
ChemProbe’s predictions for all six compounds. Predicted differences in
IC50s between the two cell lines significantly correlated with observed dif-
ferences (Fig. 4a–f, p = 0.035; Fig. 4g, SupplementaryData 8).We compared
the relative potency of each compound at themedian effective dose (ED50)
between cell lines, finding significant differences in compound cellular
viability as predicted (Table 2). Additionally, predicted IC50s correlated
highly with measured IC50s for individual cell lines after correcting for an

Fig. 3 | Differential potency and in silico dose-response curve predictions.
a Approach to model training and dose-response modeling. We trained individual
models on held-out cell line dataset splits by 5-fold cross-validation.We then fit log-
logistic models to cross-validatedmodel predictions and derived pharmacodynamic
features. b Expected cumulative distribution plot of predicted compound IC50
differences between HCC1806-Par and MDA-MB-231-Par cell lines. Compounds
selected for in vitro dose-response testing are highlighted. c Predicted dose-response
relationships of HCC1806-Par and MDA-MB-231-Par response to neratinib (n = 5
independent samples) and d 1S,3R-RSL-3 (n = 5 independent samples). 95% con-
fidence intervals.

Fig. 2 | I-SPY2 clinical trial retrospective analysis. a Predicted dose-response AUC
for I-SPY2 patients treated with each drug. AUCs scaled between theminimum and
maximum predicted AUC of patients treated with each drug. Blue = non-respon-
der, orange = responder; centerline, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; points, outliers; two-sided Wilcoxon rank-sum
test; ns: p < =1e1, *p < =5e-2, **p < =1e-2. Sample sizes: paclitaxel (n = 38 inde-
pendent case samples, n = 172 independent control samples); neratinib (n = 41
independent case samples, n = 73 independent control samples); MK2206 (n = 35
independent case samples, n = 59 independent control samples); veliparib (n = 27
independent case samples, n = 44 independent control samples); carboplatin
(n = 27 independent case samples, n = 44 independent control samples). b Receiver
operating characteristic curve of patients treated with each drug and corresponding
auROC. c Accuracy of I-SPY2 (n = 5 independent samples) predictions versus
ChemProbe (n = 5 independent samples) predictions for non-responders/respon-
ders. Centerline, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers); two-sided Wilcoxon rank-sum test;
*p < =5e-2.
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experimental outlier (p = 0.096, Supplementary Fig. 5a and Supplementary
Data 9). These results were consistent with initial concentration range-
finding experiments, where five out of six compounds had shown predicted
differences in IC50s and relevant IC50s specific to individual lines (Sup-
plementary Fig. 5b, c and Supplementary Data 9). ChemProbe accurately
predicted the sensitivities of independently obtained and characterized cell
line samples, despite their transcriptomic profiles differing from the training
dataset.

Gene expression attribution vectors pass interpretability
soundness checks
To assess whether ChemProbe learned biologically relevant patterns, we
investigated whether the model’s gene expression saliency reflected known
compound pharmacology and network biology. Saliencymappingmethods
evaluate which gene features a model puts the most “weight” on when
making its predictions and how these choices change for different cell lines
or compounds. We experimentally characterized seven new cell line tran-
scriptomes, including primary tissue models andmetastatic derivatives40–42.
Using integrated gradient saliency mapping43, we determined IC50 values
for each compound-cell line pair with ChemProbe and computed its gene
attribution vectors. However, we acknowledge that integrated gradient
attribution vectors may correlate with input featuremagnitudes, potentially

undermining their usefulness in quantifying feature importances44.Weused
principal component analysis to determine the first two principal compo-
nents of attribution vectors by cell line to check this. We found that attri-
bution and transcriptome vectors correlated (Supplementary Fig. 6a, c and
Supplementary Data 10). Although some gene expression magnitudes may
linearly correlate with phenotypes, this framework does not capture other
causal nonlinear interactions within gene regulatory networks. A well-
calibrated interpretation method should attribute significance to features
based on their relevance to the model’s predictions, rather than solely on
their expression levels. To address this confounder, we normalized attri-
bution vectors by cell line, which decreased cell-line-specific effects in the
principal component analysis and decoupled the correlation between
attribution and transcriptome vectors (Methods, Supplementary Fig. 6b, c
and Supplementary Data 10).

To ensure model interpretation accurately reflected learned feature
transformations, we performed two tests (Methods)44. The first test ran-
domly initialized the model parameters and compared the outcomes with
the true-model’s attribution vectors.We trained themodel using scrambled
labels in the second test and compared its attribution vectors with the true-
model’s. We conducted these tests using both uncorrected (raw) and cell
line-effect corrected (adjusted) attribution vectors. The raw attribution
vectors were highly correlated with transcriptome profiles, random-model,
and permuted-model attribution vectors, failing the tests of independence
from learned parameters and the training data. However, the adjusted
attribution vectors were not correlated with those derived from the control
models, indicating that adjusted attribution vectors do not simply reflect
data or architecture artifacts (Supplementary Fig. 6c and Supplementary
Data 10).

