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A metabolomic profile of biological aging in
250,341 individuals from the UK Biobank

Shiyu Zhang 1,2,9, Zheng Wang 1,3,4,9, Yijing Wang1, Yixiao Zhu1, Qiao Zhou1,
Xingxing Jian1, Guihu Zhao1, Jian Qiu 1,3,4, Kun Xia 5, Beisha Tang 1,3,6,
Julian Mutz 7 , Jinchen Li 1,3,8 & Bin Li 1

The metabolomic profile of aging is complex. Here, we analyse 325 nuclear
magnetic resonance (NMR) biomarkers from 250,341 UKBiobank participants,
identifying 54 representative aging-related biomarkers associated with all-
cause mortality. We conduct genome-wide association studies (GWAS) for
these 325 biomarkers using whole-genome sequencing (WGS) data from
95,372 individuals and perform multivariable Mendelian randomization
(MVMR) analyses, discovering 439 candidate “biomarker - disease” causal pairs
at the nominal significance level. We develop a metabolomic aging score that
outperforms other aging metrics in predicting short-term mortality risk and
exhibits strong potential for discriminating aging-accelerated populations and
improving disease risk prediction. A longitudinal analysis of 13,263 individuals
enables us to calculate a metabolomic aging rate which provides more refined
aging assessments and to identify candidate anti-aging and pro-aging NMR
biomarkers. Taken together, our study has presented a comprehensive aging-
related metabolomic profile and highlighted its potential for personalized
aging monitoring and early disease intervention.

Aging is a complex biological process1 that leads to impaired physio-
logical functions and may result in frailty2. It is a strong risk factor for
multiple morbidities and mortality3,4. The aging-related disease burden
accounted for 51.3% of the global health burden among adults in 20174.
With advancements in omics technologies, aging research is progres-
sing at an unprecedented pace. Many omics-based biological aging
clocks have been developed, ranging from first-generation aging clocks,
which were designed to predict chronological age5–9, to second-
generation clocks, which were designed to predict aging-related
adverse outcomes10–13 and better capture biological aging signals14.

Metabolomics, which integrates intrinsic biological changes with
extrinsic exposures15, carries systemic information throughout the
body16,17. The advancement in multiple spectroscopy technologies, for
example, high-throughput and cost-effective nuclearmagnetic resonance
(NMR) analysis18,19 and the application of machine learning algorithms,
have promoted population-scale metabolomics research, with great
potential for disease prediction20. Previous metabolomics-based biologi-
cal aging scores, such asMetaboHealth18, which was trained onmortality,
and MetaboAge19, which was trained on chronological age, performed
well in mortality risk prediction and exhibited clinical potential.
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The UK Biobank has recently released NMR metabolomics data
generated by Nightingale Health for around 275,000 individuals. The
large sample size, the broad coverage of NMR biomarkers, and the
availability of comprehensive health-related phenotypes make the UK
Biobank an ideal repository for metabolomics-based aging research.
Here, we aimed to present a metabolomic profile of biological aging
and aging-related diseases. We began by identifying aging-related
biomarkers from 325 NMR biomarkers (249 biomarkers directly pro-
vided and 76 additional biomarker ratios not available in the original
data but with potential biological implications21). We then linked these
aging-related biomarkers to multiple aging-related adverse health
outcomes. Next, we constructed a novel metabolomic aging score and
explored its advantages over other aging metrics and its potential
clinical applications. Finally, through a longitudinal analysis with
follow-up data from 13,263 individuals, we derived a metabolomic
aging rate, which provides further insights into participants’ persona-
lized aging status. Based on this rate, we identified potential anti-aging
and pro-aging NMR biomarkers that might serve as anti-aging inter-
vention targets (Fig. 1).

Results
54 aging-related representative metabolomic biomarkers
To identifymetabolomic biomarkers representative of biological aging
among the 325 highly correlated NMR biomarkers, we developed a
least absolute shrinkage and selection operator (LASSO) Cox propor-
tional hazards model22 with all-cause mortality as the predicted out-
come. At the individual level, aging is a ubiquitous biological process
accompanied by a loss of physiological functions, which ultimately
leads to death23. At the populational level, mortality rates may indicate
overall health trends24. Thus, all-cause mortality was used as a global
aging-related endpoint and a benchmark to compare the predictive
performance of different aging metrics5.

Among the 250,341 participants included in our study, 234,553
were recruited from 20 assessment centers in England and Wales,
while 15,788 were recruited from two assessment centers in Scotland.
Differences in mortality rates and other health-related characteristics
between these two subsets have been reported in previous
publications25 and were also identified in our study (Supplementary
Table 1). Given the differences between participants from these
regions, we trained the model in participants from England and Wales
and evaluated and validated our model’s performance among partici-
pants from Scotland16.

The 325 NMR biomarkers in our study encompassed a wide range
of metabolites, including amino acids, ketone bodies, fatty acids,
lipoprotein lipids in 14 subclasses, and metabolomic biomarkers
involved in glycolysis, fluid balance, and inflammation (Supplementary
Fig. 1 and Supplementary Data 1). These biomarkers were highly cor-
related (Supplementary Data 2, 3). The LASSO Cox model trained with
tenfold cross-validation identified a combination of 54 biomarkers
(28 in absolute levels and 26 in ratios) with the best predictive per-
formance for all-cause mortality (Supplementary Data 4). These 54
biomarkers were selected as representative aging-related biomarkers
and included eight amino acids, three ketone bodies, five poly-
unsaturated fatty acid-related compositions, 32 lipoprotein-related
biomarkers, one inflammation-related biomarker (glycoprotein acet-
yls, GlycA), two fluid balance biomarkers (creatinine and albumin), and
three metabolites involved in glycolysis (glucose, lactate, and citrate).
GlycA, a systemic inflammation biomarker and risk factor for cardio-
vascular and autoimmune diseases26, had the highest hazard ratio (HR)
for all-causemortality (HR = 1.25 per SD), while the linoleic acid to total
fatty acids percentage (LA_pct) had the lowest HR (0.82 per SD)
(Supplementary Fig. 2).

Next, we investigated the correlations of these biomarkers with
different aging metrics, including chronological age, the frailty index
(FI), which is a clinical indicator of accumulated health deficits27, and

leukocyte telomere length (LTL), a measure of cell division28. Among
the 54 aging-related representative biomarkers, 49 were significantly
correlated with chronological age, 51 with the FI, and 50 with LTL (BH-
adjusted p values <0.05). There were 35 aging-related biomarkers with
consistent correlations with all aging metrics (Supplementary Fig. 3).

Compared to previously reported aging ormortality-related NMR
biomarkers, four biomarkers associated with all-cause mortality
reported by ref. 29 (GlycA, albumin, the average diameter for very-low-
density lipoprotein particles, and citrate) were replicated in our study
with consistent associations. Ten out of 14 all-cause mortality-related
NMR biomarkers included in MetaboHealth18, and 19 out of 56 aging-
related NMR biomarkers included in MetaboAge19 were validated in
our study (Supplementary Data 5). The overlapping biomarkers
included GlycA, creatinine, albumin, glycolysis-related metabolites,
ketone bodies, and polyunsaturated fatty acid-related biomarkers.
Lipoprotein-related biomarkers were less well replicated.

Associations between aging-related metabolomic biomarkers
and frailty
The 54 aging-related representative biomarkers predictive of all-cause
mortalitywere further investigatedby analyzing their associationswith
multiple frailty-related deficits30. Chronological age was included as a
covariate in multivariable logistic regression models.

We identified a comprehensive association profile underlying
the 54 aging-related representative biomarkers and the 50 frailty-
related phenotypes with a total of 1112 statistically significant asso-
ciations (p values <2E-04) (Supplementary Fig. 4). GlycA, an
inflammation-related biomarker, was positively associated with 43
frailty deficits, with odds ratios for pre-frail status of 1.31 and frail
status of 1.63 (p values <2.2E-16) compared with non-frail status.
Three polyunsaturated fatty acid-related biomarkers (linoleic acid to
total fatty acids percentage, omega-3 fatty acids, and poly-
unsaturated fatty acids to monounsaturated fatty acids ratio) gen-
erally exhibited negative associations with multiple frailty deficits
and were associated with lower odds of frailty (odds ratios of 0.43,
0.53, and 0.25, respectively, with p values <2.2E-16). Several
lipoprotein-related biomarkers, including refined HDL compositions,
were negatively associated with prevalent cardiovascular diseases,
for example, coronary heart disease, stroke, hypertension, and
angina. Several VLDL composition-related biomarkers were potential
risk factors for these diseases (Supplementary Data 6, 7).

The associations between the 54 aging-related representative
NMR biomarkers and multiple aging-related health deficits reflect
potential targets for anti-aging interventions or disease prevention
through the regulation and monitoring of these metabolomic
biomarkers.

Candidate causal relationships between NMR biomarkers and
aging-related diseases
Moving beyond cross-sectional associations, we investigated potential
causal relationships linking metabolomic biomarkers with aging-
related disease onset. It is possible that the NMR biomarkers causally
related to aging-relateddiseasesmight not be among those selectedby
the LASSO Cox model due to high collinearity, an inherent feature of
metabolomics data31. Therefore, we extended the search for causal
biomarkers of aging-related diseases to all 325 NMR biomarkers.

