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A B S T R A C T

The You Only Look Once (YOLO) deep learning model iterations—YOLOv7–YOLOv8—were put through a 
rigorous evaluation process to see how well they could recognize oil palm plants. Precision, recall, F1-score, and 
detection time metrics are analyzed for a variety of configurations, including YOLOv7x, YOLOv7-W6, YOLOv7- 
D6, YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, and YOLOv8x. YOLO label v1.2.1 was used to label a dataset of 
80,486 images for training, and 482 drone-captured images, including 5,233 images of oil palms, were used for 
testing the models. The YOLOv8 series showed notable advancements; with 99.31 %, YOLOv8m obtained the 
greatest F1-score, signifying the highest detection accuracy. Furthermore, YOLOv8s showed a notable decrease in 
detection times, improving its suitability for comprehensive environmental surveys and in-the-moment moni
toring. Precise identification of oil palm trees is beneficial for improved resource management and less envi
ronmental effect; this supports the use of these models in conjunction with drone and satellite imaging 
technologies for agricultural economic sustainability and optimal crop management.

1. Introduction

Oil Derived from stemless monocots, palm oil is essential for biodi
versity conservation and plays a major role in tropical ecosystems. These 
monocots, which are widely distributed in South America, Africa, and 
Southeast Asia, play a significant role in the world’s vegetable oil supply 
and have a significant impact on agricultural economies [1]. With 
Indonesia emerging as the world’s top producer, followed by Malaysia, 
Thailand, Nigeria, and several Latin American countries, palm oil’s 
exponential rise in significance on the global market has spurred not 
only economic advancement but also other developmental benefits like 
improvements in agricultural methodologies, significant progress in 
reducing poverty, and robust infrastructure development [2]. However, 
there are significant sustainability issues associated with the oil palm 
farms’ rapid expansion. This sector’s growth is being closely watched, as 
deforestation, environmental degradation, and socioeconomic tensions 
accompany it. This is raising questions about the sector’s long-term 
economic viability and environmental sustainability [3], highlighting 
the need to maximize agricultural productivity while maintaining 

environmental stewardship and fair economic benefits. Accurate palm 
tree counts, and monitoring has been one of the main areas of focus to 
address the issues with sustainable palm oil production. Accurate palm 
tree counting is necessary for evaluating the health of plantations, effi
ciently allocating resources, and ensuring compliance to environmental 
laws. Palm tree counting used to be a labor-intensive and error-prone 
procedure, but technological improvements have changed this.

Historically, the monitoring of palm oil fields has been dependent on 
labor-intensive methods like manual tree counting and identification, 
which work well for smaller plantations but not well enough for big 
commercial operations. The scope and frequency of monitoring opera
tions are limited by these antiquated methods, which are not only biased 
and time-consuming but also error-prone [4]. As such, the use of 
contemporary technology represents a profound paradigm change in the 
way these issues are addressed. This study recommends that drones, 
machine learning, and remote sensing be used to monitor palm oil plants 
[5]. These cutting-edge technologies make it easier to collect and 
interpret data accurately and efficiently, giving real-time insights about 
plantation health, tree density, and changes in land usage. Plantation 

* Corresponding author.
E-mail addresses: mudassir@student.usm.my (I.M. Shaikh), nishat@usm.my (M.N. Akhtar), aaabid@psu.edu.sa (A. Aabid), oahmed@psu.edu.sa (O.S. Ahmed). 

1 Mohammad Nishat Akhtar and Abdul Aabid have contributed equally as corresponding author.

Contents lists available at ScienceDirect

Biotechnology Reports

journal homepage: www.elsevier.com/locate/btre

https://doi.org/10.1016/j.btre.2024.e00853
Received 29 June 2024; Received in revised form 20 August 2024; Accepted 22 August 2024  

Biotechnology Reports 44 (2024) e00853 

Available online 30 August 2024 
2215-017X/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:mudassir@student.usm.my
mailto:nishat@usm.my
mailto:aaabid@psu.edu.sa
mailto:oahmed@psu.edu.sa
www.sciencedirect.com/science/journal/2215017X
https://www.elsevier.com/locate/btre
https://doi.org/10.1016/j.btre.2024.e00853
https://doi.org/10.1016/j.btre.2024.e00853
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


managers and environmental authorities can make well-informed de
cisions that improve sustainable practices and ensure environmental 
stewardship and economic efficiency with the use of such timely and 
accurate data [6].

Drones have emerged as a key instrument in the revolution of palm 
tree recognition within oil palm plantations thanks to artificial intelli
gence, computer vision, and machine learning [7]. Drones with so
phisticated aerial photography equipment provide accurate 
measurements of tree density and canopy coverage. Their capacity to 
adapt to difficult terrains, such rocky or heavily forested areas, makes 
thorough crop monitoring possible. Drones’ high-resolution photos are 
essential for precisely recognizing palm plants in the surrounding flora 
[8]. Drones are unique in that they gather data incredibly quickly, 
making real-time surveillance possible, which is crucial for the early 
identification of anomalies like disease outbreaks or unauthorized ac
tivity. Drones are essential for improving the detection of palm trees and 
play a major role in supporting sustainable agricultural practices by 
delivering accurate, timely, and efficient data. Because of their many 
advantages, they are vital resources for preserving the sustainability, 
long-term health, and environmental stewardship of palm oil fields [9]. 
Drone technology and remote sensing have become an effective pair for 
palm tree counts. Drones can produce high-resolution aerial imagery 
that makes it possible to map plantations in detail, which makes it 
possible to count and identify individual trees with amazing accuracy 
[10]. A growing number of machine learning algorithms are being uti
lized to automate the counting process by identifying palm trees from 
other vegetation by analyzing aerial images. These algorithms make use 
of deep learning models such as Convolutional Neural Networks (CNNs).

