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ABSTRACT

Perturbations in cytosine methylation signals
are observed in the majority of human tumors; how-
ever, it is as yet unknown how methylation patterns
become altered. Epigenetic changes can result in the
activation of transforming genes as well as in the
silencing of tumor suppressor genes. We report
that methyl-CpG-binding proteins (MBPs), specific
for methyl-CpG dinucleotides, bind with high affinity
to halogenated pyrimidine lesions, previously shown
to result from peroxidase-mediated inflammatory
processes. Emerging data suggest that the initial
binding of MBPs to methyl-CpG sequences may be
a seeding event that recruits chromatin-modifying
enzymes and DNA methyltransferase, initiating a cas-
cade of events that result in gene silencing. MBD4, a
protein with both methyl-binding and glycosylase
activity demonstrated repair activity against a series
of 5-substituted pyrimidines, with the greatest effici-
ency against 5-chlorouracil, but undetectable activity
against 5-chlorocytosine. The data presented here
suggest that halogenated pyrimidine damage pro-
ducts can potentially accumulate and mimic endo-
genous methylation signals.

INTRODUCTION

The DNA of all living organisms is constantly attacked by
reactive molecules (1). Many of the lesions formed miscode

during DNA replication, leading to genetic mutations that in
part underlie the development of cancer (2,3). In addition to
coding changes in DNA, perturbations in epigenetic methyla-
tion patterns are observed in the majority of human tumors (4).
The aberrant loss of epigenetic signals can result in the activa-
tion of oncogenes, whereas inappropriate methylation could
lead to silencing of tumor suppressor genes. The significance
of epigenetic alterations in the development of cancer is becom-
ing more evident; however, the mechanisms by which these
altered methylation patterns arise are as yet unknown.

Previous studies demonstrate that the chemical modification
of key recognition points of the methylated CpG dinucleotide
reverses the increased sequence-specific protein binding affin-
ity afforded by cytosine methylation. The oxidation of the
methyl group of 5-methylcytosine or the 8 position of guanine,
as well as methylation of the N7 position of guanine, is known
to substantially reduce methyl-CpG-binding protein (MBP)
affinity (5,6). These findings suggest a possible mechanism
by which DNA damage might result in decreased MBP bind-
ing and inappropriate gene activation.

Pathways that would lead to increased MBP binding and
reduced expression of tumor suppressor genes are less well
understood. The chemical alkylation of cytosine in DNA
occurs on the exocyclic oxygen atom and N3 ring nitrogen,
but not at the C5 position (7). Indeed, most forms of chemical
alteration of the CpG dinucleotide would result in decreased
MBP binding. One notable exception may be the halogenation
of cytosine in DNA. In other systems, halogenated pyrimidines
have been shown to mimic a 5-methyl pyrimidine in enhancing
sequence-specific DNA—protein interactions (8,9).

Halogenated pyrimidine lesions have recently been shown
to result from peroxidase-mediated inflammatory processes
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(10-12). Under inflammatory conditions, phagocytic cells
generate peroxidases that can form hypochlorous acid
(HOCI) (13,14) and hypobromous acid (HOBr) (15-18),
which can attack duplex DNA (19). Eosinophil peroxidases
can also form NO,Cl, which can also chlorinate nucleotides
and nucleosides (20). The effect of these halogenated lesions
on epigenetic control has not yet been explored.

In this study, we examined the effects of pyrimidine halo-
genation on the binding of one member of the MBP family,
methyl-CpG-binding protein 2 (MeCP2). MeCP2, as well as
other members of this family, has a 7075 amino acid highly
conserved domain that is referred to as the methyl-binding
domain (MBD) (21-23). Previously, we demonstrated that
the MBD of MeCP2 binds a symmetrically methylated duplex
oligonucleotide with 100 times greater affinity than the cor-
responding unmethylated oligonucleotide in electrophoretic
mobility shift assays (EMSAs) (5). Here, we extend these
studies and demonstrate that the placement of the 5-
halopyrimidines, 5-chlorocytosine (CIC), 5-chlorouracil
(CIU), 5-bromocytosine (BrC) and 5-bromouracil (BrU) in
synthetic oligonucleotides, paired opposite guanine, similarly
increases the affinity of the MBD binding. The following
MBD affinity to hemimethylated duplexes containing modi-
fied pyrimidines on the opposite strand was observed:
BrC = CIC = mC > CIU > U = BrU > C. These data
suggest that halogenated pyrimidine lesions could mimic
5SmC in promoting the binding of proteins containing an
MBD, resulting in unintended and potentially heritable gene
silencing.

