Corrigendum

Corrigendum to: Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Health Promot Perspect. 2020 Mar 30;10(2):98-115. doi: 10.34172/hpp.2020.18

Majid Mobasseri¹, Masoud Shirmohammadi², Tarlan Amiri³, Nafiseh Vahed^{4,5}, Hossein Hosseini Fard⁵, Morteza Ghojazadeh⁵

¹Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ²Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ³Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ⁴Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran ⁵Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran

*Corresponding Author: Morteza Ghojazadeh, Email: ghojazadehm@hotmail.com

Received: April 27, 2024, Accepted: April 27, 2024, ePublished: July 29, 2024

B ased on the comments we received from the readers of our article entitled "Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis", published in *Health Promotion Perspectives*, we rechecked the whole of the article and its associated data set, and identified a set of errors and missing attributions that should be corrected as follows:

In the results section, heterogeneity between studies for the prevalence of type 1 diabetes in Asia, Africa, and Europe was incorrectly written as non-significant, while it should have been reported as significant. Also, heterogeneity between the studies in Africa was written as non-significant in the main text, which should have been reported as statistically significant.

In terms of the incidence of type 1 diabetes in America, there is a non-significant heterogeneity, which was incorrectly written as significant in the text. Additionally, in the published paper, there are some incorrect values in Table 3; however, the values used for the meta-analysis are correct. In this table, the correct prevalence values per 100 000 reported from the studies of Mayer-Davis et al,¹ Ehehalt et al,² Erikson et al,³ Evans et al,⁴ and Lopez Siguero et al⁵ are 57, 110, 270, 220, and 78, respectively.

Furthermore, Moussa et al^{6.7} conducted two studies to investigate the prevalence of type 1 and type 2 diabetes among Kuwaiti children, and in our article, instead of the reference of the study on type 1 diabetes,⁶ the reference

of the study considering type 2 diabetes was cited.⁷ In addition, Peter had two studies, within which the trend of type 1 diabetes,⁸ and the prevalence and incidence of type 1 diabetes in the Bahamas⁹ were determined. In our meta-analysis, the first study was mistakenly cited instead of the second study.

In the studies conducted by Dabelea et al,¹⁰ Kemper et al,¹¹ Ashner et al,¹² and Garancini et al,¹³ the prevalence estimates reported were for overall diabetes, type 1 diabetes, or type 2 diabetes. In our study, however, those estimates were incorrectly extracted as the estimates for overall diabetes or type 2 diabetes. So, the corrections were as follow: for the study of Kemper et al,¹¹ the errors were corrected and the type 1 diabetes data were extracted; the study of Dabelea et al¹⁰ was replaced with another publication with more complete information¹⁴; for the study of Garancini et al,¹³ the data on type 1 diabetes were unclear and insufficient to be included in our analysis, and was therefore excluded from the meta-analysis; in the study of Ashner et al,¹² the prevalence estimate of type 1 diabetes was not reported, and was thus excluded from our analysis.

In addition, the estimated prevalence of type 1 diabetes reported by Elamin et al¹⁵ in Sudan, was extracted incorrectly. We thus corrected the errors and repeated the meta-analyses, and found that the estimated prevalence of type 1 diabetes was 0.038 (95% CI: 0.017 to 0.084, *P*

^{© 2024} The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. Prevalence of type 1 diabetes in Asia (the corrected form of Figure 2-B in the original article)

Figure 2. Prevalence of type 1 diabetes in Africa (the corrected form of Figure 3-B in the original article)

Model	Study name		Statisti	cs for ea	ch study			Event	rate and 9	5% CI	
		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
	Akesen E et al (2010)	0.06706	0.058	0.078	-32.267	0.000					
	Bessaoud K et al (1990)	0.02676	0.018	0.039	-18.422	0.000					
	Dabelea D et al (2014)	0.14802	0.138	0.158	-43.258	0.000					
	Eriksson J et al (1992)	0.26994	0.260	0.280	-38.433	0.000					
	Evans JM et al (2000)	0.21996	0.210	0.230	-42.573	0.000					
	Frongia O et al (1997)	0.45896	0.449	0.469	-8.008	0.000					
	Gujral JS et al (1993)	0.07505	0.066	0.086	-34.161	0.000					
	Jorge Z et al (2003)	0.12803	0.118	0.138	-41.975	0.000					
	Ostrauskas R (2007)a	0.08076	0.071	0.091	-35.364	0.000					
	Ostrauskas R (2007)b	0.07018	0.061	0.081	-33.056	0.000					
	Rangasami J et al (1997	7)0.15006	0.140	0.160	-43.343	0.000					
	Scott R et al (1992)	0.11509	0.105	0.125	-40.704	0.000					
	Siguero JP et al (1997)	0.07818	0.069	0.089	-34.817	0.000					
	Songini M et al (1993)	0.11895	0.109	0.129	-41.137	0.000					
	Wu D et al (2005)	0.22697	0.217	0.237	-42.146	0.000					
Random		0.12487	0.086	0.177	-9.300	0.000					
							-0.50	-0.25	0.00	0.25	0.50