Learned transcriptomic features reflect compound pharmacol-
ogy and network biology
Neural networks are notoriously difficult to interpret, but we hypothesized
that ChemProbe’s highly attributed gene features may reflect causative
mechanisms or correlative biomarkers of drug sensitivity. First, we inves-
tigated whether the model relied on similar gene features for compounds

Fig. 4 | Validation of differential potency predictions. a–d In vitro dose-response
relationships of HCC1806-Par differentially potent compounds (n= 4 independent
experiments) and e, fMDA-MB-231-Par differentially potent compounds (n = 4

independent experiments). 95% confidence intervals. g Relationship between the pre-
dicted and observed differences in IC50 values of tested compounds betweenHCC1806-
Par andMDA-MB-231-Par cell lines. Two-sided t-test (n= 6 independent experiments).

Table 2 | Relative potency at median effective dose

Compound ED50 ratio (HCC1806-Par/MDA-
MB-231-Par)

t-value p-value

Neratinib 0.4946 ± 0.2426 −2.0830 4.0220e-2

Ceranib-2 0.5165 ± 0.1943 −2.4887 1.4700e-2

CAY10618 0.2089 ± 1.869e-2 −42.3233 1.1593e-59

AZD7762 0.5639 ± 0.1004 −4.3430 3.7500e-5

1S,3R-RSL-3 2.1123 ± 0.4446 2.5244 1.3384e-2

ML162 3.008 ± 0.7041 2.8521 5.4120e-3

Relative potency of each compound at the median effective dose (ED50) between cell lines.
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with the same known protein targets. We created a control compound set
(CCS) based on nominal target classes, each with at least two compounds
successfully predicted in all seven cell lines. We applied K-means clustering
to the CCS attribution vectors and computed the adjusted mutual infor-
mation (AMI) between clusters and target class labels to determine whether
transcriptomic attribution vector similarity corresponded to known com-
poundmechanisms of action (MOA) (Fig. 5a and Supplementary Data 11).
We also examined the AMI between structural clusters and target classes, as
chemical structure similarity alone may at times reflect target profile simi-
larity, albeit imperfectly45.

The attribution vector clusters AMI was significantly greater than that
of structural clusters, a randomly initialized model, and a model trained on
permuted labels (Fig. 5b, Methods; Supplementary Data 11). Moreover, we
found that compounds belonging to the same target class frequently had
high nominal target attributions relative to other compounds, indicating
that ChemProbe often made predictions based on the expression infor-
mation of nominal targets (Fig. 5c; Supplementary Fig. 6d–k and Supple-
mentary Data 10–11).

We next examined the network topology of nominal target classes
using the STRING database of high-confidence protein–protein
interactions46 to interrogate biological relevance. We clustered attribution
vectors, gathered target annotations within each cluster, and queried
STRING for the respective target interactome (Fig. 5d, Methods; Supple-
mentary Data 11). Target modules had significantly greater connectivity
than modules generated from randomly sampled target protein sets or
randomly sampledprotein sets (Fig. 5e; SupplementaryData 11). Finally,we
tested whether attribution-defined target modules of action (ModOA) also
showed protein interaction enrichment. On analysis, 10/26 ModOA
reflected significant network interaction enrichment and a variety of func-
tional enrichments from gene ontologies, KEGG pathways, and Reactome
pathways (Fig. 5f; Supplementary Fig. 7 and Supplementary Data 11, 12).
These findings suggest that highly attributed transcriptome features reflect
systems biology and potential mechanisms of drug response.

Screening genetic dependencies for mechanisms of ferroptosis
We further hypothesized that ChemProbe’s highly attributed gene features
would relate to compoundMOA. To test this, we used linear regression for
differences in gene attribution between groups. This “differential attribution
analysis” (DAA; see Methods) generates ranked gene lists, which we use as
marker genes to arrange attribution clusters hierarchically (Fig. 6a and
Supplementary Data 13). We noticed clusters 26 and 28 showed different
prediction sensitivity to ferroptosis-inducing compounds (Fig. 6b and
Supplementary Data 13). Ferroptosis is a type of cell death implicated in
multiple biological contexts, with therapeutic applications in cancer,
immunity, development, and aging47,48. These attribution clusters included
compoundsML162 and 1S,3R-RSL-3, which had showndifferential cellular
sensitivity in the prospective in vitro experiments (Fig. 4e, f). Additional
compounds with ferroptosis-inducing mechanisms of action in these
clusters included ML210, erastin, CIL56, and CIL70.

Next, we investigated the attribution vectors of ferroptosis-inducing
compounds to assess the alignment of model interpretations with estab-
lished ferroptosis biology. We observed a clear distinction in predicted
sensitivity between two groups of cell lines exposed to the same compounds
(Fig. 6b and Supplementary Data 13). To further analyze this, we merged
clusters 26 and28 into a combined cluster representing ferroptosis-inducing
compounds and applied DAA. Since multiple mechanisms induce ferrop-
tosis, we queried differential attributions of multiple ferroptosis-associated
genes, including GPX4, SCD, SLC7A11, FSP1, and LRP847. All ferroptosis-
associated genes were within the most highly attributed in the ferroptosis-
inducing compound cluster (Fig. 6c and Supplementary Data 13). To verify
that these results were not artifacts of the transcriptomes or relative gene
expression differences, we also performed differential expression analysis
(DEA) between MDA-MB-231-Par and HCC1806-Par. Besides GPX4, a
key ferroptosis regulator, no ferroptosis-associatedgenes rose to significance
(p < 5e-2; Supplementary Fig. 8a and Supplementary Data 14).