A genome-wide association study (GWAS) for each NMR biomarker
was conducted using WGS data from a subset of 95,372 individuals.
Variants with a minor allele frequency (MAF) >0.1% were included after
quality control (Methods). Based on the GWAS summary statistics of the
325 NMR biomarkers, we calculated pairwise genetic correlations using
linkage disequilibrium score regression (LDSC)32. An extensive genetic
correlation profile was identified underlying these metabolomic bio-
markers, especially for the lipid and lipoprotein-related biomarkers
(Supplementary Fig. 5 and Supplementary Data 8, 9).
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Given the considerable pleiotropy of significant loci and correla-
tions between the NMR biomarkers, we performed multivariable
Mendelian randomization (MVMR) analysis to allow for multiple cor-
related exposures and pleiotropic instrumental variables33. Index

variants marginally associated with each of the 325 NMR biomarkers
(p < 1E-09) were selected as candidate instrumental variables (IVs).
Twenty chronic non-communicable diseases, including sixteen leading
causes of global disability-adjusted life-years (DALYs) among the
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Fig. 1 | Study overview. a Identification of 54 representative aging-related meta-
bolomic biomarkers based on a least absolute shrinkage and selection operator
(LASSO) Cox regression model developed amongst participants from England and
Wales with all-cause mortality as the endpoint. b Links between nuclear magnetic
resonance (NMR) biomarkers and aging-related adverse health outcomes.
Metabolome-wide association analysis was conducted to explore the association
between 54 representative aging-related biomarkers and 50 frailty-related pheno-
types. Multivariable Mendelian randomization (MVMR) analysis was performed to
identify potential causal relationships between 325 NMR biomarkers and 20 aging-
related diseases. c Construction and application of the metabolomic aging score.

The metabolomic aging score was integrated as a linear combination of 54 aging-
related biomarkers weighted by the estimated coefficients from the model. The
metabolomic aging score was compared with other aging metrics among partici-
pants recruited from Scotland andwas further applied to discriminate future early-
onset patients of aging-related diseases and to improve multiple disease-risk pre-
diction. d Longitudinal analysis among 13,263 individuals with revisit metabolomic
data. A metabolomic aging rate was calculated and used to identify personalized
changing patterns in aging-related metabolomic profiles. 15 pro-aging and 25 anti-
aging biomarkers were identified based on distinct changing patterns across dif-
ferent rate groups. COPD chronic obstructive pulmonary disease.
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elderly34, were chosen as outcomes (Supplementary Data 10). After
pruning IVs in linkage disequilibrium (LD) and extracting the full
column-rank matrix from the original exposure-IV association matrix
(Methods), 287 NMR biomarkers were included in the whole set of
exposures. A total of 2164 genetic variants, harmonized against the
outcomeGWAS summary statistics, were used as IVs in the subsequent
MVMR analysis (Supplementary Data 11). MVMR analyses were con-
ducted using four different yet complementary methods: MVMR-IVW,
MVMR-Egger, MVMR-Lasso, and MVMR-median. The causal estimates
from theMVMR-IVWmethodwere considered ourmainfindings,while
the other three methods served as sensitivity analyses (Methods).

Out of 5740 possible combinations between the 287 NMR bio-
markers and the 20 aging-related diseases, 439 pairs were identified as
candidate causal relationships (composed of 213 NMR biomarkers and

all 20 diseases) at a nominal statistical significance threshold of 0.05
for both MVMR-IVW and MVMR-Egger methods. Additionally, 14 pairs
(involving 13 NMR biomarkers and six diseases) reached a Bonferroni-
corrected significance threshold of 5E-04 for both methods (Fig. 2).

Chronic kidney disease (CKD) had the most candidate causal
biomarkers, with 38 NMR biomarkers reaching the nominal p value
threshold for both MVMR-IVW and MVMR-Egger methods. Notably,
several disease-specific biomarkers emerged as the most significant
candidate causal biomarkers for their respective diseases, including
glucose for type 2 diabetes (p = 9.1E-09), creatinine for CKD (p = 6.5E-
05), glycine for stroke (p = 2.9E-04), and albumin for liver fibrosis and
cirrhosis (p = 3.3E-03).

Several NMR biomarkers served as shared risk or protective fac-
tors for multiple diseases. For instance, L_HDL_CE was a protective
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Fig. 2 | 439 candidate pairs of causal relationships between 213 NMR bio-
markers and 20 aging-related diseases identified in multivariable Mendelian
randomization (MVMR) analysis. Biomarker-disease pairs reaching nominal sig-
nificance in both MVMR-IVW and MVMR-Egger methods were plotted. P values
(two-sided, without multiple testing adjustments) and effect sizes are estimated
from the MVMR-IVWmethod. The threshold for significance, adjusted for multiple
comparisons, is set at 5E-04 using the Bonferroni-correction (Methods). 14
biomarker-disease pairs reaching the Bonferroni-corrected p value threshold in
MVMR-IVW and MVMR-Egger methods are enlarged. NMR biomarkers are

represented as dots and aging-related diseases as asterisks. Blue lines indicate
negative causal estimates and red lines indicate positive causal estimates. The color
intensity of the links is proportional to the corresponding estimated effect size. The
transparency and width of the links are proportional to the −log(p value) from
MVMR-IVW, which indicates the strength of the association. COPD chronic
obstructive pulmonary disease, CKD chronic kidney disease, GERD gastro-
esophageal reflux disease. Full names for NMRbiomarkers in the plot can be found
in Supplementary Data 1. Source data are provided as a Source Data file.
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factor for CKD (p = 7.1E-04), asthma (p = 3.8E-03), GERD (p = 2.0E-02),
hypertension (p = 2.7E-02), oral diseases (p = 2.8E-02), low back pain
(p = 3.0E-02), and senile cataract (p = 3.7E-02). Glycine also showed
protective effects for CKD (p = 2.0E-04), stroke (p = 2.9E-04), hyper-
tensive heart disease (p = 2.7E-02), ischemic heart disease (p = 4.0E-
02), hypertension (p = 4.0E-02), and type 2 diabetes (p = 4.5E-02).
Conversely, M_LDL_L emerged as a risk factor for CKD (p = 2.6E-02),
atrial fibrillation (p = 2.8E-02), stroke (p = 3.5E-02), GERD (p = 3.8E-02),
asthma (p = 4.1E-02), and ischemic heart disease (p = 4.5E-02). Some
biomarkers exhibited dual roles. L_HDL_CE_pct was a risk factor for
atrial fibrillation (p = 1.7E-03), hypertension (p = 4.7E-03), CKD
(p = 4.4E-02), and type 2 diabetes (p = 4.7E-02), but a protective factor
for Parkinson’s disease (p = 5.5E-03). Similarly, total choline was a
protective factor against hyperlipidemia (p = 2.1E-02) and ischemic
heart disease (p = 2.2E-02), but a risk factor for COPD (p = 9.8E-03) and
senile cataract (p = 4.5E-02). The p values reported abovewere derived
from the MVMR-IVW method (Supplementary Data 12). The causal
estimates from the other three sensitivity analyses were consistent
with the main findings (Supplementary Fig. 6).

The results from the Mendelian randomization analysis might be
biased if the exposures and outcomes have distinct but correlated
causal variants, such as those in linkage disequilibrium35. Hence, we
also conducted colocalization analysis for each pair of the 439 candi-
date causal relationships that reached nominal significance for both
MVMR-IVW and MVMR-Egger methods to explore whether these bio-
markers and diseases shared the same causal variants.

Of the 439 candidate causal pairs, 185 pairs (involving 122 NMR
biomarkers and 18 diseases) had a posterior probability for hypothesis
four (PPH4, which implies that two traits share the same causal
variant36) greater than 80% (Supplementary Data 13). For each colo-
calized NMR biomarker-disease pair, we annotated the colocalized
causal SNP with its target gene and associated phenotypes using the
Ensembl Variant Effect Predictor37 (Supplementary Data 14).

Overall, for the 185 colocalized pairs, we identified 135 causal
variantswithin 87 target genes, highlighting pleiotropic causal variants
that linked multiple NMR biomarkers to aging-related diseases. For
instance, rs8176685, a deletion in the intron of the ABO gene, emerged
as a highly pleiotropic variant influencing 34 NMR biomarker-disease
pairs. This variant linked 23 lipid and lipoprotein-related NMR bio-
markers with conditions such as hyperlipidemia, ischemic heart dis-
ease, atrialfibrillation, stroke, and asthma. Previous research identified
associations of rs8176685 with blood cell traits crucial for immune
function, blood clotting, and cardiovascular health indicators like
platelet distribution width38, vWF levels39, neutrophil count40, and
P-selection levels41. Recent studies underscore the ABO gene’s role in
cardiovascular disease risks and lipid metabolism, aligning with
rs8176685’s identification in our study as a pleiotropic variant linking
multiple lipid and lipoprotein-related biomarkers with cardiovascular
diseases42. Additionally, rs11591147 (a missense variant in the PCSK9
gene) and rs7412 (a missense variant in the APOE gene) also exhibited
extensive pleiotropic effects, each linking 25 lipid and lipoprotein-
related NMR biomarkers with hyperlipidemia, ischemic heart disease,
and atrial fibrillation.