Research has demonstrated that precision agriculture—which is 
fueled by deep learning and advanced imaging techniques—can signif
icantly boost output while reducing environmental damage [11,12]. 
Adopting these technologies has significant benefits from an economic 
standpoint as it can maximize resource utilization, reduce expenses, and 
boost profitability [13,14]. The YOLO algorithm and other AI technol
ogies can be integrated into farming operations to increase both sus
tainability and financial returns. This technological progress in 

agriculture supports sustainable practices and boosts economic effi
ciency [15]. The YOLO algorithm evaluates the entire image using 
Convolutional Neural Networks (CNNs), generating predictions for 
bounding box coordinates and class probabilities [16,17,18]. The YOLO 
family has evolved with variants such as YOLOv5 [19], YOLOX [20], 
PP-YOLO [21], PP-YOLOv2 [22], YOLOv6 (C. [23]), YOLOv7 [24], and 
YOLOv8 [25], each offering improvements in speed and accuracy. These 
modifications have broadened the YOLO algorithm’s utility, embracing 
tasks such as tree counting, Fresh Fruit Bunches (FFB) counting, and 
even harvesting systems [26,27,28].

Deep learning research has improved oil palm tree identification and 
measurement methodologies. [29] used the sliding window approach, a 
CNN, and the LeNet architecture to achieve a stunning 96 % detection 
accuracy in distinguishing oil palm trees in high-resolution Quick Bird 
satellite pictures. Another study [30] provided a technique that included 
sliding window operations, the AlexNet architecture of the Deep Con
volutional Neural Network (DCNN), and post-processing techniques, 
with an accuracy range of 92–97 %. [31] suggested a comprehensive 
system for data processing and storage that integrates the CNN method 
with the LeNet architecture and Geographic Information System (GIS) 
capabilities. Using high-resolution Worldview-3 satellite photos, they 
spotted juvenile and young oil palm plants with 95.11 % and 92.96 % 
accuracy, respectively. Similarly, [32] used Transfer Learning with the 
VGG-16 architecture and an SVM classifier to detect oil palm plants in 
UAV pictures, obtaining detection accuracy of 97–98 %. [33]developed 
the Faster R-CNN approach, which achieved outstanding accuracy rates 
of 97.06 %, 96.58 %, and 97.79 % for detecting and counting oil palm 
plants in three unique regions. The [34] demonstrated high accuracy in 
detecting oil palm trees, with F1-scores of 97.28 % for YOLOv3, 97.74 % 
for YOLOv4, and 94.94 % for YOLOv5m, demonstrating the utility of 
deep learning models in precision agriculture. There are still a few issues 
with oil palm tree detection even with improvements made in CNN- and 
previous YOLO-based techniques. High-quality input data and signifi
cant computational resources are needed for these techniques, which 
might not be easily accessible in remote locations. For best results, im
ages with a high resolution are required, but they can be expensive and 

Fig. 1. Balancing Economic and Environmental Factors in Oil Palm Detection.
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don’t always show environmental variation. Accurate detection may be 
impacted by weather and illumination sensitivity. Furthermore, smaller 
organizations may find it more difficult to use training models due to 
their complexity, which requires a significant investment of time and 
skill. The actual usefulness of these technologies is limited by the 
labor-intensive and costly nature of creating huge, datasets for training. 
Fig. 1 showcases how YOLOv7 and YOLOv8 can be utilized for AI-based 
detection and counting of palm oil trees, and how the results of their 
implementation influence such societal sectors as sustainability and 
economy. The main component is the utilization of these enhanced 
object detection algorithms to analyze drone-acquired images, for 
identifying and counting the palm oil trees in real-time. This is an 
addition to saving time, energy, and resources involved in completing 
the task manually should the technology not exist, the technology fosters 
sustainable working in that the time taken, and the efforts applied 

towards the job are less than those required if done by hand. The impact 
goes economic where there is increased accuracy on the management 
and monitoring of the plantations hence added value of the increase in 
palm oil production through improved yields effectively making it more 
economically viable and sustainable.

With a focus on the various challenges posed by plantation condi
tions like sparse, densely populated, and overlapping oil palm trees as 
well as the presence of closely related vegetation, our research aims to 
improve the precision and accuracy of oil palm tree detection through 
high-resolution drone imagery. Our goal is to accurately identify oil 
palm trees in these challenging environments by utilizing the object 
recognition and training capabilities of sophisticated Convolutional 
Neural Networks (CNNs) on large, annotated datasets. To efficiently 
detect oil palm trees from other species, our technology combines 
multispectral and hyperspectral imaging techniques to exploit differ
ential spectral fingerprints. With the goal of revolutionizing oil palm tree 
detection, this cutting-edge computational method combines the best 
aspects of machine learning, computer vision, and a variety of data 
sources. The goal is to overcome the difficulties associated with precisely 
counting oil palm trees in a variety of situations, moving away from 
labor-intensive, conventional techniques and toward a more effective, 
long-lasting, and economically viable monitoring system for the palm oil 
sector. This kind of research is essential for creating long-term, 
comprehensive strategies for managing palm oil resources and for 
meeting the urgent demand for precise, accurate, and sustainable 
monitoring systems.