Changes in compound sensitivity following gene knockout (KO) or
overexpression can informonmechanismsof gene-dependentprotectionor
resistance.Accordingly,we assessedChemProbe’s utility for screeninggene-
dependent ferroptosis resistance in silico. Lipoprotein receptor LRP8 has
recently been shown to act as a ferroptosis resistance factor by maintaining
cellular selenium levels and appropriate translation of GPX4. Selenium
uptake is reduced inLRP8KOmodels, leading to ribosome stalling andearly
translation termination of GPX4, which sensitizes cells to ferroptosis49. We
tested if ChemProbe correctly predicted that an LRP8 KO cell line would
have reduced sensitivity to ferroptosis-inducing compounds than a wild-
type. Consistent with previous research, ChemProbe predicted LRP8 KO
cells were more sensitive than wild-type to known ferroptosis-inducing
compounds ML210, 1S,3R-RSL-3, ML162, and CIL56 (Fig. 6d and Sup-
plementary Data 13).

We noticed several correlations between cellular response and the
expression of highly attributed genes for compounds that induce ferroptosis
(Supplementary Fig. 8b, c). We wondered if highly attributed genes played
functional roles related to ferroptosis. We extracted the ten highest differ-
entially attributed genes and applied a functional enrichment analysis
(Supplementary Fig. 8d and Supplementary Data 14). We observed the
enrichment of terms related to lipid transport and fatty acid metabolic
processes, pathways adjacent to lipid peroxidation, and ferroptosis (Fig. 6e
and Supplementary Data 13). These results indicate that transcriptomic
attributions align with ferroptosis biology, underscoring the potential of
ChemProbe in screening genetic dependencies and identifying novel bio-
logical mechanisms.

Discussion
Using a conditional deep-learning approach, ChemProbe evaluates cel-
lular transcriptomic signatures against bioactive molecular structures to
predict cellular responses to chemical perturbations. In experiments on
cellular models and clinical tumor samples, this tool accurately predicts
cellular viabilities. ChemProbe complements more clinically oriented
approaches with its ability to directly screen engineered cell lines and
interrogate potentialmolecularmechanisms. Engineered cell lines, which
possess specific genetic modifications or alterations, physically model
disease conditions or the results of targeting pathways of interest. By
leveraging ChemProbe, researchers can evaluate the sensitivity of known
and newly engineered lines to a panel of chemical probes to assess how
specific genetic modifications or alterations influence compound
response.

Intriguingly, deep-learning model interpretation reflects compound
mechanisms of action (Fig. 5). The differential attribution analysis (DAA)
methodwe introduce surfaces potential gene patterns driving responses and
new disease-gene relationships. In one example, we identified genes linked
to ferroptosis resistance in an LRP8 knockout cell line. ChemProbe’s cal-
culations were not specific to this biology; it may find similar use in screens
for resistance mechanisms and target discovery across diverse cellular
models (Fig. 6). In cancer research, the tool rapidly evaluates the influence of
specific oncogenic mutations or alterations in tumor suppressor genes on
chemical sensitivity. When applied to engineered cell lines representing
different genetic backgrounds, ChemProbe canhighlight vulnerabilities and
potential mechanisms of drug resistance associated with particular genetic
alterations.

Extending to clinical samples, ChemProbe becomes a tool for targeted
therapy andprecisionmedicine.We found that it predicts drug sensitivity in
breast cancer patients across heterogeneous clinical tumor samples (Fig. 2).
Likewise, ChemProbe suggests which drugs may be ineffective for a given
patient; if borne out in clinical studies, it or similar methods could mean-
ingfully reduce therapeutic trial and error50,51. Although our data may
suggest alternative drug treatments, we refrained from recommending
therapies as their potential value is challenging to evaluate within the scope
of this study. The ability to expedite treatment at earlier disease stages and
target cellular vulnerabilities would be particularly impactful for tumors
whose resistance mechanisms rapidly evolve.
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Fig. 5 | Feature attribution analysis of nominal compound targets. a Distinct
protein target clusters emerge from UMAP decomposition of adjusted attribution
vectors at compound IC50s for predicted and fitted dose-response relationships in
MDAMB231, MDAMB231-LM2, HCC1806, HCC1806-LM2b/c, SW480, and
SW480-LvM2 prospective cell lines. Control compound set (CCS) attribution vec-
tors colored by nominal target class. b Comparison of adjusted mutual information
(AMI) derived from CCS nominal target labels and K-means clustering of trained
model adjusted attribution vectors (n = 5 independent samples), compound fin-
gerprints (n = 5 independent samples), random-model adjusted attribution vectors
(n = 5 independent samples) and permuted-model adjusted attribution vectors
(n = 5 independent samples). Centerline, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers; two-sided Wilcoxon
rank-sum test; *p < =5e-2, **p < =1e-2. cAverage attribution difference between the