The increased binding of the MBD to the oligonucleotides
containing 5-halouracil residues prompted us to investigate an
additional member of the MBP family, MBD4. In addition to
an MBD domain, MBD4 also has a uracil glycosylase activity
(23-26). The MBD4 glycosylase activity is known to excise
thymine opposite guanine in a CpG dinucleotide and is thought
to function in the repair of lesions arising from the deamina-
tion of SmC (24-26). In the study reported here, MBD4 was
found to excise CIU = U > T = BrU > BrC > 5mC within a
CpG dinucleotide. The chlorination of a cytosine residue in
DNA could generate either CIC or CIU paired with guanine
(27). Both lesions would increase the binding affinity of an
MBP relative to an unmodified oligonucleotide. The removal
of CIU arising from the chlorination of cytosine might be an
important function of MBD4. In contrast, no repair activity has
yet been demonstrated for CIC. The formation and persistence
of CIC in DNA could lead to inappropriate gene silencing by
mimicking endogenous methylation signals. We introduce
here a previously unexplored mechanism by which inflamma-
tion could be involved in cancer development (28-31).

MATERIALS AND METHODS
Oligonucleotide synthesis

Oligonucleotide 27mers (Figure 1A) containing a central CpG
dinucleotide with cytosine or uracil analogues were prepared
by standard solid phase synthesis using either the Gene
Assembler Plus (Pharmacia) or Expedite Nucleic Acid Syn-
thesis System (Applied Biosystems) automated DNA synthes-
izers (32). The sequence used in this study (Figure 1A) was
chosen based upon binding experiments previously conducted

A
5’ TCAGATTCGCGXGGCTGCGATAAGCT 3
3’ AGTCTAAGCGCGGXCGACGCTATTCGA &
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Figure 1. (A) Sequence of 27mer oligonucleotide duplex used in EMSA with
the MBD of MeCP2. The X position indicates the pyrimidine analogue within
the CpG dinucleotide. In representing the duplexes, the pyrimidine modifica-
tions at the X position in the upper strand are noted as well as the modifica-
tion at the X position on the lower strand. For example, a duplex containing
5-methycytosine in the upper strand and 5-chlorocytosine in the lower
strand would be represented as SmC/CIC. (B) Structures of cytosine,
5-methylcytosine, 5-halogenated cytosine lesions, uracil and 5-halogenated
uracil lesions. R indicates chloro or bromo groups.

with the MBD of MeCP2 (5,22,33). The X symbols indicate
the positions where C is substituted with pyrimidine derivat-
ives SmC, CIC, BrC, U, CIU or BrU. The 5-chlorocytosine
(CIC) phosphoramidite was prepared according to the methods
developed by this laboratory (27). The 5-chlorouracil (CIU)
phosphoramidite was synthesized as previously done by our
laboratory according to the method developed by Brandon
et al. (34,35). All other phosphoramidites used were obtained
from Glen Research. Oligonucleotides were removed from the
solid support and deprotected in aqueous ammonia (Aldrich)
at 60°C overnight. The deprotected oligonucleotides were
purified with Poly-Pak II cartridges (Glen Research). The
sequence composition of the oligonucleotides was confirmed
via high performance liquid chromatography (HPLC) analysis
following digest of the oligonucleotides with nuclease P1
(Sigma) at 37°C for 1 h and bacterial alkaline phosphatase
(Sigma) at 37°C overnight.

Protein expression and purification

The pAFB105 construct encoding the 6X His-tagged methyl-
CpG-binding domain (MBD) of mouse MeCP2, residues
77-165 (22,33), in a pET6H vector, was overexpressed in
Escherichia coli BL21 (DE3)/pLysS. The expression and puri-
fication was done as previously described, according to the
protocol of Free et al. (5,33).