Figure 3. Prevalence of type 1 diabetes in Europe (the corrected form of Figure 5 in the original article)

Figure 4. Prevalence of type 1 diabetes in America (the corrected form of Figure 6-B in the original article)

Model	Study name	Statistics for each study				Event rate and 95% CI					
		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
	Akazawa Y (1994)	0.01217	0.005	0.027	-10.703	0.000					
	Akesen E et al (2010)	0.06706	0.058	0.078	-32.267	0.000					
	Al-Herbish A et al (2008)	0.10945	0.100	0.120	-40.058	0.000					
	Bessaoud K et al (1990)	0.02676	0.018	0.039	-18.422	0.000					
	Dabelea D et al (2014)	0.14802	0.138	0.158	-43.258	0.000					
	Ehehalt S et al (2009)	0.11008	0.100	0.120	-40.116	0.000					
	El-Ziny MA et al (2014)	0.02695	0.019	0.039	-18.384	0.000					
	Eriksson J et al (1992)	0.26994	0.260	0.280	-38.433	0.000					
	Evans JM et al (2000)	0.21996	0.210	0.230	-42.573	0.000					
	Frongia O et al (1997)	0.45896	0.449	0.469	-8.008	0.000					
	Gujral JS et al (1993)	0.07505	0.066	0.086	-34.161	0.000					
	Jorge Z et al (2003)	0.12803	0.118	0.138	-41.975	0.000					
	Mayer-Davis E et al (2009)	0.05714	0.048	0.068	-29.569	0.000					
	Moussa M et al (2004)	0.26988	0.260	0.280	-38.437	0.000					
	Ostrauskas R (2007)a	0.08076	0.071	0.091	-35.364	0.000					
	Ostrauskas R (2007)b	0.07018	0.061	0.081	-33.056	0.000					
	Peter S et al (2007)	0.03120	0.023	0.043	-20.291	0.000					
	Pettitt D et al (2014)	0.19305	0.183	0.203	-43.667	0.000					
	Ramachandran A et al (199	20.02569	0.017	0.038	-17.942	0.000					
	Rangasami J et al (1997)	0.15006	0.140	0.160	-43.343	0.000					
	Scott R et al (1992)	0.11509	0.105	0.125	-40.704	0.000					
	Siguero JP et al (1997)	0.07818	0.069	0.089	-34.817	0.000					
	Soliman A et al (1996)	0.01394	0.007	0.029	-11.188	0.000					
	Songini M et al (1993)	0.11895	0.109	0.129	-41.137	0.000					
	Wong G (1994)	0.00949	0.003	0.029	-8.012	0.000					
	Wu D et al (2005)	0.22697	0.217	0.237	-42.146	0.000					
	Elamin A et al (1989)	0.09500	0.092	0.098	-137.022	0.000					
	Kemper AR et al (2006)	0.16700	0.158	0.177	-45.427	0.000					
	Dabelea D et al (2014)a	0.01400	0.014	0.014	-914.345	0.000					
	Dabelea D et al (2014)b	0.01900	0.019	0.019	-1001.467	0.000					
	Dabelea D et al (2009)	0.01800	0.017	0.019	-166.461	0.000					
Random		0.07506	0.051	0.110	-11.838	0.000			•		
							-0.50	-0.25	0.00	0.25	0.50

Figure 5. Prevalence of type 1 diabetes in the world (the corrected form of Figure 7 in the original article)