The paper’s structure is arranged as follows: The methodology is 
explained in Section 2; the results and discussions are presented in 
Sections 3 and 4, respectively; and the paper is concluded in Section 5.

2. Methodology

2.1. Flowchart of this study

Fig. 2. illustrates methods to detect oil palm trees using the YOLOv7 
and YOLOv8 models. It starts with the model’s initialization and then 
moves on to pre-process the input data. Following pre-processing, the 
data is loaded into YOLO models for inference. During the model testing 
phase, oil palm tree detection happens when the models use their 
trained algorithms to detect oil palm tree features in the input. If an oil 
palm tree is spotted, the model follows a specific branch of the pro
cedure designed for positive detection; otherwise, it takes a different 
path for non-detection. The flow continues with post-processing stages 
and returns the output, which most likely comprises the location of the 
detected oil palm trees within the photos, as well as the detection’s 
confidence score. This procedure illustrates a typical use of object 

Fig. 2. Flow of the study.

Fig. 3. YOLOv7 Architecture.
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identification models in machine learning, which are used to recognize 
specific items within visual data.

2.2. YOLOv7 architecture and improvements

In terms of object detection, YOLOv7 [24] is an evolution of the 
YOLO family, incorporating intricate structural innovations to improve 
detection precision and processing efficiency. The architecture, as 
shown in Fig. 3. begins with an image input, which is transformed within 
the neural network to detect and pinpoint objects.

At its core, the architecture is divided into three sections: the back
bone, neck, and head. The backbone is built for feature extraction, with 
an arrangement of Convolutional Blocks (CBL), Efficient Local Attention 
Network(ELAN) modules for enriched feature extraction, and Max
Pooling layers to reduce spatial dimensionality. This backbone culmi
nates in an improved variant of Spatial Pyramid Pooling with Channel 
and Spatial Pyramid Convolution(SPPCSPC), which incorporates multi- 
scale contextual information required for object recognition at various 
sizes.

The neck acts as an intermediate, improving features utilizing 
upsampling to recover spatial resolution and concatenation to combine 
semantically rich and geographically precise characteristics. This 
component of the network ensures reliable multi-scale detection, which 
is crucial for distinguishing objects across several dimensions.

The detection procedure takes place in the head, which is the final 
stage. It has three unique detectors for different scales: tiny, medium, 
and giant. Each is responsible for calculating bounding boxes, objectness 

scores, and class probabilities, making it possible to identify numerous 
objects in a single inference cycle.

The network output is post-processed, including the use of confi
dence levels and Non-Maximum Suppression(NMS) to refine the pre
dictions, resulting in a final image with correct bounding boxes and class 
labels. YOLOv7′s design demonstrates the developments in object 
detection, presenting a system capable of speedy and precise object 
location and classification.

2.3. YOLOv8 architecture and improvements

YOLOv8 [25] is Ultralytics’ latest YOLO model, known for object 
identification, image categorization, and instance segmentation. It 
builds on the success of YOLOv5 by making architectural changes and 
improving the developer experience. Ultralytics is actively developing 
and supporting YOLOv8, collaborating with the community to improve 
the model.

YOLOv8 is an enhanced object detecting system based on the original 
YOLO concept, which stands for "You Only Look Once." This novel 
methodology uses a grid style to identify and categorize things. It begins 
by scaling the input image to a standard size before splitting it into 
smaller portions, or grid cells as shown in Fig. 4. The YOLOv8 archi
tecture combines several cutting-edge components to achieve great ac
curacy in real-time object recognition. The model begins with an input 
image of size (640,640,3) that is passed on the model’s backbone. 
Multiple convolutional layers (Conv) and sophisticated C2f blocks make 
up the framework, which reduces the image’s spatial dimensions and 

Fig. 4. YOLOv8 architecture.
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increases its depth while extracting information. An additional layer in 
the backbone, called Spatial Pyramid Pooling – Fast(SPPF), gathers 
global context data to improve the model’s object detection perfor
mance at different scales.

Subsequently, the Neck of the model uses concatenation and 
upsampling techniques to merge information from multiple backbone 
layers, resulting in a multi-scale feature map that helps identify objects 
of varied sizes. The model’s Head, comprising multiple YOLOHEAD 
layers that predict bounding boxes, class probabilities, and objectness 
scores at three distinct scales, receives these feature maps. This ensures 
that the model can detect tiny, medium, and big objects.

The C2f block, shown in the diagram, has shortcut connections and 
bottleneck layers that facilitate smoother gradient flow during training, 
hence aiding in effective feature extraction. The SPPF block enhances 
the overall performance of the model by focusing on different charac
teristics using max-pooling and concatenation. Bounding box co
ordinates and class predictions are the final outputs that the Detect layer 
generates after processing the features. The "Predicted Image," which 
highlights detected objects with bounding boxes and labels, is created 
using these outputs. All things considered, YOLOv8 incorporates upda
ted architectural features to boost detection accuracy across a range of 
object scales while retaining the efficiency and speed of earlier YOLO 
models.

2.4. Study area

The research location in this study is an oil palm plantation located 

Fig. 5. Study area located at universiti sains Malaysia.

Table 1 
Drone specifications [35] (https://dronespec.dronedesk.io/dji-mavic-air).

