
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Hathaway et al. Echo Research & Practice           (2024) 11:22 
https://doi.org/10.1186/s44156-024-00057-w

Echo Research & Practice

†Quincy A. Hathaway and Ankush D. Jamthikar contributed equally 
to this work.

*Correspondence:
Partho P. Sengupta
partho.sengupta@rutgers.edu
1Division of Cardiovascular Disease and Hypertension, Department of 
Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, 
NJ, USA

2Department of Radiology, University of Pennsylvania, Philadelphia, PA, 
USA
3Department of Medicine, St. Louis University School of Medicine, St. 
Louis, MO, USA
4Division of General Internal Medicine, Department of Medicine, Rutgers 
Robert Wood Johnson Medical School, New Brunswick, NJ, USA
5Rutgers Robert Wood Johnson Medical School, Division of 
Cardiovascular Disease and Hypertension, 125 Patterson St, New 
Brunswick, NJ 08901, USA

Abstract
Background  Current risk stratification tools for acute myocardial infarction (AMI) have limitations, particularly in 
predicting mortality. This study utilizes cardiac ultrasound radiomics (i.e., ultrasomics) to risk stratify AMI patients when 
predicting all-cause mortality.

Results  The study included 197 patients: (a) retrospective internal cohort (n = 155) of non-ST-elevation myocardial 
infarction (n = 63) and ST-elevation myocardial infarction (n = 92) patients, and (b) external cohort from the multicenter 
Door-To-Unload in ST-segment–elevation myocardial infarction [DTU-STEMI] Pilot Trial (n = 42). Echocardiography 
images of apical 2, 3, and 4-chamber were processed through an automated deep-learning pipeline to extract 
ultrasomic features. Unsupervised machine learning (topological data analysis) generated AMI clusters followed by 
a supervised classifier to generate individual predicted probabilities. Validation included assessing the incremental 
value of predicted probabilities over the Global Registry of Acute Coronary Events (GRACE) risk score 2.0 to predict 
1-year all-cause mortality in the internal cohort and infarct size in the external cohort. Three phenogroups were 
identified: Cluster A (high-risk), Cluster B (intermediate-risk), and Cluster C (low-risk). Cluster A patients had decreased 
LV ejection fraction (P < 0.01) and global longitudinal strain (P = 0.03) and increased mortality at 1-year (log rank 
P = 0.05). Ultrasomics features alone (C-Index: 0.74 vs. 0.70, P = 0.04) and combined with global longitudinal strain 
(C-Index: 0.81 vs. 0.70, P < 0.01) increased prediction of mortality beyond the GRACE 2.0 score. In the DTU-STEMI 
clinical trial, Cluster A was associated with larger infarct size (> 10% LV mass, P < 0.01), compared to remaining clusters.

Conclusions  Ultrasomics-based phenogroup clustering, augmented by TDA and supervised machine learning, 
provides a novel approach for AMI risk stratification.
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Background
Globally, acute myocardial infarction (AMI) affects 
nearly 10% of people over 60 years of age [1]. In the 
United States, the total annual cost of AMI was $85 bil-
lion in 2016, with an estimated $40  billion lost due to 
premature mortality in the preceding decade [2]. Unfor-
tunately, despite the success of intervention and evolving 
guideline-directed treatment, AMI patients continue to 
have high morbidity and mortality [3]. Currently, clini-
cians use validated risk stratification scoring systems, 
such as the Global Registry of Acute Coronary Events 
(GRACE) [4, 5] and more recently the GRACE 2.0 score 
[6], to predict the 6-month and 1-year risk of all-cause 
mortality following AMI. While guidelines have rec-
ommended using the GRACE score as the most robust 
model for all acute coronary syndrome types [7–9], these 
scores were developed using clinical trial data long before 
percutaneous interventions became routine. Moreover, 
GRACE uses conventional statistical approaches (i.e., 
logistic regression) with fixed linear assumptions on data 
behavior and limited variables, resulting in modest dis-
crimination (e.g., C-statistic range for predicting mortal-
ity:0.65–0.8) [5, 9].

Artificial intelligence (AI) techniques have led to the 
development of novel methods that includes subjecting 
images and other inputs to sophisticated algorithms to 
capture complexity of human health and disease at the 
level of the individual [10]. These methods have achieved 
remarkable success, especially in disease classification 
and risk assessments, in several image-based disciplines, 
such as dermatology, gastroenterology, ophthalmol-
ogy, oncology, and neuroradiology [10–16], including 
the development of ‘omics’-based decision support tools 
[17–21]. The application of radiomics to cardiac ultra-
sound (i.e., ultrasomics), may aid in risk stratification 
of patients experiencing an AMI by extracting texture-
based information from the myocardium. Moreover, the 
development of automated tools that integrate ultraso-
mics for AMI risk stratification addresses the existing gap 
in current guidelines which do not currently integrate 
cardiac imaging-based information in existing tools like 
GRACE 2.0 for estimating risk.

In the present study, we used a cluster-then-predict 
approach for AMI risk stratification. We subjected car-
diac ultrasomics information to topological data analy-
sis (TDA)—a robust method to create compressed 
representations of highly dimensional data to create 
unique patient phenogroups [22]. We illustrate that 
the ultrasomics phenogroups can provide independent 
and incremental information to conventional tools like 
GRACE 2.0 for augmenting 1-year mortality predic-
tion in AMI patients. Moreover, TDA can be effectively 
combined with machine learning and explainable AI 
techniques. Accordingly, we also illustrate the ability to 

develop robust supervised machine-learning algorithms 
on clustered patients, which can be applied to exter-
nal data for phenogroup prediction. Since infract size is 
strongly associated with all-cause mortality in AMI [23], 
we used the Door-To-Unload in STEMI (DTU-STEMI) 
Pilot Trial [24] as an external, prospective, multicenter 
clinical trial cohort to illustrate that the high-risk pheno-
group had larger infarct size as observed on cardiac mag-
netic resonance (CMR) imaging.

