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Abstract
Background  Predicting mortality and relapse in children with acute lymphoblastic leukemia (ALL) is crucial for 
effective treatment and follow-up management. ALL is a common and deadly childhood cancer that often relapses 
after remission. In this study, we aimed to apply and evaluate machine learning-based models for predicting mortality 
and relapse in pediatric ALL patients.

Methods  This retrospective cohort study was conducted on 161 children aged less than 16 years with ALL. Survival 
status (dead/alive) and patient experience of relapse (yes/no) were considered as the outcome variables. Ten 
machine learning (ML) algorithms were used to predict mortality and relapse. The performance of the algorithms was 
evaluated by cross-validation and reported as mean sensitivity, specificity, accuracy and area under the curve (AUC). 
Finally, prognostic factors were identified based on the best algorithms.

Results  The mean accuracy of the ML algorithms for prediction of patient mortality ranged from 64 to 74% and for 
prediction of relapse, it varied from 64 to 84% on test data sets. The mean AUC of the ML algorithms for mortality 
and relapse was above 64%. The most important prognostic factors for predicting both mortality and relapse were 
identified as age at diagnosis, hemoglobin and platelets. In addition, significant prognostic factors for predicting 
mortality included clinical side effects such as splenomegaly, hepatomegaly and lymphadenopathy.

Conclusions  Our results showed that artificial neural networks and bagging algorithms outperformed other 
algorithms in predicting mortality, while boosting and random forest algorithms excelled in predicting relapse in ALL 
patients across all criteria. These results offer significant clinical insights into the prognostic factors for children with 
ALL, which can inform treatment decisions and improve patient outcomes.
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Introduction
Children (aged zero to 14) make up about a quarter of 
the world’s population [1]. There are a variety of causes 
that can contribute to children’s deaths, including infec-
tious diseases, noncommunicable diseases, injuries, 
and difficulties during childbirth [2]. Cancer as a non-
communicable disease is the second leading cause of 
death in children. The most common cancers diagnosed 
in children under 15 years of age are leukemia, brain 
tumors and other central nervous system tumors, and 
lymphomas. Leukemia is the most common childhood 
malignancy which constitute about 30% of all cancers 
diagnosed in children under 15 years of age. It is char-
acterized by abnormal growth of immature white blood 
cells and their substrates in the blood and bone marrow 
[3]. Leukemia patients can experience death from a vari-
ety of causes, including relapse, treatment complications 
and serious infections [4, 5]. Leukemia was divided into 
four main types: Acute Lymphoblastic Leukemia (ALL), 
Acute Myeloid Leukemia (AML), Chronic Lymphocytic 
Leukemia (CLL) and Chronic Myeloid Leukemia (CML) 
[3]. Among them, ALL is the most common type of leu-
kemia, accounting for about 80% of cases [6, 7].

Despite the fact that early detection and prompt initia-
tion of treatment can significantly increase the chances 
of cure and survival for 90% of children, ALL is still one 
of the leading causes of death in childhood. Also, relapse 
occurs in 15 to 20% of children with ALL, and cure rates 
after relapse are much lower [8]. Therefore, it causes not 
only the death of children, but also high diagnostic and 
treatment costs for families and health systems [9, 10].

Accurate classification of childhood ALL patients into 
appropriate risk groups is a critical, but challenging com-
ponent of treatment management. Early identification of 
relevant outcomes is critical for tailoring chemothera-
peutic treatment and improving patient outcomes, and 
accurate diagnosis is necessary for selecting the appro-
priate treatment modality and planning patient care [11]. 
Recently, machine learning (ML) techniques have been 
extended to medical applications that enable the detec-
tion of complex patterns that can aid in the diagnosis, 
treatment, outcome prediction, and prevention of disease 
[12]. These techniques use algorithms that can automati-
cally learn and improve based on experience, without 
being explicitly programmed [13]. In addition, these 
methods can account for high-dimensional, complex and 
nonlinear relationships between prognostic factors and 
make more accurate predictions in various domains that 
are not possible with traditional statistical methods [14]. 
In general, ML methods are nonparametric methods that 
need no distributional assumptions and can be split into 
two main categories, (i) supervised learning (ii) unsu-
pervised learning. In supervised learning, the machine 
learns patterns based on input and output data, while 

in unsupervised learning, it discovers patterns without 
labels. These methods were used for solving problems of 
classification and regression. In classification, the output 
variable has class labels, and in regression, the output 
variable has continuous values [15, 16].