Parameter Value

Takeoff Weight 
Maximum Takeoff Altitude 
Flight time 
Camera sensor 
Image size 
Operating Frequency 
Flight Battery capacity

430 g 
5000 m 
21 min 
1/2.3″ CMOS 
4:3 4056×3040 
16:9 4056×2280 
2.400–2.4835 GHz 
5.725–5.850 GHz 
2375mAh

Fig. 6. Flowchart for data preprocessing.
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around university science Malaysia engineering campus nibong tebal, 
south seberang perai,penang Malaysia as shown in Fig. 5. The images 
were acquired in six different days in September and October 2023 using 
DJI Mavic Air at an altitude 36 m above sea level with a dimension of 
4056×3040/image.

The drone specification can Table 1. Each of the sample dataset areas 
(training, validation, testing) includes young palm trees and mature 
palm trees in oil palm plantation with flat and hilly contours with sparse, 
dense, and overlapping canopy spacing conditions, as well as oil palm 
trees intersecting with other vegetations. The total images we have 
collected is about 1277.

2.5. Data preprocessing

In the YOLO, a preparatory stage of data preprocessing is required 
before beginning input data processing. This preliminary phase consists 
of a series of procedures as shown in Fig. 6. targeted at improving the 
quality and compatibility of the incoming data. The following are the 
primary preprocessing steps that have been implemented,

Data Cleaning: Cleaning data means that in the process of prepara
tion of raw data for processing, various flaws, including inconsistencies, 
out of range values, and unrelated information, must be deleted. When it 
comes to oil palm tree detection resizing and formatting the images to 
640×640 is very crucial especially to the models such as YOLO which 
are fixed in their input size. The 640×640 resolution was chosen because 
it is the optimal combination of the computational load of the algorithm, 
working memory, and detection performance. The composition of 
416×416 is too low and may leave behind many features while 
740×740 and 1080×1080 require much memory in addition to 
computation power hence the most suitable was 640×640 was effective 
enough in recognizing both small and large objects [36]. It confirms that 
the entire model has a fast capability to progress images and does not 
greatly burden GPU, which puts the model into practical use in real-time 
objective discovery. By means of this resolution, high accuracy can be 

preserved, but at the same time, the model remains relatively simple and 
applicable to different kinds of objects independently of their sizes.

Data Labelling: For training and validation, we manually tagged 
80,486 oil palm trees with YOLO Label v1.2.1. This careful labeling 
ensures a broad set of occurrences for strong model training. YOLO Label 
software labels items in pictures or videos to train YOLO object identi
fication algorithms. After downloading and installing the software, users 
can input photos or videos, annotate objects with bounding boxes and 
class labels, store annotations, export annotated data in YOLO, Pascal 
VOC, or COCO format, and use this data to train the YOLO model. The 
YOLO Label software interface, shown in Fig. 7 is used to annotate 
photographs and create datasets for object detection. The interface in
cludes features such as keyboard shortcuts for faster picture and class 
navigation, as well as image contrast tools for improved visibility. It 
demonstrates the use of bounding boxes for labeling, which is required 
for accurate oil palm tree detection. The interface also has tools for 
saving and loading photos, emphasizing its efficiency and usability for 
dataset creation in computer vision research.

Data Augmentation: By merging drone and internet platform data, 
we enhanced our collection from 1277 to 9667 photos. To improve 
model robustness and adaptability to a variety of environmental situa
tions, we use grayscale transformation as a key data augmentation 
strategy. Specifically, we used this strategy on 25 % of the photos in our 
training dataset. This purposeful augmentation method is intended to 
reduce the model’s reliance on color information, resulting in a greater 
emphasis on textural and structural qualities for detection tasks. After 
applying data augmentation, the data increased to approximately 
106,543 oil palm trees in that 78 % (84,128) are for training, 15 % 
(17,182) are for validation, and 5 % (5, 233) are for testing.

The grayscale conversion process follows the conventional lumi
nance model [37], which is represented by the following luminosity 
function: 

Gray=0.299×Red+0.587×Green+0.114×Blue                                (1)

Fig. 7. Manual labelling by using YOLO label v1.2.1.
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This equation converts each pixel’s RGB values into a single intensity 
value, imitating the human eye’s varying sensitivity to different color 
wavelengths—most notably, a stronger sensitivity to green light.

For a dataset D comprising N images, the subset Ngrayscale subjected 
to this transformation can be qualified as: 

Ngrayscale = 0.25 x N                                                                   (2)

Where Ngrayscale represents the number of photos converted to gray
scale. This quantitative framework is useful for diversifying training 
data, thereby reinforcing the model against probable color fluctuations 
during real-world deployment, and lowering processing needs due to the 
reduced complexity of single-channel images.

Grayscale augmentation is expected to result in a more versatile and 
computationally efficient model capable of retaining high accuracy 
across a wide range of conditions where color fidelity is not guaranteed 
[38].

2.6. YOLO models development

To balance computational economy and model performance, the 
model development uses the PyTorch framework [39] for YOLOv7 and 
YOLOv8 with an input size of 640×640. Batch size, image size, mo
mentum, decay, and learning rate were all carefully calibrated. To avoid 
GPU interruptions, a 640×640 input size was chosen, and batch size was 
adjusted correspondingly. The default parameters for momentum, 
decay, and learning rate were used. To improve accuracy and shorten 
training periods, pre-trained weights for YOLO convolutional layers 
were used. The training method was further enhanced through hyper
parameter adjustment. Table 2. contains detailed network input sizes 
and hyperparameter setups for YOLOv7, and YOLOv8 models.