Methods
Study population
For the internal validation dataset, AMI patients were 
retrospectively identified from the electronic medical 
record of Robert Wood Johnson University Hospital who 
were admitted over a 6-month period between January 
2023 to July 2023 (Fig. 1). The Institutional Review Board 
(IRB) of Robert Wood Johnson University Hospital gave 
ethical approval for this work (#Pro2023001660). STEMI 
was classified per the Joint ESC/ACCF/AHA/WHF Task 
Force [25]. Exclusion criteria included [1] patients dis-
charged to institutionalized care [2], type 2–5 AMI [3], 
co-existing terminal illness with palliative care for can-
cer, neurological illness (severe dementia, motor neuron 
disease, multiple sclerosis, Parkinson’s disease, stroke, 
supranuclear palsy and multiple system atrophy), heart, 
lung, kidney or liver failure [4] alternative diagnosis for 
elevated cardiac troponin values (e.g. myocarditis, peri-
carditis, non-ischemic cardiomyopathies, moderate-
severe valvular heart disease, sepsis, aortic dissection, 
blunt cardiac injury, coronary spasm and vasculitis, 
arrhythmia and cardiac arrest), and [5] pregnancy. After 
applying the exclusion criteria, 208 patients were initially 
enrolled (i.e., 87 patients classified as having a non-ST-
elevation myocardial infarction (NSTEMI) and 121 as 
having a ST-elevation myocardial infarction (STEMI)). 
Of the 208 patients initially enrolled, 53 patients were 
further excluded from analysis due to technically insuf-
ficient imaging for 2 of the following 3 views: apical 4 
chamber (A4C), apical 3 chamber (A3C), and apical 2 
chamber (A2C). Technically insufficient imaging was 
classified as an inability to delineate the left ventricle 
(LV) endocardial boundaries on visual inspection for 2 or 
more segments. After excluding patients without at least 
two of the three apical views, 155 patients were identi-
fied for subsequent analysis (including 63 patients clas-
sified as having a NSTEMI and 92 as having a STEMI). 
We assessed the performance of the GRACE 2.0 score [6] 
with the primary outcome of all-cause mortality at one 
year.

For the external validation dataset, participants were 
recruited from a prospective, multicenter, randomized 
Door-To-Unload in ST-segment–elevation myocardial 
infarction (DTU-STEMI) pilot trial [24] (Fig.  1). We 
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included 42 participants (all participants classified as 
having a STEMI) with CMR data in the current study. 
Infarct size on CMR was used as the primary end point. 
CMR-quantified infarct size was categorized as large 
(LGE mass accounting for > 10% of the total LV mass) or 
small (LGE mass accounts for ≤ 10% of the total LV mass) 
[26, 27]. The details of the CMR protocol have been 
previously described [24]. Briefly, patients in the DTU-
STEMI trial underwent standard CMR with steady-state 
free-precession sequence for LV ejection fraction, vol-
umes, and mass analysis on days 3 to 5 and again on day 
30 (± 7 days). For the external cohort, institutional review 
boards at each site approved the trial, and patients pro-
vided written, informed consent. The study was approved 
by the Food and Drug Administration (NCT03000270, 
Registration Date: 12/12/2016, Last Update: 05/06/2019).

Echocardiography image acquisition, preprocessing, and 
semantic segmentation
Echocardiograms from A4C, A3C, and A2C were uti-
lized in the present studies for both the internal and 
external validation data analysis. Patients and partici-
pants required at least two of the three views to be pres-
ent to be included in the current study (see Materials, 
section Study Population). 2D echocardiograms were 

preprocessed from video formats to DICOM using 
Sante DICOM Viewer Pro (SanteSoft, Nicosia, Cyprus, 
Greece). DICOM files containing doppler data, dual 
ultrasound regions, or other with limited technical views 
were discarded. A4C, A3C, and A2C multi-beat echocar-
diogram DICOM files were manually selected. The LV 
was segmented in the A4C, A3C, and A2C views using 
echocv [28] (i.e., a semantic segmentation algorithm that 
automatically defines regions of the heart in echocar-
diography images through convolutional neural networks 
(CNNs)).

Echocv and its validation has previously been published 
[28], we modified echocv to be executed using Python 
3.2 and leveraged TensorFlow 1.15.0 with GPU support, 
alongside CUDA 10.0. The segmented images were also 
uniformly resized to a fixed shape of 1024 by 1024 to 
ensure consistency across various image sources. Other-
wise the use of algorithm and its validation has previously 
been published, specifically for predicting LV remodeling 
in parasternal long axis echocardiograms [29]. Using the 
semantic segmentation algorithm, a binary mask repre-
senting the region of interest (ROI) within the A4C, A3C, 
and A2C views was achieved (Figure S1A). The ROI for 
each of the three views was then processed to obtained 
radiomics/ultrasomics-based information.

Fig. 1  Recruitment Diagram. Patients (n = 208) were retrospectively identified over a 6 month timeline who were admitted for AMI. Of these patients, 155 
patients were included in the study who had at least two of three apical echocardiographic views available for analysis. Using ultrasomics features from 
the images, topological data analysis was used to cluster patients into three groups. These three groups were assessed in a supervised machine learning 
algorithm to develop class labels for the external validation group. Ultimately, groups clustered using ultrasomics features were assessed for prediction of 
all-cause mortality and left ventricular infarct size
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First-Order, shape, and texture-based feature extraction
Echocardiography ultrasomics were extracted in Python 
(v3.7.13) using pyradiomics (v3.0.1) [30], SimpleITK 
(v2.2.0) [31], pywavelets (v1.3.0), and numpy (v1.21.5) for 
both the internal and external validation sets. We have 
previously published using this methodology on the LV 
[29]. Briefly, feature extraction was performed for the 2D 
ROI using featureextractor() from pyradiomics. Default 
parameters for extraction, binwidth, resampled pixel 
spacing, interpolator, label definition, were applied. In 
total, first-order (n = 18), shape (n = 9), and texture-based 
(n = 73) features were extracted for each of the echocar-
diography views (i.e., A4C, A3C, and A2C) (Figure S1B).