Electrophoretic mobility shift assay

The 27mer oligonucleotides (Figure 1A) were 5'-**P-end
labeled by T4 polynucleotide kinase (New England Biolabs)



with [y->*P]ATP (MP Biomedicals, LLC) under conditions
recommended by the enzyme supplier. After purification
using G50 Sephadex columns (Roche), the labeled strand
(Figure 1A, lower strand) was incubated with 1.5-fold excess
of the complementary unlabeled strand (Figure 1A, upper
strand) in 20 mM HEPES pH 7.3, 1 mM EDTA at 95°C
for 5 min and then allowed to slowly cool to room temperature
for duplex formation. Duplexes were annealed, with either
5SmC or C at position X in the lower strand (Figure 1A)
and combinations of the halogenated pyrimidines at position
X on the upper strand. Previous data indicate that placement of
the base lesion in either the upper or lower strand yields the
same binding results (5). To confirm duplex formation and the
presence of cytosine modifications, the annealed oligonuc-
leotides were digested with Mspl and Hpall (New England
Biolabs) according to conditions recommended by the enzyme
supplier and the products were sized on denaturing 20% (v/v)
polyacrylamide gels. Mspl was able to cleave duplexes in
which the cytosine was modified, both symmetrically and
asymmetrically in the CpG site, with bromine or chlorine at
the C5 position (data not shown). However, Hpall was able to
cleave only the unmodified cytosine containing duplexes (data
not shown).

Purified MBD (0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128
and 256 nM) was incubated with 2 nM labeled duplex,
50 ng/ul of poly[dA—dT]-poly[dA—dT] (Sigma) in 20 mM
HEPES pH 7.3, 1 mM EDTA, 10 nM (NH4),SO4, 1 mM
dithiothreitol, 0.2% Tween-20, 30 mM KCI for 15 min at
room temperature in a 30 pL reaction volume, before the
addition of 7.5 pL loading buffer (60% 0.25X TBE, 40%
glycerol) (33). The binding reactions were then electro-
phoresed on 10% non-denaturing polyacrylamide (37.5:1
acrylamide:bis-acrylamide) gels at 250 V for 2.5 h at 4°C
after prerunning the gel at 200 V for 1.5 h. Visualization
and quantification of the gels were carried out using a phos-
phorimager and the ImageQuant 5.0 software (Amersham
Biosciences).

Binding model and data analysis

The non-cooperative, single-site binding scheme previously
used to describe the monomeric binding of the MBD of
MeCP2 to its symmetrically methylated DNA substrate was
also used in this study (5,22). From the EMSA data, the frac-
tion of duplex bound was determined at each protein concen-
tration as follows, where [E] is the concentration of unbound
MBD, [O] is the concentration of unbound oligonucleotide and
[EO] is the MBD-oligonucleotide complex:

Fraction duplex bound = [EO]/([EO] + [O]).

When [E] > [O], then [E]o — [EO] = [E] = [E]ota1, Where
[Eliotar 1s the total concentration of MBD, both bound and
unbound. The following equation can be used to determine
the dissociation constant for the oligonucleotide duplexes used
in the study (5):

Fraction duplex bound = [E],...;/ ([El,w + Ka)-

The average of a minimum of three data sets obtained for
each duplex were fitted to the equation above by non-linear
regression using SigmaPlot software (SPSS Science).
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MBD4 glycosylase activity assay