Investigation into relevant biological functions and associated
phenotypes of colocalized variants also provided insights into poten-
tial pathways or mechanisms through which the metabolomic bio-
markers may impact disease onset. For example, rs1260326, a
missense variant inGCKR, which encodes glucokinase regulators43, was
identified as a shared causal variant linking lactate and 12 lipoprotein-
related biomarkers with type 2 diabetes. However, rs1260326 was also
found to be associatedwith circulating leptin levels, C-reactive protein
levels, fructose-bisphosphate aldolase B levels, gamma-glutamyl
transpeptidase (GGT) levels, and serum IGF-1 and IGF-binding pro-
tein (IGFBP)−3 levels44. These enzymes and biological molecules
associated with rs1260326 might provide hints about the mechanism

throughwhich lactate and lipoprotein-related biomarkers are involved
in disease onset.

Metabolomic aging score outperforms in short-term mortality
risk prediction
Based on the 54 representative aging-related NMR biomarkers, we
developed a novel metabolomic aging score as the linear combination
of these biomarkers weighted by their estimated coefficients for all-
cause mortality (Methods). In our study, the metabolomic aging score
was highly correlated with MetaboHealth (Pearson’s r = 0.68), moder-
ately correlated with chronological age (r = 0.29) and the frailty index
(r =0.32), and had the weakest correlation with LTL (r =0.12) (p values
<5E-7, Supplementary Fig. 7).

The predictive performance for all-cause mortality risk across
different follow-up intervals, ranging from 1 year to 15 years, was
assessed for themetabolomic aging score and compared against other
aging metrics (including MetaboHealth, the frailty index, LTL, and
chronological age) in an out-of-sample dataset of 15,788 participants
from Scotland.

Compared to MetaboHealth, the frailty index, and LTL, the
metabolomic aging score had the highest accuracy in mortality risk
prediction across all follow-up intervals (Fig. 3a, b). The metabolomic
aging score performed best in short-term (1 to 5 years) mortality risk
prediction and even outperformed chronological age in these follow-
up intervals (1 y, p value = 0.089; 2 y, p value = 0.036; 3 y, p value =
0.044; 4 y, p value = 0.015; 5 y, p value = 0.29). It matched chron-
ological age in 10-year mortality risk prediction (p value = 0.94) but
was inferior in 15-year mortality risk prediction (p value = 0.0042)
(Supplementary Data 15).

Considering the correlations of the four biological aging metrics
with chronological age, we regressed each against chronological age
and extracted the residuals to investigate whether they retained pre-
dictive information independent of chronological age (Supplementary
Data 16).

The residuals of the four biological aging metrics regressed
against chronological age displayed slightly reduced predictive per-
formance across the seven follow-up intervals (1 y, 2 y, 3 y, 4 y, 5 y, 10 y,
and 15 y). Nevertheless, the residuals of the metabolomic aging score
outperformed those of the other metrics and had similar prediction
accuracy to chronological age across 1-year to 5-year intervals (p values
of 0.32, 0.32,0.67, 0.53, and0.36, respectively) (Supplementary Fig. 8).

We next conducted age-stratified analyses to explore the pre-
dictive performance of the metabolomic aging score across different
chronological age groups (40–50, 51–60, and 61–70 years). A 10-year
age span was considered sufficient to allow for differences in physio-
logical and aging status between groups. Within the 40–50 age group,
the residuals of the metabolomic aging score had a similar predictive
performance as chronological age, with no significant difference in
AUCs across all follow-up intervals (smallest p value = 0.43). Within the
51–60 and 61–70 age groups, the residuals of the metabolomic aging
score outperformed chronological age in mortality risk prediction
across all follow-up intervals (p values <0.05 except for p = 0.069 in the
61–70groupwith 1-year interval). Thebest predictive performancewas
observed for the 51–60 age group with an AUC of 86.8% for 1-year
mortality risk, whereas chronological age had an AUC of 56.0%
(Fig. 3c, d and Supplementary Data 17).

The residuals of the metabolomic aging score were a significant
predictor of short-term all-cause mortality. The age-stratified analysis
further confirmed this observation (Supplementary Fig. 9). The resi-
dual of the metabolomic aging score exhibited the strongest associa-
tions in the 51–60 age group with a 1-year mortality HR per SD of 3.5
(95%CI: 2.6–4.8) and a 15-year mortality HR per SD of 1.9 (95%CI:
1.8–2.1), followed by the 61–70 age group with a 1-year mortality HR
per SD of 2.3 (95%CI: 1.8–2.9) and a 15-year mortality risk HR per SD of
1.6 (95%CI: 1.5–1.7) and the 40–50 age groupwith a 1-yearmortality HR
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Fig. 3 | Predictive performanceof different agingmetrics for all-causemortality
risk across seven follow-up intervals (from1 year to 15 years). aTime-dependent
AUCs of five aging metrics’ predictive performance for all-cause mortality risk.
b ROC curves for 1-year, 2 years, 3 years, 4 years, 5 years, 10 years, and 15 years
mortality risk prediction of five aging metrics. Two-sided P values from Delong’s
test comparing the metabolomic aging score and chronological age were 8.9E-02,
3.6E-02, 4.4E-02, 1.5E-02, 2.9E-01, 9.4E-01, 4.2E-03 for 1 y, 2 y, 3 y, 4 y, 5 y, 10 y, and 15
y-prediction, respectively. c Time-dependent AUCs indicating the predictive per-
formance for all-cause mortality risk associated with chronological age (dashed
lines) and the residuals of the metabolomic aging score regressed against chron-
ological age (solid lines), stratified by chronological age groups: 40–50 (green),

51–60 (blue), and 61–70 (red). d ROC curves for 1-year, 2 years, 3 years, 4 years, 5
years, 10 years, and 15 years mortality risk prediction of chronological age (dashed
lines) and the residuals of the metabolomic aging score (solid lines) stratified by
chronological age groups: 40–50 (green), 51–60 (blue), and 61–70 (red). Two-sided
P values from Delong’s test comparing the residuals of the metabolomic aging
score and chronological age: 40–50 (0.76, 0.67, 0.64, 0.80, 0.43, 0.74, and 1.00;
51–60 (3.0E-04, 3.4E-02, 2.5E-04, 4.2E-06, 7.1E-07, 2.2E-07, and 2.2E-06); 61–70
(6.9E-02, 1.4E-02, 6.3E-03, 2.8E-03, 2.8E-02, 8.0E-05, and 7.6E-04) for 1 y, 2 y, 3 y, 4 y,
5 y, 10 y, and 15 y-prediction, respectively. Met metabolomic aging score; FI frailty
index, LTL leukocyte telomere length. Source data are provided as a Source
Data file.
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per SD of 1.8 (95%CI: 0.6–5.2) and 15-year mortality HR per SD of 1.6
(95%CI: 1.3–1.8).

Metabolomic aging score discriminates future early-onset
patients of aging-related diseases
Because the plasma metabolome provides insights into aging-related
changes throughout the body45, we investigated whether these meta-
bolomic signals could aid in the discrimination of individuals with
accelerated aging. Typically, biologically older individuals are more
vulnerable and more susceptible to developing aging-related diseases
earlier than their counterparts46. Thus, we examined differences in the
average baselinemetabolomic aging score between future early-onset,
other-onset, and disease-free groups for the 19 aging-related diseases
(except for lower-back pain).

The average baseline metabolomic aging score was higher in the
early-onset group compared to the other-onset group, followed by the
disease-free group for 14 diseases,with chronological age included as a
covariate in the analyses (BH-adjusted p values <0.05). These differ-
ences were most notable for type 2 diabetes (the early-onset vs the
other-onset, BH-adjusted p value = 1.7E-09) and hypertension (the
early-onset vs the other-onset, BH-adjusted p value = 1.0E-07) (Fig. 4).

While metabolomic biomarkers circulate throughout the body,
various organ systems contribute differently to the systemic metabo-
lomic profile47. Specifically, in the cases of Parkinson’s disease and
sensorineural hearing loss, there was no discernible difference in the
average baseline metabolomic aging score between the early-onset
group and the other-onset groups. This observation might suggest
that parts of the nervous system, relative to other organ systems, are
not as well reflected in systemic metabolomic profiles, potentially due
to the blood–brain barrier48.

Between-group differences in the distribution of several basic
physiological and socioeconomic characteristics (including chron-
ological age, self-reported sex, BMI, systolic blood pressure, Townsend
deprivation index, alcohol intake frequency, and smoking status) exis-
ted for each disease (Supplementary Tables 2–20). To address potential
confounding effects derived from these differences, we conducted a
multinomial logistic regression with each disease status (disease-free,
early-onset, and other-onset) as the dependent variable, the above-
mentioned confounders as covariates, and themetabolomic aging score
as the independent variable. The baseline metabolomic aging score
remained a significant factor distinguishing the future early-onset,
other-onset, and disease-free groups (Supplementary Data 18).