TDA
The online tool TDAView [32] was used for phenogroup 
cluster of AMI patients in the internal validation set. 
Briefly, TDAView utilizes the Mapper algorithm based 
on TDAmapper [33]. This includes user defined variables 
for Mapper such as: filter function, number of intervals, 
proportion of overlap, and number of bins in single-link-
age clustering. The Mapper function allows geometric 
information to be converted into high dimensional point 
cloud data that can be interpreted by varying filters [33]. 
Our goal with the current work was to delineate AMI 
patients with “high-risk” features from those with “low-
risk” features when predicting all-cause mortality. By 
decreasing the number of bins and the range of the lens 
values (i.e., intervals), we can effectively decrease the 
amount of oversampling and number of edges created 
from the resultant clusters. We used a 1D Mapper filter 
with distance function as Euclidean and filter function as 
mean. Number of intervals was defined as 10, with 5 bins. 
To reduce the overlap between clusters, a 5% overlap was 
defined. The number of clusters was not fixed. Based on 
the parameters used in TDAView, three clusters were 
generated, labeled as Cluster A (n = 62), B (n = 43), and C 
(n = 50).

Supervised machine learning classifier
BigML (https://bigml.com. BigML, Inc. Corvallis, Ore-
gon, USA) was utilized for supervised machine learn-
ing and to develop a classifier for prediction of patients 
in Cluster A, B, and C. Weights were applied to Cluster 
A (weight = 1), Cluster B (weight = 1.189), and Cluster C 
(weight = 1.023) to address class imbalance. Through the 
OptiML application (i.e., a supervised machine learning 
algorithm that compares generated ensembles, deep neu-
ral networks, and logistic regression algorithms) 10-fold 
cross validation was performed and prediction of Clus-
ter A, B, and C phenogroups was performed using only 
ultrasomics features. Once the supervised classifier was 
developed, the external validation set (n = 42 participants) 
was analyzed by the model to generate predicted class 

labels. These class labels (i.e., Cluster A, B, and C) were 
used for subsequent outcome prediction.

Statistics
GraphPad Prism (v10.1.1) and R (v4.1.0) were used 
for statistical analyses. The Shapiro-Wilk test assessed 
normality. In normally distributed data with continu-
ous variables, a two-sided Student’s t-test was applied. 
In non-Gaussian distributed data, the Mann-Whitney 
test was used. When assessing more than one group of 
continuous variables, a one-way analysis of variance 
(ANOVA) was applied. A Dunnett’s multiple compari-
sons test was used for multiple comparisons in the one-
way ANOVA. When assessing more than one group of 
categorical variables, a non-parametric Kruskal-Wallis 
test was applied with multiple comparisons testing.

Receiver operating characteristics (ROC) area under 
the curve (AUC) was created using the BigML platform, 
utilizing 10-fold cross validation. A Kaplan-Meier curve 
was generated using the R packages survival (v3.4-0) [34] 
and survminer (v0.4.9). Stratification of events, assessed 
as patients at risk for mortality at one year, was per-
formed over 50-day increments for patients in Cluster 
A, Cluster B, and Cluster C. The P-value was calculated 
using the log-rank test in R. Using the survival package, 
a Cox Proportional Hazard model (CoxPH) for time-to-
event analyses of mortality at one year was assessed. A 
risk score was generated with the (A) GRACE 2.0 score 
alone, (B) GRACE + Cluster A, (C) GRACE + LV global 
longitudinal strain, and (D) using all three variables 
through CoxPH regression. A probability score (i.e., 
ranging from 0 to 1) for predicting outcomes was gen-
erated using the predictRisk function of the riskRegres-
sion (v2022.11.28) package in R. The concordance index 
(C-statistic) was calculated using the pec (v2022.05.04) 
package in R [35].

Results
Study overview
We evaluated patients (n = 155) presenting with NSTEMI 
and STEMI who had at least two of three apical echocar-
diographic views acquired during admission (Fig.  2A). 
Using echocardiography-derived ultrasomics, pheno-
groups were labeled through TDA and applied to the 
prediction of clinical outcomes, such as time-to-event 
mortality (Fig. 2B). A supervised machine learning algo-
rithm was further used to characterize which ultrasomics 
features are important in prediction of the phenogroups 
and generation of risk prediction score. We then evalu-
ated the incremental value of the phenogroups using 
the internal validation group and explored how assigned 
phenogroup labels contributed to predicting CMR find-
ings in the external validation group (Fig. 2C).

https://bigml.com
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Patient demographics and functional parameters – internal 
validation
Demographic features for patients in the internal valida-
tion study presenting with NSTEMI (n = 63) and STEMI 
(n = 92) were assessed (Table 1). Patients presenting with 
NSTEMI were less likely to have a history of congestive 
heart failure (CHF) (1.59% vs. 20.65%, P < 0.01) and lower 
GRACE Score (107.92 vs. 120.63, P = 0.02), compared to 
STEMI patients, respectively. Patients presenting with 
NSTEMI were more likely to have a history of coronary 
artery disease (CAD) (52.38% vs. 19.57%, P < 0.01), chonic 
kindey disease (CKD) (23.81% vs. 10.87%, P = 0.03), and 
stroke (17.46% vs. 6.52%, P = 0.03), compared to STEMI 
patients, respectively. When comparing the groups based 
on type of AMI, there were no differences in outcomes, 
including major adverse cardiac events (MACE) at 30 
days (P = 0.38), cardiovascular death at 1 year (P = 0.89), 
and all-cause mortality at 1 year (P = 0.95).