2.7. Evaluation metrics

We used key metrics such as Recall, Precision, and F1-score [40] to 
evaluate model performance, as described in the Eqns. (3)-(5). The 
model’s effectiveness in detecting oil palm trees is measured by Recall, 

the accuracy of the model’s predictions is measured by Precision, and 
the F1-score is the harmonic mean of Recall and Precision. In addition, 
we used detection time as a statistic to compare model efficiency during 
detection. Average IoU (Intersection over Union) was used to evaluate 
the accuracy of bounding box locations, offering a full assessment of 
detection precision. 

Recall =
TP

(TP+ FN)
(3) 

Precision =
TP

(TP+ FP)
(4) 

F1 − − score =
(2 × Recall× Precision)
(Recall+ Precision)

(5) 

The term True Positive (TP) refers to situations in which the model 
properly classified items as oil palm plants. False Positive (FP) refers to 
instances in which things other than oil palm trees were wrongly iden
tified as such. The term False Negative (FN) refers to occasions in which 
actual oil palm trees were missed or were not spotted by the model [41] 
Fig. 8. 

IoU =
Area of Overlap
Area of Union

(6) 

Overall, this study’s methodology, which makes use of the YOLOv7 
and YOLOv8 models, describes a thorough procedure for locating and 
counting oil palm plants. It starts with a flowchart that offers a clear 
outline of the study procedure. Next, the architectural enhancements in 
YOLOv7 and YOLOv8, which raise detection efficiency and accuracy, 
are thoroughly examined. In addition to thorough data preprocessing, 
which includes cleaning, labeling, and augmentation, the research re
gion is carefully chosen to guarantee ideal testing conditions and high- 
quality inputs for model training. The performance of the carefully 
constructed and refined YOLO models is assessed using reliable metrics 
including Intersection over Union (IoU) (Fig.8), precision, recall, and F1 
score. This well-organized approach highlights the study’s emphasis on 
obtaining precise, effective, and practically useful outcomes in oil palm 
tree research.

3. Results

3.1. Training results

We investigated the capabilities of two latest well-known YOLO 
models— YOLOv7, and YOLOv8—to determine their ability to detect oil 
palm trees across a wide range of image sizes. Each model received 
intensive training over 500 epochs, including a preliminary warm-up 
phase to ensure steady optimization. Using pre-trained models acceler
ated the training process, allowing for faster adaptation to the individual 

Table 2 
YOLO models hyperparameter setting for training and validation.

Model Input size Batch size Decay Momentum Learning rate

YOLOv7-W6 640×640 12 0.005 0.937 0.1
YOLOv7-D6 640×640 12 0.005 0.937 0.1
YOLOv7x 640×640 12 0.005 0.937 0.1
YOLOv8s 640×640 20 0.001 0.937 0.01
YOLOv8m 640×640 20 0.001 0.937 0.01
YOLOv8n 640×640 20 0.001 0.937 0.01
YOLOv8l 640×640 20 0.001 0.937 0.01
YOLOv8x 640×640 20 0.001 0.937 0.01

Fig. 8. Illustration of IoU(Intersection over Union).the green ground truth box from the manual labelling training data shows where our object is in the image, while 
the red predicted bounding box is from the trained model.
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task needs. Following each training iteration, rigorous validation was 
carried out, using uniform evaluation criteria across all models and 
image size scenarios. By examining accuracy, recall, F1-score, and mean 
Average accuracy (mAP) metrics [42] we gained useful insights into 
each model’s comparative performance under various scenarios. This 
detailed analysis informed our understanding of the models’ strengths 
and flaws. The results of the training evaluation for each epoch YOLOv7, 
and YOlOv8 models can be seen Microsoft excel sheet. We used Google 
Colab premium for fast training and evaluation of models, we used py
thon3 programming language with hardware accelerator T4 GPU. The 
best models obtained from each epoch YOLOv7, and YOlOv8 are shown 
in Table 3. respectively, these models will be used for testing the test 
data.

3.2. Testing results

Testing data was acquired utilizing a UAV that flew 36 m above the 
ground and captured high-resolution photos of 4056×3040 pixels. Out 
of the 497 pictures gathered, 482 had oil palm trees, which were iden
tified for proper tree counts. The ground truth count of oil palm trees in 
these pictures was 5233. Before testing, a confidence threshold of 0.7 
was selected for each model, and the image size was standardized to 
640×640 pixels. We tested YOLOv7x, YOLOv7-W6, YOLOv7-D6, 
YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, and YOLOv8x for their 
ability to detect oil palm trees in the testing data. The Table 4. shows the 
performance metrics for these models, which include True Positives 
(TP), False Positives (FP), False Negatives (FN), Precision, Recall, F1- 
Score, and Detection Time. Models such as YOLOv8s and YOLOv8m 
demonstrated remarkable precision and recall rates, resulting in F1- 

Table 3 
The best YOLO model is based on the training and validation datasets.