Metabolomic aging score improves aging-related disease-risk
prediction
We further explored the potential application of the metabolomic
aging score for aging-related disease-risk prediction.

First, we investigated the predictive performance of different
aging metrics as independent predictors of 19 aging-related diseases.
Chronological age generally displayed the broadest applicability in
disease-risk prediction, surpassing the metabolomic aging score, the
frailty index, and LTL, with the highest AUC for eight diseases (Sup-
plementary Fig. 10). Themetabolomic aging score demonstrated good
performance in cases where the pathogenesis underlying the disease
involved dysregulated metabolic pathways. It outperformed the other
aging metrics in the prediction of type 2 diabetes, hypertensive heart
disease, fibrosis and cirrhosis of the liver, and CKD. Additionally, it
demonstrated comparable performance to chronological age in pre-
dicting the risk of ischemic heart disease (DeLong test p value = 0.50).
The frailty index, which quantifies accumulated health deficits,
exhibited the strongest prediction of COPD, asthma, diseases of the
oral cavity, GERD, and polyarthritis. One plausible explanation might
be the inclusion of relevant clinicalmanifestations in the calculation of
the frailty index. For example, emphysema or chronic bronchitis are
hallmarks of COPD49, while knee pain and long-standing infirmity are

common features of polyarthritis50. These health deficits were inclu-
ded in the calculation of the frailty index. LTL generally demonstrated
weaker predictive performance.

Additionally, we explored whether the metabolomic aging score
improves disease-risk prediction beyond traditional risk factors and
other aging measures (Methods). We found that for 17 of the 19 dis-
eases, there was an improvement in risk prediction, as indicated by
Harrell’s C-index (p values <0.05), except for Parkinson’s disease and
sensorineural hearing loss. However, when the frailty index was also
incorporated into the model (Model 4), the improvement due to the
metabolomic aging score was attenuated. In line with our earlier
findings, type 2 diabetes, stroke, fibrosis, and cirrhosis of the liver, and
CKD benefitted most from the inclusion of the metabolomic aging
score (Fig. 5).

Metabolomic aging rate calculated from longitudinal data
A subset of 13,263 participants had available revisit metabolomics data
after a median follow-up duration of 4.4 years. This enabled us to
calculate a metabolomic aging rate reflecting the rate of change in the
metabolomic aging score.

Based on the change in themetabolomic aging score between the
baseline assessment and the revisit, we defined themetabolomic aging
rate as Δ metabolomic aging score divided by the follow-up time.
There was a negative correlation between the metabolomic aging rate
and the baseline metabolomic aging score (r = −0.38, p < 2.2E-16),
indicating that individuals with higher metabolomic aging scores at
baseline exhibited a more modest rate of change compared to those
with lower scores at baseline (Supplementary Fig. 11). Subsequently,
we regressed the metabolomic aging rate against the baseline score to
obtain residuals that were independent of the baseline score. The
residuals of the rate were positively correlated with chronological age,
suggesting that chronologically older individuals experienced higher
rates of change in their aging-related metabolomic profile (r = 0.18,
p < 2.2E-16) (Supplementary Fig. 12).

The residuals of the metabolomic aging rate, regressed against
the baseline score, were a significant risk factor (HR= 1.46 per SD, 95%
CI: 1.37–1.55,p value < 2.2E-16) for all-causemortality after adjusting for
chronological age. Next, we conducted age-stratified analyses to
explore potentially varied associations between the metabolomic
aging rate and all-cause mortality risk across three chronological age
groups (40–50, 51–60, and 61–70 years) while adjusting for chron-
ological age. Compared with those in the 40–50 age group, the resi-
duals of the metabolomic aging rate exhibited stronger associations
with mortality risk among those in the 51–60 and 61–70 age groups (p
values of 1.07E-02, 2.79E-15, and 8.06E-19, with HRs per SD of 1.42, 1.53,
and 1.43, respectively) (Supplementary Fig. 13).

Furthermore, we stratified individuals into three aging-rate
groups based on the distribution of the residuals of the metabo-
lomic aging rate (top 25%, middle 50%, and bottom 25%) to examine
differences in their mortality risk. Compared to the middle 50% rate
group, the all-cause mortality hazard was higher in the top 25% rate
group (HR = 2.31, 95%CI: 1.97–2.70, p value = 3.98E-25) and lower in the
bottom 25% rate group (HR =0.77, 95%CI: 0.62–0.96, p value = 1.84E-
02) (Fig. 6). The age-stratified analyses revealed that across the three
groups (40–50, 51–60, and 61–70 years), thosewith a top 25% rate had
approximately twice the mortality hazard compared to those with a
middle 50% rate. There was no significant difference between the
bottom25% rate group and themiddle 50% rate group (Supplementary
Fig. 14). Findings were similar after adjustment for chronological age
(Supplementary Data 19).

Identification of potential anti-aging and pro-aging metabo-
lomic biomarkers
Beyond the general exploration of metabolomic aging score changes,
we also tested individual changes in each aging-related representative
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biomarker relative to its baseline level. We discovered distinct chan-
ging patterns in the aging-relatedmetabolomic profiles between those
with a top 5% rate residual regressed against the baselinemetabolomic
aging score and those with a bottom 5% rate residual (Supplemen-
tary Fig. 15).

To identify potential anti-aging and pro-aging metabolomic bio-
markers exhibiting distinct changing patterns across different rate

residual groups (top 25%, middle 50%, and bottom 25%), we compared
alterations in each biomarker’s level from the baseline (referred to as
Δvalue) and included its baseline level as a covariate in the analysis of
covariance (Fig. 7).

Fifteen aging-related biomarkers with progressively increasing
Δvalue from the bottom to the middle and to the top rate residual
group (BH-adjusted p value <0.05) were considered pro-aging because
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Fig. 4 | Metabolomic aging score discriminating future early-onset, other-
onset, anddisease-freegroups among19aging-relateddiseases.Between-group
differences in the average baseline score were compared using the Emmeans test
with chronological age-adjusted as a covariate. Red lines represent future early-
onset patients (top 10% youngest at disease diagnosis), yellow lines represent
other-onset patients (all other patients who did not fall within the youngest 10%),
and blue lines represent disease-free participants (controls). Two-sided P values
from Emmeans tests are adjusted for multiple comparisons using the
Benjamini–Hochberg (BH) procedure. Data were presented as estimated marginal
means with 95% confidence intervals. *, BH-adjusted P value <5E-02; **, BH-adjusted
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non-significant difference (Exact P values are available in the corresponding Source
Data file). The sample size for each disease group as: type 2 diabetes, 226,761, 1675,

15,063; hyperlipidemia, 185,110, 2688, 24,192; hypertension, 148,546, 3449, 31,032;
Ischemic heart disease, 222,053, 2008, 18,067; hypertensive heart disease, 249,794,
49, 435; atrial fibrillation and flutter, 228,799, 1734, 15,601; stroke, 245,035, 170,
1522; Parkinson’s disease, 248,047, 183, 1643; Alzheimer’s disease, 248,124, 221,
1985; hearing loss, 245,821, 248, 2224; COPD, 235,335, 1016, 9138; asthma, 213,092,
759, 6831; fibrosis and cirrhosis of liver, 248,910, 108, 965; diseases of oral cavity,
227,986, 1193, 10,729; gastro-esophageal refluxdisease, 208,125, 2340, 21,059; CKD,
234,434, 1283, 115,47; osteoporosis, 236,103, 899, 8086; polyarthritis, 241,791, 681,
6123; cataract, 231,365, 1753, 15,773 (control, early-onset, other-onset groups
respectively). COPD chronic obstructive pulmonary disease, CKD chronic kidney
disease, Met baseline metabolomic aging score. Source data are provided as a
Source Data file.
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Fig. 5 | Harrell’s C-index of four models for 19 aging-related disease-risk pre-
diction.Model 1 (light orange), traditional risk factors (self-reported sex, body
mass index, systolic blood pressure, Townsend deprivation index, alcohol intake
frequency, and smoking status) + chronological age; Model 2 (orange), traditional
risk factors + chronological age +metabolomic aging score; Model 3 (blue), tradi-
tional risk factors + chronological age + frailty index; Model 4 (red), traditional risk
factors + chronological age + frailty index +metabolomic aging score. Two-sided P
values indicating the differences in two Harrell’s C-indexes are calculated using Z-
score tests without adjustment for multiple comparisons. Data were presented as
Harrell’s C-indexes with 95% confidence intervals estimated in the testing dataset (a
random 30% subset for each disease). *P value <0.05; **P value <5E-03; ***P value

<5E-04; ns non-significant difference (Exact P values are available in the corre-
sponding Source Data file). The sample size for each disease: type 2 diabetes,
73,047; hyperlipidemia, 63,597; hypertension, 54,906; ischemic heart disease,
72,636; hypertensive heart disease, 75,081; atrial fibrillation and flutter, 73,839;
stroke, 74,016; Parkinson’s disease, 74,961; Alzheimer’s disease, 75,099; hearing
loss, 74,487; COPD, 73,644; asthma, 66,204; fibrosis and cirrhosis of liver, 74,994;
diseases of oral cavity, 71,970; gastro-esophageal reflux disease, 69,456; CKD,
74,178; osteoporosis, 73,524; polyarthritis, 74,577; cataract, 74,667. COPD chronic
obstructive pulmonary disease, CKD chronic kidney disease. Source data are pro-
vided as a Source Data file.
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of their greater increase in faster agers. These pro-aging NMR bio-
markers included GlycA, tyrosine, creatinine, three glycolysis-related
metabolites (glucose, lactate, and citrate), two ketone bodies (acetone
and 3-hydroxybutyrate) and seven lipoprotein-related compositions.
We observed the opposite pattern for 25 NMR biomarkers for which
theΔvalue decreasedprogressively from thebottom to themiddle and
to the top rate residual group (BH-adjusted p value <0.05). These 25
biomarkers were considered anti-aging and included four amino acids
(valine, histidine, glycine, and leucine), albumin, five polyunsaturated
fatty acids-related biomarkers, and 15 lipoprotein-related biomarkers.