Echocardiographic functional features for patients in 
the internal validation study presenting with NSTEMI 
(n = 63) and STEMI (n = 92) were assessed (Table  2). 
Patients presenting with STEMI were more likely to have 
a reduced LV ejection fraction (48% vs. 53%, P < 0.01) 
and left atrial end-systolic volume index (23 mL/m2 vs. 
29 mL/m2, P < 0.01), compared to NSTEMI patients, 
respectively. Further the LV wall motion score index 
(2.00 vs. 1.70, P < 0.01) and LV global longitudinal strain 
(-11.86 vs. -14.10, P < 0.01) indicated greater wall motion 

abnormalities in STEMI compared to NSTEMI patients, 
respectively.

Phenogroup Clustering through TDA
Using the online tool TDAView, three phenogroups were 
identified: Cluster A (n = 62), Cluster B (n = 43), and Clus-
ter C (n = 50) (Fig.  3). Of these phenogroups, Cluster A 
and Cluster B are illustrated to be more homogenous in 
their connectivity within groups, whereas Cluster C is 
illustrated to represent a more heterogenous compila-
tion of patients. Assessing the differences between these 
clusters, Cluster A contains more patients with a prior 
history of CHF (22.58% vs. 8.00%, P = 0.04), compared to 
Cluster C (Table  3). Further, the Cluster A phenogroup 
has a higher risk of all-cause mortality at 1 year (19.35% 
vs. 4.00%, P = 0.03), compared to Cluster C. The data in 
Table 2 highlight how the Cluster A represents a “high-
risk” phenogroup, whereas Cluster B can be seen as 
“intermediate-risk” and Cluster C as “low-risk”. When 
assessing the echocardiographic functional parameters 
(Table  4), Cluster A had a reduced LV ejection frac-
tion (45% vs. 53%, P < 0.01) and LV global longitudinal 
strain (-11.88 vs. -13.87, P = 0.03) compared to Cluster C, 
respectively.

Supervised machine learning classifier for phenogroups
With only ultrasomics features, the phenogroup labels 
were predicted for Cluster A (ROC AUC: 0.95), Cluster 
B (ROC AUC: 0.95), and Cluster C (ROC AUC: 0.92) 

Fig. 2  Study Design and Overview. (A) The internal validation patient cohort presenting with non-ST-elevation myocardial infarction (NSTEMI, n = 63) 
and ST-elevation myocardial infarction (STEMI, n = 92) (B) Ultrasomics features were extracted and TDAView was used to cluster patients into three phe-
nogroups: Cluster A, Cluster B, and Cluster C. The identified phenogroups were used to develop class labels for the external validation group using a 
supervised classifier. (C) The generated probabilities from the supervised classifier were used to predict mortality and illustrate the incremental value of 
ultrasomics features over GRACE 2.0. The supervised classifier was applied to the external validation group to develop class labels, which were used to 
predict findings on cardiac magnetic resonance, including acute infarct size
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(Fig.  4A). When looking at the features contributing to 
the model, there was a mix of texture-based features and 
first order features (Fig. 4B). Prediction probabilities were 
generated for the internal validation dataset based on 
the supervised classifier; these probabilities were used in 
subsequent analyses for risk prediction.

Outcome prediction in the internal and external patient 
groups
Using mortality at one year, survival analysis revealed 
that patients assigned to Cluster A had a significant 
increase in mortality compared to Cluster C (log rank, 
P = 0.05) (Fig. 5A). We further wanted to further under-
stand if the phenogroups, represented by changes in 
ultrasomics, had incremental value when predicting 
mortality. The concordance index was calculated for our 
four groups of variables: (A) GRACE 2.0 score alone, (B) 

GRACE + Cluster A, (C) GRACE + LV global longitudinal 
strain, and (D) using all three variables together (Fig. 5B). 
When examining GRACE scoring combined with ultra-
somics (Concordance: 0.74 vs. 0.70, P = 0.04) and further 
adding LV GLS (Concordance: 0.81 vs. 0.70, P < 0.01), 
an increase in prediction of all-cause mortality is shown 
beyond that of the GRACE 2.0 score alone, respectively 
(Fig. 5C).

The developed supervised model was further applied 
to the external participants to assign phenogroup labels 
(i.e., Cluster A, B, and C). The batch prediction of the 
external dataset (n = 42 presenting with STEMI) labeled 
participants into Cluster A (n = 11), Cluster B (n = 23), 
and Cluster C (n = 8) (Table 5). Patients in Cluster A had 
a higher percentage of LV identified as “at risk” (60% vs. 
37%, P = 0.04) at 5 days post AMI, compared to Cluster 
C. Moreover, patients in the Cluster A phenogroup had 

Table 1  Patient demographics of the Internal Validation Group Stratified by Acute myocardial infarction (AMI). Patients presenting 
with non-ST-elevation myocardial infarction (NSTEMI, n = 63) and ST-elevation myocardial infarction (STEMI, n = 92). Data are presented 
as the percent (%) of total or the 95% confidence interval, where applicable. Data are considered statistically significant if P ≤ 0.05, 
denoted by * and bolded text. BMI = body mass index, CHF = congestive heart failure, COPD = chronic obstructive pulmonary disease, 
CAD = coronary artery disease, CKD = chronic kidney disease, GRACE = Global Registry of Acute coronary events, MACE = major adverse 
cardiac events
Internal Validation - Patient Demographics Stratified by Acute Myocardial Infarction (AMI)
Variable NSTEMI (n = 63) STEMI (n = 92) P-Value
Age (years) 68.03 (66.48–69.58) 65.47 (64.04–66.9) 0.28
Sex (Male) 40 (63.49%) 70 (76.09%) 0.09
Race/Ethnicity
Caucasian
Asian American
Hispanic American
Black/African American

24 (38.1%)
8 (12.7%)
14 (22.22%)
6 (9.52%)

37 (40.22%)
22 (23.91%)
14 (15.22%)
8 (8.70%)