The same duplexes used in the EMSAs were used to assay for
MBD4 glycosylase excision repair activity. Recombinant
human MBD4 (0.6 pmoles with an estimated 10-15% active
protein) and 5->’P-end labeled 27mer DNA duplexes
(0.15 pmoles) were incubated at 37°C for 0.5, 1, 2, 5, 10,
30 and 60 min in cleavage buffer (20 mM HEPES-KOH
pH 7.5, 1 mM DTT, 1 mM EDTA, 1 mg/ml BSA) in the
presence of 2 units of uracil glycosylase inhibitor protein
(UGID) to eliminate any potential uracil DNA glycosylase
activity present in the MBD4 glycosylase preparation. We
define 1 U of UGI (New England Biolabs) as the amount
of protein required to inhibit 1 U of E.coli UDG in 1 h at
37°C in a total reaction volume of 50 ul; 1 U of UDG is the
amount of enzyme that will catalyze the release of 60 pmol of
uracil per minute from double-stranded, uracil-containing
DNA. Reactions were stopped by heating to 75°C for 5 min,
and then cooled to room temperature for 30 min. The abasic
sites were cleaved by 1 U of human AP endonuclease (Tre-
vigen) at 37°C for 1 h in reaction buffers provided by the
manufacturer. Trevigen defines 1 U of human APE as the
amount that cleaves 1 pmol of a **P-labeled apurinic/apyri-
midinic site oligonucleotide in 1 h at 37°C. An equal volume
of loading buffer (98% formamide, 0.01 M EDTA, 1 mg/ml
xylene cyanol and 1 mg/ml bromophenol blue) was added to
stop the reaction. Samples were denatured and electrophoresed
on 20% polyacrylamide gels containing 7M urea.

RESULTS
Electrophoretic mobility shift assays

The binding affinities of the MBD of MeCP2 to oligonuc-
leotide duplexes containing different halogenated pyrimidine
lesions were determined. The sequence used in this study was
chosen based upon previous binding studies done with the
MBD of MeCP2 (5,22,33). The 27mer contains a central
CpG dinucleotide (Figure 1A) that was systematically
replaced with U, CIU, BrU, 5SmC, CIC or BrC (Figure 1B),
with either C or 5SmC on the opposite strand within that CpG
dinucleotide. The duplexes were assayed for binding to the
MBD of MeCP2 at different concentrations ranging from 0 to
256 nM. Duplexes containing CIC or BrC in place of both
cytosines in the CpG were also tested. The K, (Table 1) was
determined for each duplex using non-linear regression to fit
the equation for simple, non-cooperative monomeric binding.

Our results show that 5-halogenated cytosine analogs CIC
and BrC in place of a single cytosine, within a methyl-CpG or
unmethylated CpG, function as a SmC residue (Figures 2 and 3,
Table 1). The binding curves and K,; determined for the SmC/
CIC, 5mC/BrC and SmC/5mC duplexes (Figure 3B, Table 1)
are very similar, consistent with previous suggestions that the
MBD recognizes the methyl group of 5SmC via a hydrophobic
patch of residues (33,36,37). Also, these data indicate that
the MBD tolerates a minimum range of 1.75-2.0 A at the
C5 position of cytosine. Binding with C/CIC, C/BrC and
C/5mC (Figure 3C, Table 1) duplexes also showed similar
binding affinity, confirming that CIC or BrC within a CpG
context is recognized by the MBD. For the 5-halogenated
uracil analogues replacing one cytosine in a single CpG
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Table 1. Dissociation constants of the MBD of MeCP2 binding to 27mer
duplexes containing 5-halogenated pyrimidines within a CpG or methyl-
CpG sequence context

Duplex K, (nM) Correlation
coefficient (R?)
SmC/5mC 147+ 1.0 0.99
C/IC 1030 £ 20 0.99
5mC/C 127 +3 0.99
CIC/CIC 134+ 1.0 0.98
BrC/BrC 9.81 £ 0.78 0.99
SmC/CIC 11.0 £ 0.9 0.99
5SmC/BrC 9.32+£0.77 0.99
C/CIC 131+4 0.99
C/BrC 102£3 0.99
SmC/U 92.6 £ 4.7 0.99
SmC/CIU 35.6 £ 3.6 0.97
SmC/BrU 110 £ 13 0.93
C/U 421 £ 17 0.99
C/ClU 199 + 4 0.99
C/BrU 462 = 18 0.99

Using SigmaPlot, the K, for MBD binding to each of the duplexes was
determined from non-linear regression of the three or more sets of data obtained
from EMSA. The plot of the average percentage binding of each duplex against
the concentration of MBD was fitted to the equation for simple, non-
cooperative, monomeric binding (see Materials and methods). The ranges
seen in the K values are the standard error for the regression analysis. The
K, and R* for MBD binding to the SmC/5mC duplex were obtained from
previous studies (5).