Out of the 40pro-aging and anti-aging biomarkers identifiedhere,
we manually retrieved relevant biological functions and disease asso-
ciations for 13 non-lipid biomarkers. For the remaining 27 lipid-related
biomarkers that were highly correlated and had uncertain biological
roles, we examined their overlapwith the candidate causal biomarkers
of aging-related diseases identified in the MVMR analysis. Among the
15 pro-aging biomarkers, GlycA marks the level of inflammatory cyto-
kines in circulation and predicts cardiovascular and severe infection
risk51. Impaired and dysregulated glycolysis was identified as a cardi-
ovascular disease mechanism52 and a relevant biological aging
process53, which might account for the pro-aging effects of glucose,
lactate, and citrate. Acetone and 3-hydroxybutyrate, two ketone bod-
ies whose elevated concentrations in circulation have been linked with
ketoacidosis, a complication of uncontrolled diabetes and a significant
risk factor for mortality, might exert their pro-aging effects via indu-
cing oxidative stress54. Creatinine serves as a marker of renal damage
and was recognized as a risk factor for cerebrovascular diseases55. In
addition, XS_VLDL_PL_pct, a lipoprotein-related biomarker, was iden-
tified as a shared causal biomarker for multiple aging-related diseases
in the MVMR analysis, including senile cataract, atrial fibrillation and
flutter, and CKD. Among the 25 anti-aging biomarkers, albumin plays
multiple crucial roles, such as inhibiting endothelial apoptosis and
protecting against inflammation and oxidative stress56. Several amino
acids, including glycine, histidine, leucine, and valine, were associated
with a reduced risk of cardiovascular diseases57,58. Dietary

supplementation of these amino acids has been recommended to
mitigate various health issues59. Among the lipoprotein-related bio-
markers recognized as anti-aging factors, LDL_size emerged as a can-
didate protective causal biomarker for stroke, Alzheimer’s disease, and
liver fibrosis and cirrhosis. S_HDL_CE was identified as a candidate
protective causal biomarker for Alzheimer’s disease and ischemic
heart disease, while S_VLDL_PL_pct was a candidate protective bio-
marker for COPD and sensorineural hearing loss. Detailed biological
functions and candidate causal associations with aging-related dis-
eases for each pro and anti-aging biomarker are listed in Supplemen-
tary Data 20.

Discussion
The plasma metabolome carries dynamic biological signals reflecting
personal health status60. Previous studies have demonstrated the
potential of metabolomic biomarkers for disease16,17 and mortality risk
prediction18. With the availability of low-cost, standardized, high-
throughput NMRmetabolomic profiling61 and the promotion of blood
tests during medical checkups62, the identification and quantification
of aging-related metabolomic biomarkers hold potential for persona-
lized health monitoring and anti-aging interventions63.

Here, we present the largest aging-relatedmetabolomic profile to
date based on 325 NMR biomarkers from 250,341 individuals from the
UK Biobank. A subset of 54 aging-related representative metabolomic
biomarkers were identified based on their ability to predict all-cause
mortality. These aging-related biomarkers are involved in diverse
biological functions and metabolic pathways64, which might serve as
potential anti-aging intervention targets and facilitate further
exploration of the mechanism of aging-related diseases. High-
resolution analysis of the refined composition and structure of multi-
ple lipoprotein-related biomarkers, enabled by NMR profiling65, con-
tributes greatly to unraveling the roles of lipid metabolism in the
process of aging66.

In contrast to previous metabolomics-based studies that focused
narrowly on the associations of selected biomarkers with specific dis-
eases or their contribution to predictive performance16,17, our study
harnessedWGSdata from95,372 individuals alongside comprehensive
NMRmetabolomic profiles. This enabled us to characterize the genetic
architecture of the plasma metabolome67, yielding 325 NMR GWAS
summary statistics for downstream analyses. Using MVMR analyses,
we identified 439 candidate biomarker-disease causal pairs achieving
nominal significance, with 14 pairs reaching Bonferroni-corrected sig-
nificance. Colocalization analysis further supported 185 out of the 439
candidate causal pairs, providing insights into how these risk or pro-
tective biomarkers may affect disease onset. Moreover, the GWAS
summary statistics for 325 NMR biomarkers provide a repository for
future exploration68.

Among the 54 aging-related biomarkers, a significant portion of
the non-lipoprotein-related biomarkers had been identified in pre-
vious studies18,19,29. These included several amino acids, glycolysis-
related metabolites, two kidney function-related biomarkers (albumin
and creatinine), and one inflammation-related biomarker (GlycA).
There were also several differences from previous studies, particularly
related to lipoproteins, which might be attributed to the following
factors: (1) different sampling sources: NMRmetabolomic biomarkers
in theUKBiobankweremeasured fromEDTAplasma samples, whereas
MetaboAge utilized serum metabolomics19, and MetaboHealth
employed a mixture of EDTA plasma and serum samples from various
cohorts18. Previous studies have indicated that the source of sampling,
whether it is plasma or serum, can affect metabolomic profiling69; (2)
different cohort characteristics: individuals included in our study were
between 40 and 70 years old, whereas the studies used for Metabo-
Health and MetaboAge had a broader baseline age range spanning
from 18 to 109 years. Additionally, differences in other health or
socioeconomic features might affect the results; (3) different profiling

++ + ++
+ +

++


+
+

+


+
+++

+
+++

+

+


+++++++++++++++++++++++++++++++++++++++++++++++++++++++

0.85

0.90

0.95

1.00

0 4 8 12
Time (years)

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Rate Residual Group

+ Middle 50% (Reference)

+ Bottom 25% HR=0.77 (0.62-0.96)

+ Top 25% HR=2.31 (1.97-2.70)

Fig. 6 | Survival curves of differentmetabolomic aging rate groups. Three aging
rate groupswere defined based on the distribution of residuals of themetabolomic
aging rate regressed against baseline metabolomic aging score: top 25% (red),
middle 50% (blue), and bottom 25% (green). Data were presented as Kaplan–Meier
estimates with 95% confidence intervals. Hazard ratios (HR) for all-cause mortality
with 95% CIs were estimated using Cox proportional hazards regression with the
middle rate group as the reference. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-52310-9

Nature Communications |         (2024) 15:8081 10

www.nature.com/naturecommunications


Fig. 7 | Analysis of covariance comparing changes in each biomarker level
against its baseline among the different metabolomic aging rate groups.
Changes in each biomarker level against the baseline (Δvalue) were compared
between three aging rate groups using the Emmeans test with the baseline bio-
marker level adjusted as a covariate: top 25% (Fast, colored in red), middle 50%
(Middle, colored in blue), and bottom 25% (Slow, colored in green) based on the
distribution of the rate residuals regressed against the baselinemetabolomic aging
score. Two-sided P values from Emmeans tests are adjusted for multiple

comparisons using the Benjamini–Hochberg (BH) procedure. Data were presented
as estimated marginal means with 95% confidence intervals. *BH-adjusted P value
<5E-02; **BH-adjusted P value <5E-03; ***BH-adjusted P value <5E-04; ****BH-adjus-
ted P value <5E-05 (Exact P values are available in the corresponding Source Data
file). The full name of each metabolomic biomarker is provided in Supplementary
Data 1. The sample size for each NMR biomarker in the plot is 13,263. Source data
are provided as a Source Data file.
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backgrounds and noise in model training: although the NMR bio-
markers in MetaboHealth and MetaboAge were measured using the
same platform as in the UK Biobank, there were disparities in the
number and variety of measured biomarkers. Moreover, due to the
high degree of collinearity among the NMR biomarkers, the selection
of aging ormortality-related biomarkers duringmodel trainingmay be
influenced by the unique metabolomic background of each study70.
Non-replicated aging-related biomarkers across different studies
could, in fact, provide concordant and shared predictive information
due to their inherent correlation70.

By integrating 54 aging-related biomarkers, we developed a novel
metabolomic aging scorewith superior predictive performance for all-
cause mortality compared to alternative biological aging metrics
across various follow-up intervals in an out-of-sample dataset, both
before and after adjusting for chronological age.