0.79
0.08
0.27
0.86

BMI (kg/m2) 27.82 (27.09–28.55) 28.43 (27.42–29.44) 0.67
Systolic Blood Pressure (mmHg) 143 (140–146) 143 (140–147) 0.96
Diastolic Blood Pressure (mmHg) 74 (72–75) 80 (78–82) 0.05
Heart Rate (per minute) 84 (81–86) 85 (83–87) 0.66
Cardiac Arrest (at admission) 0 (0%) 4 (4.35%) 0.09
Troponin Elevation (at admission) 63 (100%) 89 (96.74%) 0.15
Smoking History
Current
Former

11 (17.46%)
18 (28.57%)

18 (19.57%)
22 (24.18%)

0.74
0.54

History of CHF 1 (1.59%) 19 (20.65%) *<0.01
History of COPD 5 (7.94%) 2 (2.17%) 0.09
History of CAD 33 (52.38%) 18 (19.57%) *<0.01
History of CKD 15 (23.81%) 10 (10.87%) *0.03
History of Diabetes Mellitus 35 (55.56%) 39 (42.39%) 0.11
History of Hyperlipidemia 38 (60.32%) 51 (55.43%) 0.55
Prior Myocardial Infarction 12 (19.05%) 13 (14.29%) 0.43
Prior Percutaneous Intervention 22 (34.92%) 25 (27.17%) 0.31
Prior Coronary Artery Bypass Graft 7 (11.11%) 7 (7.61%) 0.46
Prior Stroke 11 (17.46%) 6 (6.52%) *0.03
GRACE Score 107.92 (105.04–110.8) 120.63 (116.97-124.28) *0.02
MACE at 30 Days 6 (9.52%) 13 (14.29%) 0.38
Cardiovascular Death − 1 year 5 (8.06%) 8 (8.70%) 0.89
All-Cause Mortality − 1 year 8 (12.70%) 12 (13.04%) 0.95
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Table 2  Patient cardiac function of the Internal Validation Group Stratified by Acute myocardial infarction (AMI). Patients presenting 
with non-ST-elevation myocardial infarction (NSTEMI, n = 63) and ST-elevation myocardial infarction (STEMI, n = 92). Data are presented 
as the percent (%) of total or the 95% confidence interval, where applicable. Data are considered statistically significant if P ≤ 0.05, 
denoted by * and bolded text
Internal Validation - Patient Cardiac Function Stratified by Acute Myocardial Infarction (AMI)
Variable NSTEMI (n = 63) STEMI (n = 92) P-Value
Left Ventricular Internal Diameter - End Diastole (mm) 46 [45–47] 47 [45–49] 0.38
Left Ventricular Internal Diameter - End Systole (mm) 34 [32–36] 37 [35–39] 0.07
Left Ventricular Mass Index (g/m²) 87 (81–93) 92 (85–98) 0.35
Left Ventricular End-diastole Volume (mL) 94 (86–103) 106 (99–113) 0.06
Left Ventricular End-systole Volume (mL) 47 [40–53] 57 (51–62) *0.03
Left Ventricular Ejection Fraction (%) 53 (50–56) 48 [45–50] *<0.01
Left Ventricular Wall Motion Score Index 1.70 (1.56–1.83) 2.00 (1.90–2.11) *<0.01
Left Ventricular Global Longitudinal Strain (%) -14.10 (-15.07- -13.12) -11.86 (-12.64- -11.08) *<0.01
Left Ventricular Outflow Tract Stroke Volume (mL) 61 (56–66) 55 (51–59) 0.12
e’ Septal 5.90 (5.47–6.33) 6.04 (5.64–6.43) 0.64
e’ Lateral 8.26 (7.51–9.02) 7.79 (7.26–8.32) 0.95
Mitral Valve E Wave (cm/s) 85 (78–91) 83 (77–89) 0.81
MV-A (cm/s) 85 (79–91) 79 (74–84) 0.21
E/A Ratio 1.06 (0.94–1.18) 1.05 (0.96–1.14) 0.92
E/e’ Septal 15.70 (13.71–17.69) 15.06 (13.66–16.45) 0.64
E/e’ Lateral 11.57 (10.19–12.94) 11.63 (10.44–12.82) 0.95
Left Atrial End-systolic Volume Index (mL/m2) 29 [26–31] 23 [21–25] *<0.01

Fig. 3  Topological Data Analysis (TDA) Clustering of Ultrasomics Features. Individual nodes are represented as red circles, with the number next to the 
node corresponding to the number of patients included in the node. Cluster A (n = 62), Cluster B (n = 43), and Cluster C (n = 50)
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a higher proportion of large infarcts (> 10% of LV mass) 
at 30 days following AMI (0.91 vs. 0.25, P < 0.01), when 
compared to Cluster C.

Discussion
Properties of pathological changes within the myocardial 
microstructure influence ultrasound signal intensity dis-
tributions [29]. Unlike information obtained indirectly 
(i.e., clinical risk factors, ECG, and biomarkers), specific 
analyzable trends in ultrasound texture information may 
have added insights into causal pathways that result in 
disease and clinical presentation. Integrating myocardial 
texture analysis (i.e., ultrasomics) with clinical data can 

provide a rich opportunity to develop machine learning 
models to predict adverse cardiac events following AMI, 
as ultrasomics can identify cellular changes in the myo-
cardium [29, 36]. To this end we provide a proof-of-con-
cept application of ultrasomics (i.e., cardiac ultrasound 
radiomics) in risk stratifying AMI patients. Three AMI 
phenogroups were identified according to ultrasound 
texture features with patients in phenogroup A having 
the worst prognosis. Phenogroup A showed incremen-
tal and independent information over GRACE 2.0 for 
predicting 1-year mortality after AMI. Using a cluster-
then-predict framework we utilized an external hold out 
dataset for phenogroup prediction in which phenogroup 