highest significance target of the nominal target class versus all other target classes.
Two-sided Wilcoxon rank-sum test; *p < =5e-2, **p < =1e-2, ***p < =1e-3,
****p < =1e-4. Sample sizes: n = 14 independent case samples, n = 455 independent
control samples except otherwise noted; EGFR;ERBB2 (n = 21 case, n = 448 control);
HDAC1/2/3/6/8 (n = 56 case, n = 413 control); HMGCR (n = 21 case, n = 448
control); NAMPT (n = 28 case, n = 441 control); TP53 (n = 21 case, n = 448 control).
d Leiden clustering of all attribution vectors. e Comparison of PPI subgraph con-
nectivity derived from clustered target profiles (n = 26 independent samples), ran-
dom target profiles (n = 26 independent samples), and randomprotein-coding genes
(n = 26 independent samples). Centerline, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers; two-sided Wilcoxon
rank-sum test; ***p < =1e-3, ****p < =1e-4. f Network representation of exemplar
clustered target profile subgraphs.
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Nonetheless, several caveats merit mention. The experiments were
constrained to a limited set of cell lines and compounds, and model inter-
pretation reflects a limited set of biological factors. Without further study,
gene features achieving highmodel attributionmay reflect useful but obtuse
patterns in the datasets rather than biological causality. Similarly, without a
more diverse training set of chemical structures, the model may not be
leveraging generalizable structural features.Deep learningmodel attribution
methods are primarily empirical, so thepotential compoundmechanismsof
action they reveal ultimately necessitate prospective biological testing52,53.

ChemProbe screens cell lines against half a thousand chemical probes
and drug-like compounds. However, expanding its predictions to a larger

subset of chemical space would require collecting biological screening
training data at a commensurate scale, which is currently impractical. Deep
learning models like AlphaFold and ESM have leveraged self-supervised
learning to extract emergent properties from extensive unlabeled protein
sequence data54,55. Similarly, integrating ChemProbe with pre-trained cel-
lular transcriptomic or small-molecule structure foundationmodelsmay be
a means to expand into broader biological and chemical space.

When used to screen disease models, engineered cell lines, and clinical
samples, ChemProbe is a powerful tool to assess how cells respond to
various compounds. It supports exploring new therapeutic targets, suggests
disease mechanisms, and can help researchers develop more precise and

Fig. 6 | Differential attribution analysis (DAA) of ferroptosis-inducing com-
pounds. a Heatmap of top-10 differentially attributed genes within Leiden clusters
from Fig. 5d. Clusters ordered by hierarchical clustering of DAA profiles (columns).
Rows: top-10 attributed genes, columns: cell line-compound attribution sample.
b Comparison of predicted IC50s between cluster 26 (ferroptosis-sensitive, n = 24
independent samples) and cluster 28 (ferroptosis-resistant, n = 18 independent
samples). Centerline, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers; two-sided Wilcoxon rank-sum test; *p < =5e-2.

c Volcano plot of DAA results derived by comparing ferroptosis-inducing com-
pound attributions to all other compound attributions. Known ferroptosis-
mediating genes in orange. d Expected cumulative distribution plot of predicted
compound IC50 differences between HCC1143 WT and LRP8 KO cell lines.
Ferroptosis-inducing compounds predicted differentially potent in LRP8 KO
marked. e Enrichment analysis of top-10 differentially attributed genes of
ferroptosis-inducing compound samples. Fisher’s exact test.
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effective treatments. ChemProbe’s conditional architecture enables
expressive sensitivity predictions across chemical concentrations, enhan-
cing model interpretability and adaptability to new probes. In this study,
ChemProbe predicted drug sensitivities in multiple contexts, from cancer
cells and tumor samples to data on breast cancer patient responses. Looking
forward, we hope that ChemProbe’s availability as an open-source tool will
contribute to a range of research efforts in precision medicine and beyond.

Methods
Pharmacogenomic dataset
Drug sensitivity data was obtained from the Cancer Therapeutic Response
Portal v1 and v2 (CTRP v1/2). These datasets comprise 864 cell line
responses to 481 individual compounds and 64 compound pairs across a
range of concentrations. Response phenotypes were quantified by cellular
viability, a normalized measure characterizing complete cell killing to cell
stasis (0–1) and cell growth (>1). We utilized predicted cellular viability
derived from fitted dose-response curves of each experimental set, in which
replicate cell line-compound experiments were fit with a log-logistic func-
tion, and predicted cellular viabilitywas derived at the original experimental
concentrations27. The compound structure was represented as 512-bit
Morgan fingerprints (radius = 2) converted by RDKit from SMILES pro-
vided by the CTRP. Experimental micromolar compound concentrations
were concatenated with Morgan fingerprints, resulting in 513-length
compound feature vectors. We matched CTRP cell lines with the Cancer
Cell Line Encyclopedia (CCLE) molecular characterizations and extracted
protein-coding gene expression measurements, resulting in 19,144-length
cell line feature vectors. In total, 545 total compounds or compound pairs
and 860 cell lines comprised 366,710 unique pairs and 5,849,340 total
individual examples of compound response at various concentrations.