Study name		Statist	ach study			Event rate and 95% Cl				
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Ferreira S et al (1993)	0.008	0.000	0.142	-3.109	0.002		- T		_	\rightarrow
Frazer De Llado T et al (1998)	0.018	0.016	0.021	-53.704	0.000					
Gardner S et al (1997)	0.019	0.012	0.030	-16.305	0.000				⊢	
Lawrence J et al (2014)	0.024	0.022	0.027	-60.207	0.000					
Libman I et al (1998)	0.017	0.006	0.042	-8.372	0.000					
Lipman TH et al (1993)	0.013	0.004	0.042	-7.127	0.000				-	
Lipman TH et al (2002)	0.013	0.004	0.040	-7.400	0.000					
Lipman TH et al (2006)	0.015	0.005	0.041	-7.788	0.000					
Lipton R et al (1995)	0.012	0.004	0.034	-8.136	0.000				-	
Lipton R et al (2002)	0.015	0.006	0.038	-8.706	0.000				_	
Mayer-Davis E et al (2009)	0.016	0.006	0.042	-7.953	0.000					
Rueda O et al (1998)	0.001	0.000	0.995	-1.100	0.271			- +		\rightarrow
Smith TL et al (2007)	0.018	0.011	0.029	-15.766	0.000				-	
Vehik KS (1996)	0.015	0.010	0.023	-18.481	0.000				-	
Washington R et al (2013)	0.015	0.002	0.138	-3.504	0.000					\rightarrow
Dabelea (2009)	0.026	0.026	0.027	-356.288	0.000					
	0.020	0.017	0.023	-46.457	0.000					
						-0.10	-0.0	5 0.00	0.05	0.10

Figure 6. Incidence of type 1 diabetes in America (the corrected form of Figure 6-A in the original article)

< 0.001) in Asia (Figure 1 [the corrected form of Figure 2-B in the original article]), 0.052 (95% CI: 0.015 to 0.168, P < 0.001) in Africa (Figure 2 [the corrected form of Figure 5-B in the original article]), 0.125 (95% CI: 0.086 to 0.177, P < 0.001) in Europe (Figure 3 [the corrected form

of Figure 3-B in the original article]), 0.050 (95% CI: 0.036 to 0.070, P < 0.001) in America (Figure 4 [the corrected form of Figure 6-B in the original article]), and 0.075 (95% CI: 0.051 to 0.110, P < 0.001) in the world (Figure 5 [the corrected form of Figure 7 in the original article]).

Table 3. Characteristics of studies prevalence of type 1 diabetes

	•	<i>·</i> · ·					
Study	Country	Sample Size	Prevalence Per 100 000				
Akazawa ¹⁹³	Japan	40	10				
Akesen et al ¹⁹⁴	Turkey	26	67				
Al-Herbish et al ¹⁹⁵	Saudi Arabia	42	109.5				
Aschner et al ¹³	America	2827	8000				
Bessaoud et al18	Algeria	10	27				
		40	11				
Dabelea et al45	Navajo nation	31	81				
		106	278				
Dabelea et al ¹⁹⁶	USA	57	148				
Ehehalt et al51	Italy	3761	110				
Elamin et al ¹⁹⁷	Sudan	17	42.98				
El-Ziny et al ⁵³	Egypt	10	26.8				
Eriksson et al ¹⁹⁸	Finland	1009	270				
Evans et al ¹⁹⁹	Scotland	6592	220				
Frongia et al ⁵⁹	Italy	176	459				
Garancini et al ²⁰⁰	Italy	31	80				
Gujral et al ²⁰¹	UK	29	75				
Jorge et al ²⁰²	Portugal	49	128				
Kemper et al ²⁰³	USA	70	183				
Mayer-Davis et al ¹⁰⁰	USA	218	57				
Moussa et al ²⁰⁴	Kuwait	103	269.9				
Ostrauskas ²⁰⁵	Lithuania	31	80.64				
Ostrauskas and Žalinkevičius ²⁰⁶	Lithuania	27	70.23				
Peter et al ¹¹⁶	Bahamas	12	31				
Pettitt et al ²⁰⁷	USA	74	193				
Ramachandran et al ²⁰⁸	India	10	26				
Rangasami et al ¹²⁷	Scotland	58	150				
Scott et al ¹⁴⁰	New Zealand	44	115				
López Siguero et al ¹⁴⁶	Malaga	297	78				
Soliman et al ²⁰⁹	Oman	50	13.25				
Songini et al ²¹⁰	Sardinia	46	119				
Wong ¹⁸⁵	China	30	8.3				
Wu et al ²¹¹	New Zealand	87	227				

Also, the corrected estimated incidence of type 1 diabetes was 0.020 (95% CI: 0.017 to 0.023, P < 0.001) in America (Figure 6 [the corrected form of Figure 6-A in the original article]). Moreover, in the abstract section of our paper, the estimate for the prevalence of type 1 diabetes should be 0.075% (95% CI: 0.051 to 0.110), instead of 9.5% (95% CI: 0.07 to 0.12). In summary, the overall results for the prevalence of type 1 diabetes in the world had a marginal change, and thus the conclusions drawn in our article are not changed.