[MBD] 0 02505 1 2 4 8 16 32 64 128 256nM
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Figure 2. Binding of 5mC/SmC, 5SmC/BrC, 5SmC/CIC, SmC/CIU, SmC/U and
SmC/BrU duplexes to varying concentrations of MBD from O to 256 nM. The
following affinities for MBD to 5-halogenated pyrimidine lesions within a
methyl-CpG sequence are observed: BrC = CIC = 5mC =T > CIU >>
U = BrU >> C (5).
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Figure 3. Non-linear regression of the plot of average percentage binding
(determined from three or more sets of titrations per duplex) and concentration
of MBD for selected modified duplexes tested in EMSA assay. Halogenated
pyrimidine lesions in a CpG sequence context mimic SmC by binding to the
MBD with high affinity. The x-axis represents MBD concentration (nM). The
y-axis represents present binding.

dinucleotide sequence, the observed binding affinities are as
follows: CIU > U > BrU (Table 1). This trend holds true
whether the uracil analog is replacing a cytosine in a
methyl-CpG or an unmethylated CpG sequence.

MBD4 glycosylase activity assays

As MBD4 glycosylase is believed to play a role in the main-
tenance of CpG integrity (24-26), MBD4 was tested for repair
activity against the halogenated pyrimidines paired with guan-
ine in a CpG and mCpG context. MBD4-mediated removal of
the target pyrimidines from the 27mer oligonucleotides gen-
erates an abasic site that is subsequently cleaved by human AP
endonuclease or by alkaline conditions resulting in the forma-
tion of a shorter 13mer fragment. Our results show that MBD4
excises CIU = U > T = BrU > BrC > 5mC in both a CpG
and mCpaG site, but excision of CIC was not detected under our
assay conditions (Figure 4A). In contrast to previous studies
(25), our study shows that MBD4 glycosylase rates are mod-
estly slower in a methylated CpG sequence than in a non-
methylated CpG sequence (Figure 4B and C). These results
are perhaps explained by the dual methyl-binding and glyc-
osylase function of MBDA4. The results suggest that the MBD4
may indeed be turning over faster within an unmethylated
CpG oligonucleotide, whereas it plateaus with the methylated
sequence.



A UG CIUGBrU:G T:G C:G CIC:G BrC:G mC:G
MBD4 - + - + - 4+ - + - + - + - + - 4+
—— —— — — ——
CpG
- -
_— | o ey, v v w— ——
mCpG
B 100
—e— CIU:G CpG
g 80 —O— UG
0 —w— T.G
‘©C —v— Bru:G
S 60
c
8 40
[}
o
20
0 . . . . . .
0 10 20 30 40 50 60
Time (min)
C 100
—e— CIUG mCpG
80 | —O— UG
—v— TG
—/— BruU:G
60

40

Percent excision

20 A R

0 10 20 30 40 50 60
Time (min)

Figure 4. (A) MBD4 glycosylase excision activity at 60 min against a panel of
5-substituted pyrimidines paired with guanine. (B) Time course (0.5, 1,2, 5, 10,
30 and 60 min) of MBD4 glycosylase excision repair of 5-halogenated uracil
lesions within a CpG. (C) Time course (0.5, 1,2, 5, 10, 30 and 60 min) of MBD4
glycosylase excision repair of 5-halogenated uracil lesions within a mCpG.
MBD#4 excises CIU = U > T = BrU > BrC > 5mC in both a CpG and an
mCpG site, but no excision of CIC was detected under our assay conditions.
To date, no repair activity of CIC has been detected in human cells.

DISCUSSION

Human tumors are observed to have a multitude of genetic
changes, including chromosomal rearrangements, loss of
entire chromosomes, point mutations and changes in cytosine
methylation patterns. It is currently believed that these events
develop over a period of years, and that a characteristic
sequence of changes is often observed in the development
of specific tumor types (38,39).