ChemProbe architecture, training, and evaluation
The study focused on predicting drug sensitivity in the context of phar-
macological intervention by integrating cell state features with compound
features. To achieve this, we formulated a conditional model where cellular
viability is predicted based on a vector of standardized protein-coding RNA
abundance values and a vector of chemical features, including structure and
concentration. We explored two methods of integrating gene expression
and small-molecule feature representations: simple concatenation and
hierarchical integration using feature-wise linear modulation (FiLM).

ChemProbe includes a conditional encoder that embeds compound
features into a vector of length c and an inputs encoder that embeds gene
expression features into a vector of length g. We used a FiLM generator to
predictγ andβparameters of length gbasedoncompoundembeddings.The
FiLM layer then applies an affine transformation of gene expression
embeddings by γ and β parameters. This process repeats across n FiLM
layers, and themodulated gene expression embeddingspass througha linear
block consisting of a linear layer, ReLU activation, batch normalization, and
dropout. Thefinal linear block compresses featuremaps to a vector of length
1, and the mean-squared error is calculated between predicted cellular
viability and true cellular viability. In our experiments and publicly available
trainedmodels, we use a transcriptome embedding block with layers of size
[2048, 512, 256] and a compound embedding block with layers of size [256,
128] to project to an embedding of size g = c = 128. We used n = 2 FiLM
layers in the final models.

To evaluate the performance of our model, we used cross-validation
and split cell line-compound pairs into five groups of approximately equal
size by cell line to avoid data leakage and performance inflation.We trained
five individual models in a leave-one-out cross-validation scenario and
applied 20 rounds of hyperparameter optimization to all five individually
trained models. We implemented the ChemProbe model in PyTorch and
applied hyperparameter optimization with Optuna.

Dose-response assay and cell culture
MDA-MB-231-Par and HCC1806-Par cells were seeded at 1,000 cells per
well in quadruplicate per condition in a white opaque 96-well plate (catalog

no. 3917, Corning). Twenty-four hours later, cells were treated with serial
dilutions between 2.05 pM and 100 µM of the following compounds: ner-
atinib (catalog no. 18404, Cayman Chemical), CAY10618, 1S,3R-RSL-3
(catalog no. 19288, Cayman Chemical), AZD7762 (catalog no. 11491,
Cayman Chemical), ceranib-2 (catalog no. 11092, Cayman Chemical), and
ML162 (catalog no. 20455, Cayman Chemical), and DMSO control. Cells
were treated for 72 h with media replaced every 24 hours. Cell viability was
measured with the CellTiter-Glo 2.0 Assay (catalog no. G9243, Promega
Corporation) with 1000ms integration time.

All cellswere cultured at 37 °C in a humidified incubatorwith 5%CO2.
MDA-MB-231-Par (ATCC HTB-26) cells were grown in DMEM supple-
mented with 10% FCS, penicillin (100Uml−1), streptomycin (100 μgml−1)
and amphotericin (1 μgml−1). HCC1806-Par (ATCCCRL-2335) cells were
grown in Roswell Park Memorial Institute-1640 medium supplemented
with 10% FCS, L-glutamine (2mM), sodium pyruvate (1mM), penicillin
(100Uml−1), streptomycin (100 μgml−1) and amphotericin (1 μgml−1).

Statistics and reproducibility
Details regarding sample sizes, number of replicates, and statisticalmethods
are provided in the respective section subheadings.

Predictive modeling baselines. We compared different models that
modify gene expression features by compound structure and concentra-
tion using various transformations. Our baseline model, “concatenation”
architecture, simply combined gene expression and compound features
into a single vector, which was fed into a multi-layer perceptron. We
independently evaluated the isolated effects of learning transformation
types using the “scale” and “shift” variants of the ChemProbe model. The
“scale” model held shift parameters constant (β=0) and learned only the
scale parameters (γ), whereas the “shift” model held scale parameters
constant (γ=1) and learned only the shift parameters (β). We assessed
ChemProbe’s dependence on compound concentration by creating a
“permuted” model that used random binary fingerprints for each com-
pound, ablating structural information. We trained and evaluated all
models using 5-fold cross-validation on the originally defined dataset splits
for three rounds of hyperparameter optimization.