Model Peak Accuracy 
Epoch

Training Hours(hr) Threshold Precision(P) Recall(R) F1-Score mAP50

YOLOv7x 654 65.12hr 0.2 0.95 0.94 0.94 0.97
YOLOv7-W6 675 60.65hr 0.2 0.93 0.938 0.92 0.97
YOLOv7-D6 600 93.29hr 0.2 0.95 0.94 0.94 0.98
YOLOv8s 137 5.799hr 0.7 0.94 0.95 0.94 0.98
YOLOv8n 407 11.71hr 0.7 0.946 0.953 0.94 0.986
YOLOv8m 247 20.127hr 0.7 0.949 0.952 0.95 0.986
YOLOv8l 186 21.345hr 0.7 0.945 0.956 0.95 0.986
YOLOv8x 220 44.239hr 0.7 0.942 0.957 0.94 0.984

Table 4 
YOLO models’ evaluation and comparison.

Model GT TP FP FN Precision 
(%)

Recall 
(%)

F1-Score 
(%)

Detection time 
(in sec)

YOLOv7x 5233 4284 56 949 98.70 81.86 89.49 41.95
YOLOv7-W6 5233 3775 52 1458 98.64 72.13 83.32 41.80
YOLOv7-D6 5233 4259 54 974 98.74 81.38 89.22 48.66
YOLOv8s 5233 5197 38 36 99.27 99.31 99.28 28
YOLOv8n 5233 5018 35 215 99.30 95.89 97.56 33
YOLOv8m 5233 5190 28 43 99.46 99.17 99.31 40
YOLOv8l 5233 5200 33 33 99.36 99.36 97.36 43
YOLOv8x 5233 5093 15 140 99.70 97.32 98.49 51

Fig. 9. Precision comparison of YOLOv7x, YOLOv7-W6, YOLOv7-D6, YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, YOLOv8x.
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scores of >99 %. YOLOv8s also had the fastest detection time of 28 s, 
demonstrating its effectiveness in oil palm tree recognition tasks.

The Fig. 9. that all models have great precision, with percentages 
starting at 98.7 % for YOLOv7x and trending upward with each subse
quent iteration. Notably, YOLOv7-W6 has a significantly lower precision 
(98.64% vs. YOLOv7x). This could suggest a modest variation in the 
model’s capacity to correctly detect oil palms tree without generating 
false positives.

As we advance to the YOLOv8 models, precision improves signifi
cantly. YOLOv8s is currently at 99.27 %, while YOLOv8n has increased 
to 99.3 %. The trend continues to improve, with YOLOv8m obtaining 
99.46 % precision and YOLOv8l reaching 99.36 %. These enhancements 
propose changes to model architectures or training techniques that 
result in more accurate oil palm tree detection.

The maximum precision is seen with YOLOv8x at 99.7 %, indicating 
that the most recent iteration of the model series is the most accurate in 
predicting correct oil palm tree in the dataset used for this comparison. 
The YOLO series’ persistent high performance across iterations indicates 
that it still has a strong competence in oil palm tree identification, with 
iterative enhancements contributing to incremental advances in 
precision.

Starting with YOLOv7x as shown in Fig. 10. The recall is 81.86 %, 
which is high but not flawless. This signifies that the model is missing 

some oil palm trees. The next version, YOLOv7-W6, has a lower recall of 
72.13 %, indicating that it misses more oil palm trees than the YOLOv7x, 
YOLOv7-D6 is showing higher recall of about 81.38 % better than 
YOLOv7-W6 model.

Moving on to the YOLOv8 series, there is a considerable improve
ment. YOLOv8s has a recall of 99.31 %, whereas YOLOv8n has lower 
recall to 95.89 %. The trend continues, with YOLOv8m at 99.17 % and 
YOLOv8l at 99.36 %, demonstrating that these models are extremely 
effective at detecting practically all oil palm trees.

The final one, YOLOv8x, had a tiny dip in recall to 97.32 %. It re
mains high, indicating that the model recognizes most oil palm trees, but 
it is lower than in prior YOLOv8 models.

The Fig. 11. compares F1-Scores from several YOLO (You Only Look 
Once) models. The F1-Score is a score that indicates how well a model 
recognizes oil palm trees in images while balancing accuracy and reli
ability. The first bar for YOLOv7x is at 89.49 %, which is quite good. 
However, YOLOv7-W6′s score lowers slightly to 83.32 %, indicating that 
it is less effective at detecting oil palm trees. Following this, all the other 
bars reflect various YOLOv8 models, and their scores are higher, which 
is phenomenal. They range from 97.56 % to 99.31 %, indicating that 
these models are highly good at identifying the correct oil palm trees. 
The highest score for YOLOv8m is 99.31 %, which is nearly perfect. The 
last bar, YOLOv8x, has a comparatively lower score of 98.49 %, but 

Fig. 10. Recall comparison of YOLOv7x, YOLOv7-W6, YOLOv7-D6, YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, YOLOv8x.

Fig. 11. F1-Score comparison of YOLOv7x, YOLOv7-W6, YOLOv7-D6, YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, YOLOv8x.
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remains high. Overall, the graph shows that the YOLOv8 models are 
typically better at identifying oil palm trees in images than the prior 
YOLOv7 models.

After studying the detection timings over several iterations of the 
YOLO object detection models, there are speed variations. The YOLOv7x 

has a modest detection time, which is slightly improved in the YOLOv7- 
W6 version as shown in Fig. 12. Contrary to predictions, the YOLOv7-D6 
model has a significant increase in detection time, requiring roughly 49 
s. When we switch to the YOLOv8 series, we see a significant improve
ment in YOLOv8s, which exceeds its predecessors in a speedy 28 s. 
However, this speed improvement is not retained in later YOLOv8 ver
sions, with each succeeding model showing a continuous increase in 
detection time, culminating with YOLOv8x, which takes the longest at 
51 s. This increasing trend in oil palm detection durations from YOLOv8s 
to YOLOv8x could be the result of a design decision to improve accuracy 
or incorporate more extensive analysis at the expense of speed.