Changes in methylation patterns have been observed as both
early and late events in tumor development. In prostate car-
cinogenesis, for example, methylation of the GSTpi gene is
observed frequently in very early stages, including premalig-
nant lesions (31,40,41). Inappropriate methylation of the pro-
moter region of the GSTpi gene has been shown to result in
transcriptional silencing in prostate cancer cells (4,40,41). The
list of human tumors in which inappropriate promoter region
methylation results in the silencing of tumor suppressor genes
is rapidly growing (4).
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Although aberrant promoter region methylation is fre-
quently observed in human cancer, the mechanisms by
which the promoter region becomes methylated have not yet
been identified. Overexpression or inappropriate activity of the
DNA methyltransferases has been proposed to explain hyper-
methylation, however, no consensus has yet been reached (42).
Our laboratory has been investigating potential mechanisms
by which DNA damage could be translated into altered
methylation signals. However, most forms of DNA damage
would interfere with both methyltransferase-mediated
methylation as well as the binding of methyl-binding proteins
involved in the recruitment of chromatin-modifying enzymes.
One exception to this paradigm is pyrimidine halogenation,
which is known to occur as a result of reactive molecules
generated in the process of inflammation. Halogenation
of cytosine in DNA can generate the corresponding
5-halocytosine and 5-halouracil derivatives (27).

Previous studies have demonstrated that the halogen, brom-
ine, can substitute for the thymine methyl group in sequence-
specific DNA protein interactions (8,9). Similar studies with
chlorine-substituted pyrimidines were not possible until suit-
able synthetic methods were developed. Using recently
developed methods (27), we constructed a series of oligonuc-
leotide templates containing cytosine as well as 5-methyl-,
bromo- and chloro-cytosine analogues to investigate the
potential role of these analogues in MBP binding.

Our results (Table 1) demonstrate that both 5-chloro and
5-bromo substituents on cytosine substantially increase the
affinity of the MBP for target oligonucleotides. Decreases
in K; of ~10- to 100-fold are observed with the CIC- and
BrC-containing oligonucleotides in both unmethylated and
hemimethylated sequences as compared with oligonucleotides
containing unmodified cytosine. These results suggest that
inflammation-mediated halogenation of cytosine residues in
the DNA of previously unmethylated chromatin regions could
increase the binding affinity of MBPs, which in turn would
recruit additional chromatin-modifiying enzymes, initiating a
cascade of chromatin condensation and silencing. Previously,
it was demonstrated that BrC could substitute for SmC in
directing methylation of the complementary strand by the
human maintenance methylase (43). That methyltransferase
study, in conjunction with the results reported here, suggests
that cytosine halogenation could have dual roles in driving the
aberrant methylation of previously unmethylated chromatin
regions.

The most frequent point mutation observed in human
tumors is the C to T transition at a CpG dinucleotide
(44,45). It is widely presumed that the deamination of SmC
to T drives this mutation. Previous studies have demonstrated
that the mispair formed by T and G at a CpG dinucleotide still
serves as a high-affinity binding site for an MBP (5,24). Those
studies showed that the presence of the methyl group, in either
the 5SmC:G or wobble T:G mispair, was sufficient to promote
binding. It is known that the halogenation of cytosine in DNA
can generate the cytosine derivatives discussed above, as well
as the corresponding uracil derivatives by deamination. We
therefore investigated whether CIU and BrU could similarly
facilitate MBP binding. As shown in Table 1, we observe that
the conversion of cytosine to ClU increases binding of MBP by
a factor of five, only 2-fold lower than the affinity of the
oligonucleotide containing the G:T mispair. Surprisingly,
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Figure 5. Molecular model of the sequence 5'-GC5mCGGC-3'/3'-CGGCICCG-5'. The methyl group of 5SmC is depicted in green, the N7 position of the guanines
within the methyl-CpG dinucleotide is depicted in dark blue, the chlorine atom is depicted in magenta. Multiple sites within the methylated CpG dinucleotide are
needed for strong binding by the MBD. All four major sites of contact, two methyl groups and two hydrogen bond accepting nitrogens, are in the major groove of the
DNA within close proximity of one another. Replacement of a methyl group with a chlorine results in a point of contact with nearly identical dimensions and
positioning of the original methyl group, explaining the high affinity of MBD for CIC-containing CpG dinucleotides.

the corresponding conversion of cytosine to BrU does not
increase MBP affinity. Although bromine is similar in size
to the methyl group, it has a slightly larger van der Waals
radius, and the carbon-bromine bond length is longer.
When in the wobble geometry, the slightly larger footprint
of the bromine substituent might result in a steric clash
with the MBP.