Dose-responsemodeling. To generate predicted dose-response curves,
log-logistic functions were fit to each set of cell line-compound predic-
tions obtained from the five individually trained ChemProbe models. A
sequence of quality control conditions was defined to ensure the relia-
bility of each dose-response relationship. Firstly, cellular viability at any
of the four largest compound concentrations was checked for increases of
20% or more from the fifth largest compound concentration. If this
condition was met, the viability prediction at the largest concentration
was dropped. This process was repeated recursively, and a minimum of
16 data points was required for fitting a dose-response curve. If the
minimum predicted cellular viability was greater than 0.4, no dose-
response curve was fit. For cell line-compound pairs that passed quality
control, a 4-parameter log-logistic function was fit. If the optimization
failed, a 3-parameter log-logistic function was fit. If this optimization also
failed, a 2-parameter log-logistic function was fit. Additional quality
control was performed during the analysis of predicted dose-response
curves by filtering out log-logistic functions with undetermined para-
meters and with predicted EC50 < 1e-3 or EC50 > 300. Scipy was used to
fit parameters of log-logistic functions to dose-response relationships.

For relative potency comparisons, the drc package in R was employed
to fit dose-response models with a four-parameter log-logistic model. We
focused on the median effective dose (ED50) as an indicator of relative
potency, calculating it with the EDcomp function. Significant differences
in compound effects between cell lines were assessed using t-values and
p-values obtained from EDcomp.

Retrospective I-SPY2 analysis. We obtained I-SPY2 clinical trial
metadata andmicroarray characterizations of 988 patient transcriptomes
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from the Gene Expression Omnibus (GEO) (GSE194040). We matched
90% of the recorded genes to our training dataset, mean-imputed the
remaining 10% of genes, and standardized the data using z-score trans-
formation. We then evaluated the alignment of I-SPY2 patient data with
CCLE cell line training data across the first two principal components.
Next, we predicted drug sensitivity for each patient across 32 con-
centrations (1E-3 µM–300 µM) in response to all 545 compounds and
compound pairs in the CTRP. We generated patient-drug response
predictions using independent models and computed the area under the
curve (AUC) of each predicted dose-response assay. We scaled the AUC
of each patient-drug prediction between 0-1 based on the drug’s mini-
mum and maximum predicted AUC across all I-SPY2 patients.

Participants in the I-SPY2 trial were assigned to treatment arms based
on classification into one of eight subtypes, determined by HR, ERBB2-
receptor, and MammaPrint status. Adaptive randomization was employed
to dynamically adjust treatment assignments based on ongoing analysis of
treatment outcomes, optimizing the likelihood of each patient achieving a
pathological complete response. The trial assessed the efficacy of various
combination therapies relative to paclitaxel treatment, the clinical standard
of care. We identified drugs matched between I-SPY2 treatment arms and
the CTRP, including paclitaxel, neratinib, MK2206, veliparib, and carbo-
platin. In the I-SPY2 experimental arms, patients were treated with a
combination of paclitaxel and an additional drug(s) to assess response
relative to paclitaxel treatment only. As the predictive ability of ChemProbe
was only evaluated with respect to the available compounds and compound
pairs in the CTRP, the ChemProbe predictions for I-SPY2 patients reflected
predicted patient response to a single compound rather than a combination
therapy.

Prospective differential potencypredictions. To identify differentially
potent compounds between HCC1806-Par and MDA-MB-231-Par cell
lines, we computed the difference in predicted IC50 values for com-
pounds that passed dose-responsemodeling.We visually examined dose-
response curves of the top 50 differentially sensitive compounds and
selected candidates for in vitro testing. We based selection criteria on the
completeness of dose-response curves in each cell line, including ade-
quate Emax and Emin boundaries within the predicted
concentration range.

We conducted a preliminary dose-response experiment to determine
appropriate concentration points for the subsequent dose-response
experiments across a broader range of concentrations than our predic-
tions (300—1.7e-3 µM, 12 points) (Supplementary Fig. 5b, c).Wenarrowed
the concentration range for the following experiment to capture response
granularity (100—2.1e-6 µM, 12 points) (Fig. 4).

Integrated gradients. We employed integrated gradients, a path-based
model attribution technique, to determine the extent to which feature
gradients changed compared to a baseline feature vector. The method
involves linearly interpolating n feature vectors between a designated
baseline and the query feature vector. We used zero-vector baselines for
compound and gene expression features and set n = 50 as the step size. At
each interpolated feature vector step, gradients of the inputs are calcu-
lated with respect to the corresponding prediction. Finally, the integral of
each feature along the path of feature gradients between the baseline
vector and the query vector is computed. The Python package captum
was used to compute integrated gradients.

To account for potential differences in cellular responses, we used
the predicted compound IC50 for each cell line-compound pair to cal-
culate integrated gradients and obtain an attribution vector at the pre-
dicted IC50. We then extracted the cell line feature attribution vector for
each pair to investigate the influence of conditional compound infor-
mation on gradient changes in the input gene expression features. To
address cell line-specific effects, we standardized the attribution features
of each cell line separately using a z-score transformation, resulting in
adjusted attribution vectors (Supplementary Fig. 6b, c).

Attribution method soundness checks. To evaluate the sensitivity of
the attribution method to learned parameters and data features, we
conducted soundness checks. First, we assessed model-dependent attri-
bution method invariance by comparing the attribution vectors of ran-
domly initialized parameters of architecturally identical models with
those of the trained models. We applied integrated gradients to the
trained and randomly initialized models and compared the attribution
vectors. Second, we evaluated data-dependent attribution method
invariance by permuting the data labels, training architecturally identical
models, and applying integrated gradients to compare the true-model
and permuted-model attribution vectors (Supplementary Fig. 6c). We
used the correlation between the attribution vectors of the true and
alternative models to assess the attribution method’s sensitivity to
learned parameters and dependence between data features and labels.