Notably, the metabolomic aging score demonstrated optimal
predictive capability for short-term (1 to 5 years) mortality, surpassing
chronological age. This superiority might stem from the dynamic
nature of metabolomic profiles, which reflect immediate influences
from intrinsic and extrinsic factors on health status71. Cellular meta-
bolic reactions undergo rapid changes, while the resulting products or
waste build up in the body due to delayed or impaired clearance over
the course of aging72. However, the predictive signals carried by these
biomarkers may decay due to the numerous changes that occur over
longer follow-up periods73.

The characteristics of the plasma metabolome provide this score
with prospective clinical value, particularly in monitoring high-risk
populations such as frail seniors for whom complex physiological
examinations may be challenging74. Additionally, it serves as a tool for
detecting subtle metabolomic changes indicative of pathological pat-
terns, thereby facilitating early interventions75. Our subsequent ana-
lyses revealed the metabolomic aging score as a significant factor in
discriminating future early-onset patients of multiple aging-related
diseaseswho exhibited an accelerated paceof aging compared to their
peers76, even after adjustment for chronological age and other
potential confounders. Importantly, this score offered additional and
complementary predictive signals beyond traditional risk factors
indicative of aging-related disease risks.

We propose the application of the metabolomic aging score as a
complementary tool in various clinical scenarios, where it can be used
alongside chronological age and other clinical parameters to provide a
more comprehensive assessment. These include monitoring short-
term mortality risk, identifying aging-accelerated populations, and
enhancing disease-risk prediction when used in combination with
traditional risk factors.

In a longitudinal analysis involving 13,263 individuals with revisit
metabolomics data, we further defined a metabolomic aging rate
which reflects the rate of change in the aging-related metabolomic
profile and identified aging-accelerated individuals with higher mor-
tality risk. After regressing this rate against the baseline score and
obtaining the orthogonal residuals, we observed a gradual increase in
rate residuals with advancing age, suggesting that the metabolomic
profile of chronologically older individuals underwent more rapid
changes toward age-related pathology77. While themetabolomic aging
scorehelpeddiscernbiologically older individualswithin a peer group,
the metabolomic aging rate detected subtler differences in the rate of
change in their aging-related metabolomic profiles. Drawing an ana-
logy to the concepts of distance and speed inphysics, the combination
of both can predict how far a person will reach. We believed that
combining the metabolomic aging score (reflecting the current dis-
tance along the route of biological aging) with the metabolomic aging
rate (reflecting the current speed of biological aging) would yield
greater predictive power and insights into personal aging status and
future disease or mortality risk78. Based on the distinct changing pat-
terns across different aging rate groups, we identified 15 pro-aging and

25 anti-aging biomarkers. These findings not only illuminate potential
metabolic dysregulation accelerating the course of aging, but also
highlight promising targets for anti-aging interventions79. Aging is a
gradual and dynamic biological process. Longitudinal studies are
crucial for capturing indicative changes in bio-signals over time and
providing insights into the evolving nature of aging pathology80,81. The
metabolomic aging rate reflects the rate of change toward aging
pathology. With more samples from follow-up visits, increased reas-
sessment frequency, and the development of large-scale longitudinal
cohorts82, this rate can be further refined and improved. Such
advancements would contribute to more precise and personalized
aging assessments. Future research should focus more on the analysis
of biological aging rates, as exemplified in our study, which offers a
higher resolution of the pace of aging.

However, there are certain limitations to our current study. First,
participants included in our study were aged between 40 and 70 years
at the baseline assessment, with the majority falling within the 50–70
age group. The limited age range and imbalanced distribution among
age groups might introduce potential bias in model training83 and
diminish the generalizability of the metabolomic aging score and the
metabolomic aging rate to broader populations. Second, the under-
representation ofmore deprived and less healthy individuals in the UK
Biobank is well documented84. Thus, applying our findings outside the
studied population warrants caution. We used a sub-cohort recruited
from Scotland as an out-of-sample dataset for validation, given the
distinct demographic and health-related characteristics across differ-
ent regions25. Nevertheless, external validation in other cohorts is
warranted. Third, it is crucial to interpret candidate causal relation-
ships identified in the MVMR analysis with caution, as only rigorous
randomized controlled trials are the gold standard for testing cause-
effect relationships85. Moreover, the MVMR analysis detected the
direct effect of an exposure on the outcome, independent of other
correlated exposures, rather than the overall effect on that outcome.
This is because the exposure might influence the outcome indirectly
via other related exposures in a multivariable scenario33. Importantly,
similar to multivariable regression, multicollinearity due to the inclu-
sion of correlated exposures could lead to unstable estimates and
reduced statistical power inMVMR. Therefore, careful consideration is
needed when determining which specific biomarkers influence which
diseases86. Lastly, aligning with earlier research into the strengths and
limitations of metabolomics for disease-risk prediction, our findings
underscored that the predictive power of the plasma metabolome
exhibits some degree of disease specificity16. It is plausible that the
metabolic profile varies in its contribution to different disease
mechanisms47, highlighting the challenge of applying a one-size-fits-all
approach in metabolomics-based risk prediction5.

In conclusion, our study presents the most extensive metabolomic
profile related to biological aging and highlights the potential of our
metabolomic aging score in predicting mortality and disease-risk.
However, our intention in devising this scorewas not to recommend it as
a singular authoritative metric of biological aging. Instead, this score
captures the aging-related signal at the metabolome level. Given the
multifaceted nature of aging1, future research should integrate diverse
aging-relatedmetrics frommultiple dimensions, for example, combining
proteomic aging scores87 and epigenetic aging scores88 with the meta-
bolomic aging score to unveil a more comprehensive profile of aging5.

Methods
Ethical compliance
UK Biobank has approval from the North West Multi-centre Research
Ethics Committee as a Research Tissue Bank (RTB) approval. This
approval means that researchers do not require separate ethical
clearance and can operate under the RTB approval. Details on the
ethics and governance framework of the UK Biobank are provided on
the website (https://www.ukbiobank.ac.uk/media/0xsbmfmw/egf.pdf).
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This study has been approved under the UK Biobank application
ID 103082.

Data processing and quality control
The UK Biobank is one of the largest biomedical databases89,90 and
includes data frommore than 500,000participants recruited between
2006 and 2010 at 22 centers across England, Scotland, and Wales.

Nuclear magnetic resonance (NMR) metabolomics data available
in the UK Biobank (updated in July 2023) included 249 metabolomic
biomarkers (168 in absolute concentrations and 81 in derived ratios)
from EDTA plasma samples of ~275,000 participants. Technical varia-
tion in these data was removed using the “ukbnmr” R package21.
Seventy-six additional biomarker ratios with potential biological sig-
nificance, but not available in the original data, were also computed
and included in our analysis, resulting in a total of 325 NMR
biomarkers21. The inclusion criteria and rationale behind these addi-
tional 76 biomarker ratios can be summarized as follows: (1) supple-
menting 20 additional lipoprotein fractions for three lipoprotein
classes (low-density lipoprotein, very-low-density lipoprotein, and
high-density lipoprotein) and for total serum lipids based on the ori-
ginal 14 lipoprotein subclasses; (2) decomposing total cholesterol into
free cholesterol and esterified cholesterol and subsequently deriving
more refined ratios for each lipoprotein class and subclass; (3)
decomposing polyunsaturated fatty acids into omega-3 fatty acids and
omega-6 fatty acids and subsequently deriving more refined ratios
composed of omega-3 and omega-6 fatty acids.

After quality control, the 168 NMR biomarkers in absolute con-
centrations were log1p-transformed to better approximate a normal
distribution.

Sample inclusion and model construction
To select representative NMR biomarkers associated with biological
aging and predictive of all-cause mortality from the 325 highly corre-
lated biomarkers, we adopted a LASSO Cox regression model with all-
cause mortality as the endpoint. Participants recruited from the 20
assessment centers in England and Wales (n = 234,553) were included
in the training dataset, while participants recruited from the two
assessment centers in Scotland (n = 15,788) were included in an out-of-
sample validation dataset. The date of attending the assessment center
(UKB field ID: 53) was established as the baseline time point, while the
date of death (up to December 8, 2022, for participants in England and
Wales; December 19, 2022, for participants in Scotland) was desig-
nated as the endpoint. Participants who died of external accidents
were censored (UKB field ID: 40001, deduced from the primary cause
of death ICD-10 codes).

The LASSO Cox regression model was trained using the “glmnet”
R package91, with 325 NMR biomarkers as independent variables and
all-cause mortality as the dependent variable. We performed tenfold
cross-validation to identify the optimal hyperparameter λ, which
controls themagnitude of the penalty applied. The algorithm searched
across 1000 possible values for λ and, for each specific λ, calculated
the cross-validation partial likelihood deviance. The λ (0.00088527)
that resulted in the lowest cross-validation partial likelihood deviance
was chosen to fit the final model. A total of 54 out of 325 metabolomic
biomarkers were assigned non-zero β coefficients after L1 regulariza-
tion. The hazard ratios for all-cause mortality for each selected NMR
biomarker were computed by standardizing the processed metabo-
lomic data and exponentiating the corresponding estimated coeffi-
cients. A metabolomic aging score was integrated as the linear
combination of the 54 aging-related biomarkers weighted by their
respective coefficients assigned by the model.