Disclosure

As the team of authors, we take full responsibility for the errors and missing attributions, and appreciate the opportunity to prepare this corrigendum.

References

- Mayer-Davis EJ, Beyer J, Bell RA, Dabelea D, D'Agostino R Jr, Imperatore G, et al. Diabetes in African American youth: prevalence, incidence, and clinical characteristics: the SEARCH for Diabetes in Youth Study. Diabetes Care. 2009;32(Suppl 2):S112-22. doi: 10.2337/dc09-S203.
- Ehehalt S, Popovic P, Muntoni S, Muntoni S, Willasch A, Hub R, et al. Incidence of diabetes mellitus among children of Italian migrants substantiates the role of genetic factors in the pathogenesis of type 1 diabetes. Eur J Pediatr. 2009;168(5):613-7. doi: 10.1007/s00431-008-0808-9.
- Eriksson J, Forsén B, Häggblom M, Teppo AM, Groop L. Clinical and metabolic characteristics of type 1 and type 2 diabetes: an epidemiological study from the Närpes community in western Finland. Diabet Med. 1992;9(7):654-60. doi: 10.1111/j.1464-5491.1992.tb01862.x.
- Evans JM, Newton RW, Ruta DA, MacDonald TM, Morris AD. Socio-economic status, obesity and prevalence of type 1 and type 2 diabetes mellitus. Diabet Med. 2000;17(6):478-80.
- López Siguero JP, Martínez-Aedo Ollero MJ, Moreno Molina JA, Lora Espinosa A, Martínez Valverde A. [The development of the incidence of diabetes mellitus I in children 0 to 14 years of age in Malaga (1982-1993)]. An Esp Pediatr. 1997;47(1):17-22. [Spanish].
- Moussa MA, Alsaeid M, Abdella N, Refai TM, Al-Sheikh N, Gomez JE. Prevalence of type 1 diabetes among 6- to 18-yearold Kuwaiti children. Med Princ Pract. 2005;14(2):87-91. doi: 10.1159/000083917.
- Moussa MA, Alsaeid M, Abdella N, Refai TM, Al-Sheikh N, Gomez JE. Prevalence of type 2 diabetes mellitus among Kuwaiti children and adolescents. Med Princ Pract. 2008;17(4):270-5. doi: 10.1159/000129604.
- Peter S. Trends in the incidence of type I diabetes mellitus worldwide. West Indian Med J. 2007;56(3):264-9. doi: 10.1590/s0043-31442007000300015.
- Peter SA, Johnson R, Taylor C, Hanna A, Roberts P, McNeil P, et al. The incidence and prevalence of type-1 diabetes mellitus. J Natl Med Assoc. 2005;97(2):250-2.
- Dabelea D, DeGroat J, Sorrelman C, Glass M, Percy CA, Avery C, et al. Diabetes in Navajo youth: prevalence, incidence, and clinical characteristics: the SEARCH for Diabetes in Youth Study. Diabetes Care. 2009;32(Suppl 2):S141-7. doi: 10.2337/ dc09-S206.
- Kemper AR, Dombkowski KJ, Menon RK, Davis MM. Trends in diabetes mellitus among privately insured children, 1998-2002. Ambul Pediatr. 2006;6(3):178-81. doi: 10.1016/j. ambp.2006.01.001.
- Aschner P, Aguilar-Salinas C, Aguirre L, Franco L, Gagliardino JJ, de Lapertosa SG, et al. Diabetes in South and Central America: an update. Diabetes Res Clin Pract. 2014;103(2):238-43. doi: 10.1016/j.diabres.2013.11.010.
- Garancini MP, Calori G, Ruotolo G, Manara E, Izzo A, Ebbli E, et al. Prevalence of NIDDM and impaired glucose tolerance in Italy: an OGTT-based population study. Diabetologia. 1995;38(3):306-13. doi: 10.1007/bf00400635.
- Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778-86. doi: 10.1001/jama.2014.3201.
- Elamin A, Omer MI, Hofvander Y, Tuvemo T. Prevalence of IDDM in schoolchildren in Khartoum, Sudan. Diabetes Care. 1989;12(6):430-2. doi: 10.2337/diacare.12.6.430.