ML algorithms have recently been successfully applied 
in various medical fields, such as skin cancer classifica-
tion [17], cancer detection [18], cardiovascular disease 
prediction [19], COVID-19 mortality prediction [20], 
traumatic injury mortality prediction [21] and predic-
tion of the transition from pre-diabetes to type 2 diabe-
tes [22]. In cancer care, ML methods can be trained on 
patient data to identify individuals at high risk of cancer 
relapse or progression. These algorithms can also help 
determine the most effective treatment options for each 
patient by taking into account their individual genetic 
predispositions and medical history [23].

According to a review study by Cruz and Wishart, ML 
methods have shown significant potential to improve 
the accuracy of cancer susceptibility, relapse, and sur-
vival prediction, such that their application has led to a 
15–20% improvement in cancer prediction accuracy in 
recent years [24]. This highlights the potential of using 
ML algorithms to improve cancer care and outcomes 
through more accurate and personalized predictions 
for individual patients. In addition, ML methods have 
been utilized to predict treatment outcomes using gene 
expression data, and medical images, emphasizing the 
importance of these methods in predicting cancer [25]. 
Hence, applying ML methods can assist clinicians make 
better decision regarding patient care.

In recent years, different types of ML methods have 
been employed for solving classification problems in 
medical research, particularly childhood cancer domain, 
and especially leukemia [26]. Most of the previous related 
works have widely used gene expression, molecular, blood 
smear image datasets for diagnosing acute leukemia or 
classifying acute leukemia subtype, outcome and relapse 
prediction [27–30]. Moreover, some review articles have 
also investigated studies that utilized ML methods for 
leukemia detection using molecular and image data [31, 
32]. However, information regarding gene expression, 
molecular, blood smear image datasets is not available for 
all settings, especially in lower income countries and the 
usual medical records include only some demographic 
and clinical variables. A number of studies have used 
prediction models to diagnose leukemia and predict the 
occurrence of death and relapse. Nevertheless, a limited 
number of studies have utilized ML methods for death 
mortality and relapse prediction in ALL patients on the 
basis of laboratory and clinical data. For example, Kashef 
et al. used several algorithms such as Decision Tree (DT), 
Support Vector Machine (SVM), Linear Discriminant 
Analysis (LDA), Multinomial Linear Regression (MLR), 
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Gradient Boosting Machine (GBM), Random Forest (RF) 
and XG-Boost methods to predict the treatment out-
come ( dead or survived) of pediatric ALL patients [4]. 
Also, Pan et al. have used several models such as DT, RF, 
SVM and Logistic Regression (LR) to predict ALL child-
hood relapse [33]. Given the importance of ALL disease, 
identifying the prognostic factors that impact treat-
ment outcomes, mortality and relapse rates is critical. 
From this point of view, this information can be crucial 
for oncologists and clinicians as it allows them to accu-
rately predict patient outcomes and effectively treat the 
disease. Therefore, the main objective of this study was 
to comprehensively compare the performance of differ-
ent machine learning algorithms for predicting mortal-
ity and relapse in patients with ALL, considering clinical 
and laboratory data. Furthermore, important prognostic 
factors influencing mortality and relapse in children with 
ALL were identified.

It should be noted that an important aspect in deter-
mining the prognostic factors is their stability in the 
models selected by cross-validation. Cross-validation 
with only one sampling is not a reliable foundation for 
decision-making. Instead, it is recommended to use 
cross-validation many times and calculate the mean 
accuracy of each fold. This approach can facilitate vari-
able selection, with the process being iterated until the 
set of features with the highest mean accuracy is identi-
fied as the optimal one. By embracing this methodology, 
the model can be evaluated with greater precision and 
the results will exhibit greater stability [34, 35]. There-
fore, in this study we investigated the performance of the 
ML methods according to several criteria and reported 
the corresponding means and standard deviations over 
100 iterations.