Genome-wide association study of 325 NMR biomarkers
A subset of about 200,000 individuals with available whole-genome
sequencing data were selected. Samples that failed to pass quality

requirements (UKB field ID: 23093), samples with sex chromosome
aneuploidy (UKB field ID: 22019), and samples with discordant genetic
sex (UKB field ID: 22001) and self-reported sex (UKB field ID: 31) were
excluded. Only samples whose genetic ethnic group was White (UKB
field ID: 22006)were included, resulting in a final sample size of 95,372
individuals.

We used the whole-genome sequencing data from the UKB 200k
release in GraphTyper joint call pVCF format on the UKB RAP92. Mul-
tiallelic variants were decomposed into biallelic variants using bcftools
(v1.15.1). Quality control of SNPs and indels was performed based on
the following criteria93: (1) alternative alleles with AAscore >0.5; (2)
variant sites with the tag “FILTER = PASS”; (3) Hardy–Weinberg P value
>10E-15; (4) genotypemissing rate <10%. Further, only commonvariant
sites (MAF >0.1%) were included in the GWAS. NMR data processed
after quality control was inverse rank normalized with age, age2, sex,
age*sex, age2*sex, BMI, medication status, smoking status, alcohol
intake frequency, fasting time, assessment centre and genetic PCs 1–10
included as covariates. GWAS analyses were conducted using the
STAAR framework (individual variant analysis provided within), which
was suitable for biobank-scale WGS studies with abundant functional
annotations to promote the power of association analysis94,95. The
statistical significance threshold was defined as 5E-09 for GWAS ana-
lysis, including low-frequency variants (MAF >0.1%)96 divided by five
principal components, which together accounted for >80% of the
variation in the 325 biomarker levels, instead of dividing the total
number of metabolomic biomarkers included in the study, which
would be too conservative given the high collinearity between these
biomarkers68. Thus, we chose 1E-09 as the appropriate p value
threshold to claim statistical significance.

GWAS summary statistics for each biomarker were further
clumped to identify independent loci accounting for linkage dis-
equilibrium between variants, with a clumping window size of 500 kb
around the index variant (p value <1E-09) and a linkage disequilibrium
r2 threshold of 0.1.

Phenotypic and genetic correlations among 325 metabolomic
biomarkers
Pairwise phenotypic correlations among the 325NMRbiomarkerswere
estimated using Pearson’s correlation coefficient. Pairwise genetic
correlations were calculated based on the 325 GWAS summary statis-
tics from our study using LDSC32, with the European ancestry popu-
lation in the 1000 Genomes Project as the LD score reference panel.
The p value threshold to claim statistically significant correlations was
Bonferroni-corrected to 0.01 (0.05/5), as five principal components
accounted for more than 80% of the variation in the metabolomic
biomarker data.

Calculation and inclusion of different aging metrics
To compare the metabolomic aging score from our study to previous
metabolomics-based aging metrics, we calculated the MetaboHealth
score, which was composed of 14 all-cause mortality-related NMR
biomarkers18,97, in the Scottish sub-cohort. The frailty index in the UK
Biobank cohortwas calculated following aprevious study and included
49 health deficits30. Thesedeficitsmet the following criteria: indicators
of poor health; more prevalent in older individuals; neither rare nor
universal; coveringmultiple areas of functioning; available for ≥80% of
participants. The sum of deficits was divided by the total number of
possible deficits, resulting in frailty index scores between zero and
one, with higher scores indicating greater levels of frailty. Participants
with missing data for ≥10/49 deficits were excluded30. Relative leuko-
cyte telomere length (LTL) was measured by quantitative PCR, calcu-
lated as T/S ratio (telomere repeat copy number to single copy gene
number), and adjusted for technical and operational parameters98

(UKB field ID: 22191). Chronological age was included as the partici-
pant’s age at recruitment (UKB field ID: 21022).
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Associations between 54 aging-related metabolomic bio-
markers and 50 frailty-related phenotypes
The 54 aging-related NMR biomarkers were standardized before calcu-
lating their associations with each of the 49 health deficits included in
the frailty index and the overall frailty status. The overall frailty status
was defined as “non-frail” (frailty index ≤0.08), “pre-frail” (frailty index:
between 0.08 and 0.25), and “frail” (frailty index ≥0.25). The 54 aging-
related representative biomarkers were included as independent vari-
ables, and each frailty-related phenotypewas included as the dependent
variable, with chronological age included as a covariate in multivariable
logistic regression models. Frailty-related phenotypes with more than
two categories were treated as categorical dependent variables with
multiple levels, and associations were estimated with multinomial
logistic regression models instead. The p value threshold was corrected
for multiple testing using the Bonferroni procedure: 0.05/5/50= 2E-04
(0.05 refers to the alpha level, 5 refers to the number of principal
components, and 50 refers to the number of frailty-related phenotypes).

Multivariable Mendelian randomization (MVMR) analysis
We performed two-sample MVMR to identify potential causal rela-
tionships between the 325 metabolomic biomarkers, based on our
GWAS summary statistics calculated from WGS data in a subset of
95,372 individuals, and 20 aging-related diseases, based on available
GWAS summary statistics from the FinnGen consortium (data
release R9)99.

MVMR is an extension of traditional Mendelian randomization. It
tests for direct causal effects of multiple exposures on an outcome of
interest and provides unbiased estimates, allowing for highly corre-
lated exposures and pleiotropic instrumental variables when certain
assumptions are satisfied33,100–102. Those assumptions are derived and
modified from three critical assumptions for instrumental variables in
univariable Mendelian randomization33,100,101: (i) the “relevance”
assumption requires the genetic variants to be associated with at least
one of the exposures; (ii) the “independence” assumption requires the
genetic variants to be independent of all confounders of each
exposure-outcomeassociation; (iii) the “exclusion restriction” requires
the genetic variants to not affect the outcome except through their
effects on the exposures included in the analyses.

Considering the comprehensive genetic correlations between the
325 NMR biomarkers and notable pleiotropy in multiple loci, the 325
NMR biomarkers were initially taken together as a set of exposures,
and each aging-relateddiseasewas treated as theoutcome tominimize
unmeasured pleiotropy of the instrumental variables.

Each NMR biomarker’s GWAS summary statistics underwent
clumping to identify independently significant variants (using a win-
dow size of 500 kb around the lead variant, LD r2 threshold of 0.1 and p
value threshold of 1E-09), resulting in 5680 index variants marginally
associated with at least one of the NMR biomarkers. To ensure the
independence of the instrumental variables (IVs) included in the
MVMR analyses, further pruning among these 5680 variants was per-
formedwith a 200 kbwindowsize andpairwise r2 thresholdof 0.5. This
process yielded 3171 independent variants, which were retained as
candidate IVs.

Contrary to univariable Mendelian randomization, MVMR
requires the marginal association matrix between the IVs and expo-
sures to be of full column-rank. Multicollinearity within the exposure-
IV associationmatrix can lead to unstable estimates and inflated type-I
errors, thereby reducing statistical power86. Tomeet this requirement,
we extracted a full-rankmatrix (with a tolerance for determining a rank
set of 1E-07) and eliminated redundant vectors from the exposure-IV
marginal association matrix (βxi matrix). We retained a total of 3167
candidate IVs and 287 exposures in the full-rank associationmatrix for
further analysis. After harmonizing allele effects between the expo-
sures and outcomes, a total of 2164 IVs were included in the MVMR
analysis (Supplementary Data 11).

Four MVMR analysis methods were utilized: MVMR-IVW, MVMR-
Egger, MVMR-Median, and MVMR-Lasso. Each method provides valid
estimates of causal effects under varying sets of relaxed
assumptions103: MVMR-IVW provides unbiased estimates when all
genetic variants are valid IVs or, in the presence of invalid IVs, if the
pleiotropy is balanced and the InSIDE (Instrument strength indepen-
dent of direct effect) assumption is met; MVMR-Egger is robust to
directional pleiotropy and provides unbiased estimates even when all
IVs are invalid, provided that the InSIDE assumption is met; MVMR-
Median provides unbiased estimates when at least 50% of the weights
come from valid IVs, allowing for the IV assumptions to be violated in a
more general manner than MVMR-Egger; MVMR-Lasso identifies valid
IVs and accounts for pleiotropy caused by invalid IVs without loss of
power and without the requirement for the InSIDE assumption. Each
method offers unique advantages tailored to specific scenarios. When
combined, they provide complementary and supportive evidence for a
candidate causal estimate, thereby strengthening the overall findings.

Results from MVMR-IVW represented our primary findings, while
the results from the other three methods represented sensitivity ana-
lyses. Two p value thresholds were considered to claim statistical sig-
nificance: a multiple-testing corrected p value using the Bonferroni-
correction set to 0.05/ (5 PCs × 20 diseases) = 5E-04, and a nominal p
value without correction for multiple testing set to 0.05.

Colocalization analysis
To further investigate whether the potential causal relationships
between the NMR biomarkers and diseases were due to the same
causal variant and not from different variants in linkage disequilibrium
(whichmight lead to false-positive results inMendelian randomization
due to horizontal pleiotropy)35, we performed colocalization analysis
for 439 candidate biomarker-disease causal pairs (involving 213 NMR
biomarkers and 20 aging-related diseases) with nominal significance in
both MVMR-IVW and MVMR-Egger analyses (p value <0.05).