Table 5. helps in selecting the best YOLO model for oil palm tree 
detection depending on specific needs, including recall, speed, and 
precision.

A thorough examination of the YOLOv7 and YOLOv8 models for oil 
palm tree detection is provided in the results section. The models’ ca
pacity to effectively generalize with high precision and recall is 
demonstrated by the testing results, which also demonstrate consider
able increases in accuracy and loss reduction over time. Table 5. con
trasts the benefits and drawbacks of each YOLO model, emphasizing the 
benefits and drawbacks of each in the current instance. All things 
considered, the findings show that YOLO models are effective at pre
cisely identifying oil palm trees, offering insightful information about 
both their usefulness and possible regions for development.

4. Discussion

In our complete evaluation of the YOLOv7 and YOLOv8 series for 
precise detection of oil palm trees, the chosen models—YOLOv7x, 
YOLOv7D6, YOLOv8s, YOLOv8l, and YOLOv8x—showed remarkable 
accuracy over a wide range of environments. This rigorous testing 
method, meant to represent real-world applications, included both 
sparsely and densely populated areas of oil palm trees. The models’ 
robustness was especially noticeable in sparsely populated areas, where 
each algorithm correctly identified individual trees with high confi
dence. Fig. 13. and Fig. 14. exhibit the models’ performance under 
sparse and dense conditions respectively. In the following, where there 
were 58 ground truth oil palm trees, different models performed to 
varying degrees. YOLOv7x, YOLOv8l, and YOLOv8x accurately recog
nized 56 oil palm trees, excluding two that were stressed or unhealthy 
during the labelling process and hence did not qualify as oil palms. 
Notably, lowering the confidence threshold to 0.2 may allow these oil 
palm trees to be considered, but it also increases the number of false 
positives. In contrast, YOLOv7D6 and YOLOv8s detected just 54 and 48 

Fig. 12. Detection time comparison of YOLOv7x, YOLOv7-W6, YOLOv7-D6, YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, YOLOv8x.

Table 5 
Benefits and Drawbacks of each YOLO Model in Oil Palm Tree Detection.

Model Benefits Drawbacks

YOLOv7- 
W6

High precision minimizes on 
false positives, moderate 
performance is useful under 
different conditions of 
detection.

Lower recall may serve to missed 
some of the oil palm trees which 
have influence on the degree of 
completion of the detection.

YOLOv7- 
D6

Having the capability to detect 
in less time is useful for real- 
time detections and or if many 
targets are to be detected.

Lower precision and recall can 
lead to better or worse of missed 
detections/ false positives, 
thereby probably decreasing total 
reliability.

YOLOv7x Higher recall is beneficial in 
identifying more trees of oil 
palm that may have been 
unnoticed at initial instance.

Obvious drawbacks may be 
identified in the case of increased 
detection time when a fast 
operation is necessary.

YOLOv8s An improvement in precision as 
well as in recall rates and the 
significant speed of the first 
detection gives the best 
throughput.

Not mentioned, which is 
appropriate, as this is the perfect 
place for fast and accurate work.

YOLOv8n Hence in terms of the 
performance characteristic, a 
high precision and relatively 
good recall make it appropriate 
for accurate search with 
reasonable computational time.

A slight decrease in recall might 
possibly mean missing out on 
certain trees—otherwise 
adequate.

YOLOv8m The highest F1-Score means 
very high accuracy in both 
Precision and Recall, which is so 
powerful in the identification of 
oil palm trees.

No specific feedforward, making it 
exceptionally trustworthy for 
precise and specific identification.

YOLOv8l Great accuracy and relevancy 
work well in various setting and 
are not overburdened by 
complexity of the implemented 
search algorithm.

None have been mentioned but it 
responds with a rather favorable 
overall performance.

YOLOv8x The highest level is absolute 
precision and in general case is 
best for minimizing false 
positive.

The longest detection time can be 
justified with only slightly lower 
recall and F1-Score, which could 
be acceptable if top priority is 
given on speed and slightly lower 
recall rate.
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oil palm trees, respectively, showing a challenge for YOLOv8s in densely 
populated circumstances, although YOLOv7D6 performed marginally 
better.

In cases with tree overlap, as shown in Fig. 15. all models functioned 
brilliantly, except for YOLOv7x and YOLOv8s, which failed to detect a 
single tree due to excessive occlusion. This result highlights small issues 
that arise in highly overlapping circumstances, where even advanced 
models may struggle.

The Fig. 16. effectively shows the efficiency YOLO models in 
differentiating oil palm trees from coconuts. This is particularly difficult 
due to the morphological similarities between the two tree types. Each 
model’s ability to correctly detect oil palms is significant, avoiding 
misdetection of coconut palms as oil palm tree. The confidence values 
that follow each detection demonstrate the models’ high level of 

precision. This accuracy is critical in precision agriculture, where small 
differences can have a significant influence on environmental moni
toring and crop management.