Attribution similarity analysis. We investigated the relationship
between compound MOAs and learned gene expression feature depen-
dence by examining attribution vector similarity. First, we filtered attri-
bution vectors by considering compound MOA classes with at least two
compounds successfully attributed in all seven cell lines to obtain MOA
classes with sufficient samples for analysis (control compound set). This
resulted in 28MOA classes, which served as a true label baseline.We then
compared these true labels to unsupervised labels generated by K-means
clustering of attribution vectors from a trained model, a randomly
initialized model, compound fingerprints, and a label-permutation
baseline (Fig. 5b). We applied K-means clustering on five independent
trials.

We analyzed gene target attributions to further investigate the model
dependence on individual nominal targets within each MOA class. Speci-
fically, we applied a two-sidedWilcoxon rank-sum test togroup attributions
for each nominal target in the MOA class of interest and adjusted for false
discovery rate (FDR) using the Benjamini-Hochberg (BH) procedure. We
visualized the nominal target with the largest average attribution difference
between groups for each MOA class (Fig. 5c).

Attribution network analysis. We extended our analysis to include all
attribution vectors generated from the 7-cell line test set. We randomly
selected a single nominal target from each compoundMOAclass to avoid
bias towards closely associated targets. This is because the nominal tar-
gets of a single compound likely fall in close network proximity, and
downstream network analysis of target sets would reflect artificial over-
connectivity. For example, the MOA class of neratinib includes nominal
targets EGFR and HER2, which are involved in the same pathway.
Therefore, we randomly chose one target from this set.

We applied Leiden clustering unsupervised discovery of attribution
clusters. As described above, we defined attribution cluster MOA classes by
random target selection from each compound MOA class. We filtered the
STRING database to consider only high-confidence protein–protein asso-
ciations (combined score > 0.7).We queried STRING for attribution cluster
nominal targets and computed the connectivity of the resulting subgraph.
To account for random subgraph connectivity due to target biases in
STRING, we randomly sampled from available targets, queried the filtered
STRINGdatabase, and computed connectivity.We repeated this procedure
with randomly sampled protein-coding genes to account for random pro-
tein associations (Fig. 5f). We used the Networkx library for analysis.

To test for protein interaction enrichment, we defined attribution
cluster nominal targets by random target selection from each compound
MOAclass, as described above (number of targets > 3).Next, we queried the
STRINGAPI for protein–protein interaction enrichment in the network of
high-confidence protein–protein associations (combined score > 0.7). We
computed statistical enrichment using the hypergeometric test, which tests
if a query set of proteins has more interactions than expected relative to the
background proteome-wide interaction distribution. We also applied the
hypergeometric test for functional enrichment of GO terms, KEGG path-
ways, and Reactome pathways. We used the stringdb python package to
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access the STRING API. To infer potential modules of action for com-
pounds, we selected the unique set of all nominal targets associated with an
attribution cluster.

Cell line characterization and differential expression analysis. RNA
sequencing was conducted on seven test cell lines in triplicate, namely
HCC1806-Par, HCC1806-LMb/c, MDA-MB-231-Par, MDA-MB-231-
LM2, SW480, and SW480-LvM256. Using RNA that was rRNA-depleted
withRibo-ZeroGold (Illumina), librarieswere preparedwith SciptSeq-v2
(Illumina) and sequenced on an Illumina HiSeq4000 at UCSF Center for
Advanced Technologies. Transcript abundances were quantified using
Salmon, and tximport was utilized to summarize transcript-level mea-
surements. We employed DESeq2 to identify differentially expressed
genes (n = 3 per condition).

Differential attribution analysis. To assess model dependence on indi-
vidual genes within attribution clusters, we conducted an unbiased
analysis.We applied a two-sidedWilcoxon rank-sum test to each gene to
analyze gene attributions within a cluster relative to all remaining sam-
ples. We adjusted for FDR using BH to account for multiple testing. We
utilized Scanpy to apply tests across genes in each cluster relative to all
other samples. Attributions were standard scaled and each cluster’s top-
10most significant genes were plotted. Leiden groups were hierarchically
clustered (complete linkage) by Pearson correlation. Scanpy was used for
computation and visualization. We obtained gene expression—sensi-
tivity Pearson correlation z-scores and corresponding visualizations from
the Cancer Therapeutics Response Portal v2 feature correlation analysis
(Supplementary Fig. 8b, c).