Table 3  Patient demographics of the Internal Validation Group for Predicted Ultrasomics Phenogroups. Using only the ultrasomics 
features from the A4C, A3C, and A2C echocardiogram views, patients were clustered into phenogroups. Cluster a “high-risk” (n = 62), 
cluster B “intermediate-risk” (n = 43), and cluster C “low-risk” (n = 50) using topological data analysis (TDA). Data are presented as 
the percent (%) of total or the 95% confidence interval, where applicable. Data are considered statistically significant if P ≤ 0.05, 
denoted by * and bolded text. BMI = body mass index, CHF = congestive heart failure, COPD = chronic obstructive pulmonary disease, 
CAD = coronary artery disease, CKD = chronic kidney disease, STEMI = ST-elevation myocardial infarction, GRACE = Global Registry of 
Acute coronary events, MACE = major adverse cardiac events
Internal Validation - Patient Demographics in Predicted Ultrasomics Phenogroups
Variable Cluster A (High Risk) (n = 62) Cluster B (n = 43) Cluster C (Low Risk) (n = 50) P-Value
Age (years) 66.74 (62.98–70.51) 66.88 (62.34–71.43) 65.9 (62.03–69.77) 0.94
Sex (Male) 44 (70.97%) 31 (72.09%) 35 (70.00%) 0.98
Race/Ethnicity
Caucasian
Asian American
Hispanic American
Black/African American

24 (38.71%)
12 (19.35%)
9 (14.52%)
5 (8.07%)

16 (37.21%)
8 (18.6%)
9 (20.93%)
4 (9.30%)

21 (42.00%)
10 (20.00%)
10 (20.00%)
5 (10.00%)

0.89
0.99
0.64
0.94

BMI (kg/m2) 29.01 (26.08–31.93) 28.9 (26.91–30.89) 26.56 (24.68–28.43) 0.28
Systolic Blood Pressure (mmHg) 140 (132–149) 145 (135–155) 145 (136–155) 0.65
Diastolic Blood Pressure (mmHg) 78 (73–84) 77 (71–84) 76 (71–80) 0.72
Heart Rate (per minute) 86 (81–92) 85 (78–93) 81 (76–87) 0.47
Cardiac Arrest (at admission) 2 (3.23%) 1 (2.33%) 1 (2.00%) 0.92
Troponin Elevation (at admission) 61 (98.39%) 43 (100%) 48 (96.00%) 0.37
STEMI (at admission) 36 (58.06%) 26 (60.47%) 30 (60.00%) 0.96
Smoking History
Current
Former

16 (25.81%)
10 (16.13%)

11 (25.58%)
6 (13.95%)

13 (26.53%)
13 (26.00%)

0.99
0.27

History of CHF 14 (22.58%)** 2 (4.65%) 4 (8.00%) *0.01
History of COPD 1 (1.61%) 4 (9.30%) 2 (4.00%) 0.17
History of CAD 21 (33.87%) 18 (41.86%) 12 (24.00%) 0.19
History of CKD 10 (16.13%) 5 (11.63%) 10 (20.00%) 0.55
History of Diabetes Mellitus 30 (48.39%) 19 (44.19%) 25 (50.00%) 0.85
History of Hyperlipidemia 34 (54.84%) 25 (58.14%) 30 (60.00%) 0.86
Prior Myocardial Infarction 8 (12.90%) 10 (23.26%) 7 (14.29%) 0.34
Prior Percutaneous Intervention 5 (8.07%) 5 (11.63%) 4 (8.00%) 0.67
Prior Coronary Artery Bypass Graft 21 (33.87%) 13 (30.23%) 13 (26.00%) 0.79
Prior Stroke 6 (9.68%) 4 (9.302%) 7 (14.00%) 0.71
GRACE Score 118.1 (109.1-127.2) 114.5 (104.8-124.3) 112.8 (103.9-121.8) 0.69
MACE at 30 Days 7 (11.29%) 5 (11.63%) 7 (14.29%) 0.88
Cardiovascular Death − 1 year 8 (13.11%) 4 (9.30%) 1 (2.00%) 0.11
All-Cause Mortality − 1 year 12 (19.35%)** 6 (13.95%) 2 (4.00%) *0.04
* = P ≤ 0.05 when comparing all groups

** = P ≤ 0.05 when comparing Cluster A vs. Cluster C
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A had large proportion of patients with moderate or large 
infarcts.

While classic supervised learning approaches require 
larger datasets, the cluster-then-predict methodology has 
the advantage of reducing bias, such as overfitting, when 
risk stratifying patients [37–39]. Moreover this approach 
reduces prediction errors [40] and shows robust perfor-
mance with echo-related data [41–44]. Radiomics, deep 
learning features, 2D-echocardiography, demographic/
clinical (e.g., age, sex, race, BSA, BMI, comorbidities, 
family history, etc.), laboratory, and biomarker data can 
further be added to incrementally increase the risk-strat-
ification of these phenogroups. Our group has previ-
ously utilized TDA to create patient similarity networks 
to identify aortic stenosis [45], diastolic dysfunction 
[46–48], and heart failure [49, 50]. In aortic stenosis, by 
creating patient phenogroups for mild and severe aortic 
stenosis, the “high-risk” severe aortic stenosis pheno-
group was associated with increased risk of balloon val-
vuloplasty, and valve replacement [45]. Specifically, as 
shown in this study, the phenotypic groups from TDA 
(or unsupervised machine learning, PCA clustering, 
etc.) can serve as class labels for developing supervised 
algorithms. This technique, first clustering and then pre-
dicting using supervised machine-learning models, can 
result in stronger associations with clinical outcomes by 
increasing the number of events (i.e., phenogroup clus-
ters) and reduce class imbalance.