We evaluate YOLOv7 and YOLOv8 models for oil palm tree detection 
and show that YOLOv8s and YOLOv8m perform better in managing 
areas that are both highly and sparsely inhabited, proving their efficacy 
in a variety of scenarios. YOLOv7 models exhibit good precision but 
slightly worse performance in dense canopies. However, in scenarios 
where trees overlap, they perform quite well, demonstrating sophisti
cated detecting abilities. Effective crop management and sustainability 
are greatly aided by the exceptional accuracy of YOLOv8 models, 
particularly YOLOv8l and YOLOv8x, in differentiating oil palms from 
related plants. This accuracy also helps to minimize false positives. This 
improved detection capability supports sustainable farming practices 

Fig. 13. The sparse condition of oil palm trees: (a) YOLOv7x detection (b) YOLOv7D6 detection (c) YOLOv8s detection (d)YOLOv8l detection (e) 
YOLOv8x detection.

Fig. 14. The densely populated condition of oil palm trees: (a) YOLOv7x detection (b) YOLOv7D6 detection (c) YOLOv8s detection (d)YOLOv8l detection (e) 
YOLOv8x detection.
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under a range of environmental conditions and not only increases 
agricultural productivity by guaranteeing precise interventions, but it 
also fosters economic sustainability by lowering operating costs and 
minimizing environmental impact.

Using both machine learning and deep learning techniques, our 
study provides a thorough comparison of our results with current 
benchmarks in the field of oil palm tree detection and counting. Our 
ability to identify oil palm trees with greater accuracy and precision now 
enables quicker processing times and more accurate counting. Our re
sults have improved, and the number of false detections has decreased 
by establishing a confidence threshold of 0.7. Especially, our approach 
performs exceptionally well, with an average mean Average Precision 
(mAP) of 90 % or more at the Intersection over Union (IoU) threshold of 
0.5 (mAP50). The capacity to reliably and effectively identify oil palm 

trees on a broad scale is critical, highlighting its vital significance in 
promoting sustainable farming methods. This accuracy is essential for 
strategic resource allocation, yield optimization, and environmental 
effect assessment. Our study helps the agricultural industry make the 
shift to more productive and sustainable practices by increasing the 
accuracy and efficiency of detection, which improves large-scale 
monitoring and management of oil palm operations. Our de
velopments ensure that the agricultural sector can effectively and 
responsibly fulfill future demands by raising the bar for current stan
dards and making a substantial contribution to the larger objectives of 
environmental stewardship and sustainable agriculture.

Fig. 15. The overlapping condition of oil palm trees: (a) YOLOv7x detection (b) YOLOv7D6 detection (c) YOLOv8s detection (d)YOLOv8l detection (e) 
YOLOv8x detection.

Fig. 16. Oil palm trees with other closely related vegetation (coconut tree): (a) YOLOv7x detection (b) YOLOv7D6 detection (c) YOLOv8s detection (d)YOLOv8l 
detection (e) YOLOv8x detection.
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5. Conclusions

We have used the most recent versions of the YOLO family—YOLOv7 
and YOLOv8 in particular—to improve the recognition and counting of 
oil palm trees in our study. A variety of models, such as YOLOv7x, 
YOLOv7-W6, YOLOv7-D6, and all YOLOv8 variations, were painstak
ingly trained and evaluated using a dataset that included 482 images 
containing 5233 palm trees. Our models’ precision varied impressively 
between 98.64 % and 99.7 %, demonstrating a consistently low false 
positive rate. The YOLOv7 variants exhibited strong recall rates, ranging 
from 72.13 % to 81.86 %. Meanwhile, the YOLOv8 models displayed 
even better performance, with recalls ranging from 95.89 % to 99.36 %, 
suggesting their efficacy in a variety of planting densities. By examining 
the F1-Score—a measure of precision and recall—YOLOv7 models 
scored between 83.32 % and 89.49 %, while YOLOv8 variations fared 
better, scoring between 97.36 % and 99.31 % and having detection 
times between 28 and 51 s. YOLOv7 and YOLOv8 versions, such 
YOLOv8s and YOLOv8n, are suggested for sparsely inhabited areas 
because of their accuracy and quick detection speed; YOLOv8s stands 
out for its quick detection time of only 28 s. On the other hand, YOLOv8l 
and YOLOv8x worked best in heavily populated areas, providing un
matched accuracy and precision.

These discoveries allow for more precise and effective monitoring 
and management of oil palm fields, which not only improves present 
approaches but also makes a substantial contribution to sustainable 
agricultural practices. This is essential for strategic resource planning, 
yield optimization, and environmental impact assessment. Our tech
nologies also help the agriculture industry move toward more produc
tive and sustainable operations, guaranteeing that oil palm tree 
detection is in line with the objectives of economic sustainability and 
environmental stewardship. Future work should concentrate on 
strengthening the models’ resistance to occlusion and changing lighting, 
which are common problems in large-scale agricultural surveillance. 
Furthermore, early warnings for disease or insect outbreaks might be 
provided by integrating AI-driven anomaly detection systems, which 
would increase the productivity and sustainability of oil palm farming.

However, it’s critical to recognize some of the YOLO models’ 
shortcomings as applied to this research. Due to the sensitivity of the 
models to occlusions, palm trees that are completely or partially hidden 
by other trees, shadows, or vegetation may be missed or misclassified. 
Due to the possibility of detecting mistakes caused by nearby trees, this 
is especially difficult in places with dense plantings. Furthermore, 
inconsistent detection accuracy can result from the model’s performance 
being affected by variations in sunlight, shadows, or reflections. For 
palm tree detection to be more reliable in a variety of dynamic agri
cultural situations, these constraints must be addressed.
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