Target loci to include in colocalization analysis were defined as a
window size of 1Mb around the independently significant index var-
iants of each NMR biomarker included in colocalization analysis.
Bayesian posterior probabilities of different causal variant configura-
tions were calculated using the “coloc” R package36, with prior prob-
abilities of SNP causality and colocalization set to default (p1 = 1E-04,
p2 = 1E-04, and p12 = 1E-5). A posterior probability for hypothesis 4
(PPH4, associationwith both traits at a shared causal variant35) of ≥80%
was considered suggestive evidence for colocalization. Themost likely
colocalized causal variant or variant setswere extracted and annotated
for target genes and associated phenotypes using the Ensembl Variant
Effect Predictor (VEP)37.

Comparisons of the predictive performance of different aging
metrics for all-cause mortality across different follow-up
intervals
First, pairwise correlations between different aging measures (the
metabolomic aging score, MetaboHealth, the frailty index, LTL, and
chronological age) were estimated using Pearson’s correlation. Then,
the predictive performance of each aging measure for all-cause mor-
tality across different follow-up intervals (1 year, 2 years, 3 years, 4
years, 5 years, 10 years, and 15 years) were estimated by the area under
the receiver operating characteristic curve (AUC) using the “timeROC”
R package104 among 15,788 participants from Scotland as an out-of-
sample testing dataset. We reverse-coded LTL to ensure that the
interpretation of effect sizes for all aging indicators was consistent.
Differences in AUCs were tested using DeLong’s test. Next, four bio-
logical aging measures (the metabolomic aging score, MetaboHealth,
the frailty index, and LTL) were regressed against chronological age,
and their residualswereused for downstreamanalyses to validate their
predictive performance independent of chronological age. Age-
stratified analyses were conducted in three chronological age
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groups: 40–50, 51–60, and 61–70 years.Within each chronological age
group, the predictive performance of each biomarker’s residual inde-
pendent of chronological age was investigated in the same manner,
and hazard ratios for all-cause mortality across different follow-up
intervals were estimated using Cox proportional hazards models both
within each age group and among all individuals in the Scottish
dataset.

Differences in the metabolomic aging score discriminate future
early-onset, other-onset, and disease-free groups for aging-
related diseases
We included 19 out of 20 aging-related diseases, except for lower-back
pain, in the following analyses. The first disease report dates (UKB field
ID: 1712) were compared with the dates of attending the assessment
center to calculate time-to-event. Individuals with a prevalent disease
diagnosis before the baseline assessment were excluded from each
disease-specific analysis.

The “early-onset” group of future patients for each disease was
defined as those whose age at disease diagnosis was within the 10%
youngest age among all incident cases. The age-at-diagnosis thresh-
olds to define early-onset patients were: 57 for ischemic heart disease,
58 for stroke, 59 for COPD, 68.1 for Alzheimer’s disease, 54.6 for type
2 diabetes, 60 for CKD, 53.8 for sensorineural hearing loss, 58.2
for hypertensive heart disease, 63 for cataract, 60.3 for atrial fibrilla-
tion and flutter, 55.7 for fibrosis and cirrhosis of the liver, 63.6 for
Parkinson’s disease, 57.4 for polyarthritis, 50.1 for diseases of the oral
cavity, 52.2 for asthma, 54.6 for hypertension, 55.2 for hyperlipidemia,
59.2 for osteoporosis, and 53.7 for gastro-esophageal reflux disease.
The remaining incident cases were labeled as other-onset and those
without the disease as disease-free. Differences in the average meta-
bolomic aging score at baseline among the three groups were com-
pared using pairwise comparisons of estimated marginal means
(“emmeans test”) with adjustment for baseline chronological age as a
covariate. BH-adjusted p values <0.05 were considered statistically
significant.

Moreover, for each disease cohort, differences in baseline dis-
tributions of basic health and demographic characteristics (including
chronological age, self-reported sex, BMI, systolic blood pressure,
Townsend deprivation index, alcohol intake frequency, and smoking
status) were compared among future early-onset, other-onset, and
disease-free groups using the Kruskal–Wallis rank-sum test and Pear-
son’s chi-squared test. Multinomial logistic regression models were
fitted with the baseline metabolomic aging score as an independent
variable, differentially distributed participant characteristics as cov-
ariates, and the disease status (defined as early-onset, other-onset, and
disease-free) as the dependent variable.

Disease-risk prediction with different aging metrics
For disease-risk prediction, prevalent cases were excluded as pre-
viously described. First, four aging measures, including chronological
age, the metabolomic aging score, the frailty index, and LTL, were
used independently for disease-risk prediction. Performance was
quantified by AUCs, and differences between them were tested using
DeLong’s test. Then, four multivariable prediction models with dif-
ferent combinations of these aging measures and traditional risk fac-
tors (self-reported sex, body mass index, systolic blood pressure,
Townsend deprivation index, alcohol intake frequency, and smoking
status) were built as follows: Model 1 (traditional risk factors +
chronological age), Model 2 (traditional risk factors + chronological
age +metabolomic aging score), Model 3 (traditional risk factors +
chronological age + frailty index) and Model 4 (traditional risk fac-
tors + chronological age + frailty index +metabolomic aging score).
The full sample included in our study was randomly divided into a
training and test set with a 7:3 ratio. Four multivariable prediction
models were built using Cox proportional hazards regression in the

training set for each disease. The time-to-event was determined with
the baseline date as the starting point and the first disease-report date
or the censoring date (the latest disease-report date among all incident
cases), whichever came first, as the endpoint. Prediction performance
was evaluated in the test set using Harrell’s C-index. The differences
inHarrell’sC-indexes of differentmodelswere comparedusingZ-score
tests105.

Calculation of metabolomic aging rate with revisit
metabolomics data
There were 13,263 individuals with both baseline and revisit
metabolomic data (median follow-up interval: 4.4 years), enabling
us to calculate their rate of change in the aging-related metabo-
lomic profile.

The metabolomic aging rate in our study was defined as “Δ
metabolomic aging score/follow-up time”, corresponding to the
average rate of change in score during the follow-up period. The
residuals of the metabolomic aging rate were regressed against
the baseline metabolomic aging score to exclude the effect of the
baseline score on the rate of change. Cox proportional hazard models
were fitted to estimate the hazard ratio (per SD) of the residuals of
this rate among all the samples as well as within three chronological
age groups (40–50, 51–60, and 61–70 years), with chronological
age included as a covariate. Subsequently, three aging rate groups
were defined based on the interquartile range of the residuals of the
metabolomic aging rate: top 25%, middle 50%, and bottom 25%. Dif-
ferences in the mortality hazards among the different rate residual
groups were compared using Cox proportional hazards models. Age-
stratified analyses across the three chronological age groups (40–50,
51–60, and 61–70 years), adjusted for chronological age, were also
performed.

Identification of anti-aging and pro-aging biomarkers
We calculated the difference between the baseline level and the revisit
level for each of the 54 representative aging-related NMR biomarkers
and obtained their residuals regressed against the baseline level for
downstreamanalysis.Metabolomic changing profiles for individuals in
the top 5% aging rate residual group and the bottom 5% rate residual
groupwere plotted, with each row representing an individual and each
column representing a biomarker. Rows and columns were hier-
archically clustered using the Ward.D2 method based on their Eucli-
dean distances.

Further, the differences in the average change of each biomarker
among different rate residuals groups (top 25%, middle 50% and bot-
tom 25%) were compared, with the baseline level adjusted for as a
covariate using the “emmeans test”. BH-adjusted p values <0.05 were
considered statistically significant differences in average change.

Statistics and reproducibility
Our study is designed as an observational studywith samples recruited
from the UK Biobank cohort. No statistical methods were used to
predetermine the sample size. Sample inclusion and exclusion criteria
have been provided in the above “Sample inclusion and model con-
struction” section. Traditional experimental design elements such as
randomization and blinding are not applicable to our study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for this research are obtained from the UK Biobank and are
publicly available to approved researchers for health-related research
(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-
access). The NMRmetabolomic data in the UK Biobank are generated
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by Nightingale Health and are provided in Category 220 (https://
biobank.ndph.ox.ac.uk/showcase/label.cgi?id=220). The GWAS sum-
mary statistics for 325 NMR biomarkers have been deposited in the
NHGRI-EBI GWAS Catalog database with study accession IDs ranging
from GCST90445833 to GCST90446157. Detailed GWAS Catalog
assession IDs for each NMR biomarker are provided in Supplementary
Data 21. For example, GWAS summary statistics of acetate has been
deposited at http://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/GCST90445001-GCST90446000/GCST90445833/. The data
for figures in this study are provided in the Source Data file. Also, the
data that support the findings of this study are available from the
corresponding authors upon request. Source data are provided with
this paper.

Code availability
Relevant analyses in this study were conducted using R version 4.2.0
(https://www.r-project.org), PLINK 2.00 alpha (https://www.cog-
genomics.org/plink/2.0/), Bcftools (https://samtools.github.io/
bcftools/), and LDSC (LD score) v1.0.1 (https://github.com/bulik/
ldsc). No customized code was developed.
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