Software and code reporting
Data collection tools: Python (3.10.6)was used to collect data, alongwith the
following packages: stringdb (0.1.5), scanpy (1.9.3). Data analysis tools:
Python (3.10.6) was used along with the following packages: numpy
(1.23.4), pandas (1.5.1), matplotlib (3.6.2), seaborn (0.11.2), scanpy (1.9.3),
scipy (1.9.3), scikit-learn (1.1.3), statsmodels (0.13.5), rdkit (2022.9.4),
pytorch (1.13.0), pytorch-lightning (1.8.4). R (4.0.2)was used alongwith the
following packages: tidyverse (1.13.0), tximport (1.18.0), genomicfeatures
(1.42.2), deseq2 (1.30.1), enhancedvolcano (1.8.0), drc (3.0_1).

Life science study design
Samples for prospective in vitro testing of model predictions were selected
based on the presence of complete dose-response curves among the top 50
differential predictions for the cell line pair. The chosen predicted dose-
response curves exhibited adequate Emax and Emin boundaries, appro-
priately covering the predicted concentration range. Given resource con-
straints,we reasoned that six out of 50 compounds (12%)provided adequate
representativeness of model predictions.

In the prospective drug screening experiment (Fig. 4a–f; Supplemen-
tary Fig. 4 and Supplementary Data 7), one plate showed significant cell
death in fourwellswithin column6. Tomaintain the integrity of the analysis
and avoid distorting the representation of the data, the values from these
four wells were excluded from the analysis. Specifically, two wells were used
for testing the drug CAY10618 against the cell lines HCC1806-Par and
MDA-MB-231-Par. Similarly, two wells were dedicated to testing the drug
neratinib against the same cell lines,HCC1806-Par andMDA-MB-231-Par.

As outlined in themethods,we initially conducted apreliminary screen
to calibrate the dose-response concentration ranges of the tested com-
pounds (300—1.7e-3 µM, 12 points) (Supplementary Fig. 4b, c and Sup-
plementary Data 7). Based on the insights gained from the preliminary
screen, we refined the concentration range for the subsequent experiment to
enhance the capture of response granularity (100—2.1e-6 µM, 12 points)
(Fig. 4 and Supplementary Data 7). Both experiments consistently
demonstrated a significant relationship between the responses of the dif-
ferential compounds (Fig. 4g; Supplementary Fig. 4c and Supplemen-
tary Data 7).

In the context of our prospective experiments, biological sample ran-
domizationwas not applicable.However, formodel training and evaluation,
we employed anumerical randomsplit of samples by cell line into groups for
five-fold cross-validation.

Blinding was deemed unnecessary for our study, as the prospective
experiments were solely determined by the objective predictions of an
algorithm.

Cell line sources:MDA-MB-231-Par (ATCCHTB-26); HCC1806-Par
(ATCC CRL-2335).

Use of large language models (LLMs)
We used OpenAI ChatGPT 3.5 Turbo and ChatGPT 4 as scientific editing
tools when writing the manuscript. We prompted the LLMs to suggest
revisions to ourmanually drafted text for improved clarity and conciseness,
predominantly at the paragraph level. We did not ask the LLMs to generate
contentdenovo.Anexampleof apromptweusedwas, “Youarehelping edit
papers for a broad scientific audience, emphasizing clarity and conciseness.
Revise the following paragraph: <draft text here > .”Wemanually reviewed
the LLMs’ suggested revised text and decidedwhether to include part, all, or
none of it on a word-by-word basis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Training and validation data from CTRP v1/2 can be downloaded at ftp://
caftpd.nci.nih.gov/pub/OCG-DCC/CTD2/Broad/CTRPv2.0_2015_ctd2_
ExpandedDataset/CTRPv2.0_2015_ctd2_ExpandedDataset.zip27 CCLE exp
ression data can be downloaded at https://ndownloader.figshare.com/files/
24613325. CCLE sample metadata can be downloaded at https://
ndownloader.figshare.com/files/2461339457. I-SPY2 gene expression data is
locatedatGSE194040. I-SPY2patient-level biomarker scores, subtype classes,
and clinical/response data were gathered from supplementary information
of Wolf, et al.: https://www.cell.com/cms/10.1016/j.ccell.2022.05.005/
attachment/c220411b-c281-41e8-befa-a45e48af9c64/mmc3.xlsx33 HGNC
was used to map gene names: https://www.genenames.org/tools/multi-
symbol-checker/. Protein–protein interaction datawas downloaded from the
STRING database v11.5. The current file version is found here: https://
stringdb-downloads.org/download/protein.links.v12.0/9606.protein.links.
v12.0.txt.gz. CCLE gene expression—sensitivity Pearson correlation z-scores
and corresponding visualizations were obtained from the CTRP v1/2 web
portal: https://portals.broadinstitute.org/ctrp.v2.1/. RNA sequencing gene
expressionprofiles of triple-negativebreast cancer cell lineHCC1143WTand
LRP8 KOwere obtained from a data access request to Zhipeng Li as original
data froma relatedpublication49. TheEnrichrwebportalwas used toperform
Wikipathway, KEGG, and GO enrichment analysis (https://maayanlab.
cloud/Enrichr/). Source data for all tables and figures are provided in Sup-
plementary Data.

Code availability
Our code to download, preprocess data, reproducemodel training, loadpre-
trained weights, and run model inference is available as open source at
https://github.com/keiserlab/chemprobe under the MIT License58.
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