The high frequency of transition mutations at methylated
CpG dinucleotides is attributed, in part, to the relative ineffi-
ciency of repair of the deaminated thymine of the T:G mispair.
Whereas uracil, the deamination product of cytosine, is rapidly
repaired by an array of uracil DNA glycosylases, the range and
activity of glycosylases that target and remove mispaired
thymine residues are substantially less (46). Among the activ-
ities that could potentially repair a mispaired thymine residue
derived from 5SmC deamination is MBD4. MBD4 appears to
have dual roles as both a member of the MBP family and a
uracil/thymine glycosylase. MBD4 might have a significant
role in protecting against transition mutations at CpG dinuc-
leotides by residing in methylated areas of chromatin and
initiating thymine repair (23-26). The ability to bind to
both SmC:G and T:G could facilitate this activity.

Upon the basis of the potential role of MBD4 in repairing
T:G mispairs, we investigated the capacity of MBD4 to repair
the halogenated uracil analogues that could arise by halogena-
tion and deamination of cytosine in DNA (Figure 4). We
observe that MBD4 is highly active against C1U mispaired
with guanine, and that CIU is as good a substrate as uracil.
These results are in accord with previous studies, in which it
was shown that both 5-fluorouracil and uracil are good sub-
strates for MBD4 (25). We observed that MBD4 activities
against mispaired BrU and mispaired thymine are similar;
however, the repair activity against these two lesions is less
than the activity against other pyrimidines. Previously, it was
shown that the glycosylase activity against thymine is less than
uracil (24). Our data suggest that both the size and the induct-
ive properties of the 5-substituent influence the repair effici-
ency of the lesion (47). Surprisingly, MBD4 also removes
BrC, but not CIC. The formation of CIU at a CpG dinucleotide
could facilitate MBP binding, as well as serve as a potentially

miscoding DNA lesion. The corresponding formation of BrU
would result primarily in the introduction of a lesion that
would code predominantly like thymine. The formation of
either CIU or BrU from cytosine would give rise to a C to
T transition mutation indistinguishable from a point mutation
resulting from hydrolytic 5SmC deamination.

In conclusion, the results reported here demonstrate that the
halogenation of cytosine in a CpG dinucleotide does mimic
the effect of enzymatic cytosine methylation with respect to
the increased binding affinity of MBPs (Figure 5). To date, no
repair activity has been demonstrated against CIC paired with
guanine (27), although MBD4 has some activity against BrC.
The CIC lesion may therefore be a persistent lesion in DNA.

The initial binding of the MBPs is thought to recruit further
chromatin-modifying activities that together result in a chro-
matin structure with reduced transcriptional activity (48-50).
Recent studies have demonstrated that MBPs can bind with
and recruit methyltransferases (51). The CIC lesion may then
serve a dual role in the recruitment of methyltransferase, as
well as potentially directing the methylase-mediated methyla-
tion of the complementary strand of a hemihalogentated CpG
dinucleotide. The initial cytosine halogenation could then
serve as a signal for subsequent methylation seeding in a
previously unmethylated chromatin region. Through this
mechanism, it is proposed that the halogenation of cytosine
by inflammation-mediated reactive species could result in the
inappropriate inactivation of tumor suppressor genes.

Occasionally, some of the reaction intermediates might also
deaminate, generating the corresponding halouracil analogues.
We observe that CIU, but not BrU, enhances MBD binding.
Fortunately, the glycosylase activity of MBD4, a putative
repair enzyme to remove thymine derived from the deamina-
tion of 5SmC, has the greatest efficiency against CIU of all
pyrimidines tested to date. These results suggest that MBD4
could serve to remove uracil, ClU, BrU and T, all of which
would give rise to C to T transition mutations if unrepaired.
The inflammation-mediated halogenation of cytosine residues
in DNA may account for several of the DNA alterations
observed in human tumors, including both point mutations
and alterations in methylation patterns.
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