Current risk stratification tools for AMI, such as the 
GRACE Score, reduce mortality rates compared to stan-
dard strategies [51, 52] but, with the use of current AI 
applications, it is possible to characterize more patients 
at-risk for morbidity and mortality by combining infor-
mation from clinical, laboratory, imaging, and other fea-
tures. Risk stratification tools can be benchmarked using 
AUC and C-Index as metrics, with values ranging from 
0.6 to 0.7 having limited clinical value, whereas those 
between 0.7 and 0.8, 0.8–0.9, and > 0.9 considered to have 
fair, good, and excellent discrimination [53–55], respec-
tively. The GRACE model has shown performances rang-
ing from 0.65 to 0.8 (C-Index) [9], with our current study 
reporting a performance of 0.70, utilizing the GRACE 
2.0 score, which is within the reported variation of the 
model. We also showed how the C-Index improved when 
using ultrasomics features (0.74) and in combination 
with LV functional parameters (0.81). As this is a feasibil-
ity study, future work should harness these non-clinical 
markers (such as ultrasomics and LV functional infor-
mation) in larger, multicenter studies to create new risk 
stratification tools for the prediction of AMI.

We note several limitations to the current investiga-
tion. (1) The cohort sizes in the internal and external 
validations sets are relatively small (n = 155 and n = 42, 
respectively). While this patient groups are small, we 
highlight how the cluster-then-predict methodology is 
better adapted to smaller datasets and can help provide 

Table 4  Patient cardiac function of the Internal Validation Group for Predicted Ultrasomics Phenogroups. Using only the ultrasomics 
features from the A4C, A3C, and A2C echocardiogram views, patients were clustered into phenogroups. Cluster a “high-risk” (n = 62), 
cluster B “intermediate-risk” (n = 43), and cluster C “low-risk” (n = 50) using topological data analysis (TDA). Data are presented as the 
percent (%) of total or the 95% confidence interval, where applicable. Data are considered statistically significant if P ≤ 0.05, denoted by 
* and bolded text
Internal Validation - Patient Cardiac Function in Predicted Ultrasomics Phenogroups
Variable Cluster A (High Risk) (n = 62) Cluster B (n = 43) Cluster C (Low Risk) (n = 50) P-Value
Left Ventricular Internal Diameter - End Diastole (mm) 48 [46–50] 46 [43–49] 45 [43–47] 0.17
Left Ventricular Internal Diameter - End Systole (mm) 37 [35–40]** 35 [31–38] 33 [31–36] *0.04
Left Ventricular Mass Index (g/m²) 92 (84–99) 85 (76–93) 91 (81–101) 0.53
Left Ventricular End-diastole Volume (mL) 103 (92–113) 108 (95–120) 95 (86–104) 0.27
Left Ventricular End-systole Volume (mL) 58 (50–66)** 52 (42–62) 46 [40–53] 0.07
Left Ventricular Ejection Fraction (%) 45 [41–49]** 54 (50–58) 53 (50–56) *<0.01
Left Ventricular Wall Motion Score Index 2.00 (1.83–2.17) 1.80 (1.51–2.10) 1.78 (1.61–1.96) 0.18
Left Ventricular Global Longitudinal Strain (%) -11.88 (-12.99- -10.78)* -13.1 (-14.55- -11.66) -13.87 (-15.03- -12.72) *0.04
Left Ventricular Outflow Tract Stroke Volume (mL) 53 (48–59)** 57 (49–64) 64 (57–71) *0.04
e’ Septal 5.48 (5.04–5.91)** 6.12 (5.54–6.69) 6.50 (5.86–7.15) *0.02
e’ Lateral 7.56 (6.85–8.27) 8.54 (7.64–9.44) 8.03 (7.09–8.97) 0.25
Mitral Valve E Wave (cm/s) 82 (75–90) 83 (72–93) 87 (78–95) 0.74
MV-A (cm/s) 81 (74–89) 79 (69–88) 86 (77–94) 0.52
E/A Ratio 1.06 (0.93–1.19) 1.05 (0.90–1.21) 1.06 (0.89–1.22) 0.99
E/e’ Septal 16.51 (14.45–18.58) 14.64 (11.60-17.67) 14.28 (12.43–16.12) 0.30
E/e’ Lateral 12.10 (10.48–13.72) 10.91 (8.86–12.96) 11.58 (9.83–13.34) 0.63
Left Atrial End-systolic Volume Index (mL/m2) 26 [24–29] 23 [20–26] 25 [21–29] 0.39
* = P ≤ 0.05 when comparing all groups

** = P ≤ 0.05 when comparing Cluster A vs. Cluster C
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a framework for other investigations where small cohort 
sizes are present (i.e., rare diseases, underrepresented 
minorities, limited resources for data collection, etc.). 
Though, as the external validation cohort (n = 42) is fur-
ther stratified into smaller clustered groups within our 
analysis, the generalizability of these results is limited 
and requires a larger external validation group in the 
future to assess the robustness of the current findings. 
(2) The outcome of interest, all-cause mortality at 1 year, 
was only represented in 20 of 155 patients. Because of 
the low number of events, we used univariate analysis to 
screen for features to provide in the adjusted model while 
avoid issues with overfitting in the survival model. Nev-
ertheless, we noted the incremental value of radiomics 
over conventional scores like GRACE 2.0 and several 
echocardiographic parameters like ejection fraction, 
LV end-systolic volume and global longitudinal strain. 
Future work with larger sample size and a greater num-
ber of events would allow develop of robust multivariable 
models using radiomics, clinical and conventional echo-
cardiographic features. (3) The use of TDA, and other 
unsupervised learning approaches, can be subjective in 

the number of clusters defined. In the current study, we 
highlight three unique phenogroups. While we could 
have altered the parameters to include more or less num-
bers of phenogroups, the main constraint on the Mapper 
algorithm that we wanted to maintain was a low percent 
overlap between groups (i.e., reducing the similarities of 
phenogroups and ultimately providing clearer boundar-
ies between those with “high” and “low” risk).

Conclusions
In summary, we utilize an echocardiography-derived 
approach to measure ultrasomics and identify pheno-
groups among patients presenting with AMI. Through 
TDA, three distinct phenogroups (Clusters A, B, and C) 
were delineated, with Cluster A representing a “high-
risk” group, Cluster B an “intermediate-risk” group, and 
Cluster C a “low-risk” group. These phenogroups demon-
strated significant differences in clinical outcomes, par-
ticularly in terms of all-cause mortality at 1 year. Logistic 
regression and supervised machine learning further vali-
date the predictive power of these phenogroups, show-
ing their potential utility in clinical risk stratification. 

Fig. 4  Supervised Machine Learning Classifier. (A) Prediction of phenogroup labels on the internal validation dataset using only ultrasomics (B) The top 
five features contributing to model development for the supervised machine learning classifier
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Moreover, application of the developed model to an 
external dataset highlighted the robustness of these 
phenogroups in predicting cardiac magnetic resonance 
(CMR) findings such as infarct size, providing valuable 
insights for personalized patient management and prog-
nostication in AMI.

Fig. 5  Performance of Phenogroups in Assessing All-Cause Mortality. (A) Kaplan Meyer curve and stratified risk categories for patients in phenogroups 
Cluster A, Cluster B, and Cluster C. (B) Time-to-event Concordance Index (C-Index) for groups (1) GRACE 2.0 score alone, (2) GRACE + Cluster A, (3) 
GRACE + left ventricular global longitudinal strain (GLS), and (4) using all three variables through CoxPH regression. (C) Incremental value of ultrasomics 
features (i.e., Cluster A) in predicting all-cause mortality, over the 1-year follow-up period. GRACE = Global Registry of Acute Coronary Events
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Table 5  Patient demographics of the External Validation Group for Predicted Ultrasomics Phenogroups. Class labels were generated 
for the external hold out dataset (i.e., the prospective, multicenter, randomized DTU-STEMI pilot trial dataset). Labels were applied 
based solely on ultrasomics features from the A4C, A3C, and A2C echocardiogram views. Data are considered statistically significant if 
P ≤ 0.05, denoted by * and bolded text. BMI = body mass index, CHF = congestive heart failure, COPD = chronic obstructive pulmonary 
disease, CAD = coronary artery disease, CKD = chronic kidney disease, MACE = major adverse cardiac events, LV = left ventricular
External Validation - Patient Demographics in Predicted Ultrasomics Phenogroups
Variable Cluster A (High Risk) (n = 11) Cluster B (n = 23) Cluster C (Low Risk) (n = 8) P-Value
Age (years) 56.82 (48.07–65.57) 58.26 (53.72–62.8) 62.88 (54.99–70.76) 0.48
Sex (Male) 9 (81.82%) 18 (78.26%) 5 (62.5%) 0.60
Race/Ethnicity
Caucasian
Asian American
Hispanic American
Black/African American

8 (72.73%)
1 (9.09%)
0 (0%)
1 (9.09%)

17 (73.91%)
3 (13.04%)
1 (4.55%)
3 (13.04%)

6 (75.00%)
0 (0%)
0 (0%)
2 (25.00%)

0.99
0.58
0.66
0.62

BMI (kg/m2) 30.08 (25.73–34.42) 31.61 (27.35–35.88) 25.61 (21.55–29.67) 0.23
Systolic Blood Pressure (mmHg) 148 (129–167) 158 (143–173) 144 (132–157) 0.44
Diastolic Blood Pressure (mmHg) 93 (81–104) 91 (84–99) 87 (75–99) 0.71
Heart Rate (per minute) 85 (77–93) 91 (81–101) 81 (66–96) 0.45
Left Ventricular Ejection Fraction (%) 36 [27–45] 37 [31–43] 44 [37–51] 0.41
Mitral Valve E Wave (cm/s) 74 (58–91) 77 (69-0.85) 74 (60–89) 0.93
Mitral Valve A Wave (cm/s) 72 (62–83) 69 (59–78) 74 (64–85) 0.71
E/A Ratio 1.07 (0.78–1.37) 1.20 (0.98–1.42) 1.02 (0.79–1.24) 0.55
History of COPD 0 (0%) 0 (0%) 0 (0%) 0.99
History of CAD 1 (9.09%) 1 (4.35%) 1 (12.50%) 0.73
History of CKD 0 (0%) 0 (0%) 0 (0%) -
History of Diabetes Mellitus 3 (27.27%) 4 (17.39%) 0 (0%) 0.30
History of Hyperlipidemia 7 (63.64%) 9 (39.13%) 4 (50.00%) 0.42
Prior Stroke 1 (9.09%) 0 (0%) 0 (0%) 0.25
MACE − 30 Days 0 (0%) 2 (8.70%) 0 (0%) 0.44
Cardiovascular Death − 30 Days 0 (0%) 0 (0%) 0 (0%) -
All Cause Mortality − 30 Days 0 (0%) 0 (0%) 0 (0%) -
Infarct Size (%) of Area at Risk − 5 Days 60 (52–68)** 46 (37–56) 37 (18–56) 0.06
Acute Volume of Infarct Size (mL) − 5 Days 43 [32–54] 31 [20–42] 21 (-4.12-46) 0.17
Acute Infarct Size (%) of LV Mass − 5 Days 23 [17–29] 17 [11–23] 12 (-0.53-25) 0.24
Acute Infarct Size > 10% of LV Mass − 5 Days 9 (82.00%) 14 (61%) 3 (38.00%) 0.07
Acute Volume of Infarct Size (mL) − 30 Days 28 [21–36] 23 [14–32] 14 (-3.10-31) 0.25
Acute Infarct Size (%) of LV Mass − 30 Days 18 [13–22] 14 (8.73-19) 9.23 (-1.31-20) 0.27
Acute Infarct Size > 10% of LV Mass − 30 Days 10 (91.00%) 11 (48.00%) 2 (25.00%) *<0.01
* = P ≤ 0.05 when comparing all groups

** = P ≤ 0.05 when comparing Cluster A vs. Cluster C
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