Materials and methods
Data collection
The present retrospective cohort study was conducted on 
161 children under 16 years of age diagnosed with ALL. 
These patients were referred to the Taleghani Children’s 
Educational and Therapeutic Hospital in the city of Gor-
gan, northern Iran, from September 1997 to September 
2016 and followed up until June 2021. The study was 
based on data collected from patients’ medical records. 
This data was carefully selected based on a predefined 
checklist to ensure inclusion of relevant baseline demo-
graphic and clinical information as follows:

Outcomes of interest: In this study, we focused on the 
information on survival/mortality status (dead/alive) 
and relapse (yes/no) as outcome variables and associated 
prognostic factors with ALL.

Prognostic factors / Predictors: To predict the out-
come variables, the values of 15 prognostic factors were 
recorded during the follow-up period and divided into 
three parts: demographic characteristics, laboratory 
information, and clinical side effects. Table  1 provides 
an overview of all characteristics included in the dataset 
with their types and values. The process of modelling is 
also illustrated in Fig. 1.

Machine learning methods
Logistic regression
LR is an important and common method used for cat-
egorical responses. This statistical technique predicts 
response values without assuming a normal distribu-
tion for the response or the predictor variables. LR is a 
generalized linear model (GLM) approach for modeling 
binary responses. In this method, the logit of the condi-
tional probability of the dependent variable (death/ alive 

Table 1  Specification of the features considered in the collected dataset
Variable Type Value
Demographic Characteristics
  Gender Binary “1” = Girl, “0” = Boy
  Age at diagnosis time (year) Numeric Min = 0.6, Max = 15.9
Laboratory Information
  White Blood Cells count at diagnosis (cells/mL) Numeric Min = 100, Max = 780,000
  Hemoglobin (g/dL) Numeric Min = 2.3, Max = 14.2
  Platelets (cells/mL) Numeric Min = 2000, Max = 873,000
Clinical Side Effects
  Central Nervous System involvement Binary “1” = Yes, “0” = NO
  Mediastinal Tumor Binary “1” = Yes, “0” = NO
  Splenomegaly Binary “1” = Yes, “0” = NO
  lymphadenopathy Binary “1” = Yes, “0” = NO
  Hepatomegaly Binary “1” = Yes, “0” = NO
  Rheumatoid arthritis signs Binary “1” = Yes, “0” = NO
  Relapse Binary “1” = Yes, “0” = NO
  Survival Status Binary “1” = Dead, “0” = Alive
  Time to death (month) Numeric Min = 0.1, Max = 202.9
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for survival status and yes/no for relapse) is formulated as 
a linear function of the independent variables [36].

Decision tree
DT algorithms are one of the most common non-para-
metric algorithms used in classification. This method 
introduces a classification pattern for the observations 
that has a simple and understandable structure for the 
decision-making process [20, 37]. The DT is a simple and 
powerful method for classifying a set of data into dis-
tinct and homogeneous categories, which has a tree-like 
graph. This tree is formed by a set of questions, where 
each question represents a predictor variable.

The DT has two approaches, a classification tree if the 
dependent variable is categorical, and a regression tree if 
the dependent variable is continuous [37]. The DT con-
sists of three main components: a root, internal nodes 
and external nodes (leaves). In the process of building a 
tree, a predictor variable is first selected as the root and it 
is divided into several internal nodes according to a num-
ber of characteristics [20, 38]. Classification algorithms 
aim to find the optimal partition among all possible parti-
tions based on various criteria. Tree algorithms minimize 
the heterogeneity in the nodes, which can be measured 
using impurity criteria, such as the widely used Gini 
index. This process is repeated until the dataset is divided 
into a number of unique groups [39].

Random forest
The RF, which belongs to the family of ensemble meth-
ods, is a popular supervised learning algorithm used for 
classification and regression problems [14].

The RF algorithm generates a large number of trees 
based on the re-sampling of the training data and aver-
ages the results of these trees to predict an outcome. This 
technique controls over-fitting and improves accuracy 
[40]. The classification error rate of the RF, the so-called 
Out-of-Bag (OOB) error, is estimated by considering all 
excluded samples by bootstrapping samples [14]. The RF 
can be used as a variable selection approach for the iden-
tification of informative variables. A variable’s impor-
tance measures the relationship between a variable and 
the classification outcome. Mean Decrease Gini and 
Mean Decrease Accuracy can be used to find the most 
important predictors. This can lead to more accurate pre-
dictions of binary outcomes [14, 41].

Support vector machine
The SVM is a widely used supervised ML algorithm for 
classification and regression that separates binary labeled 
training data using a hyperplane in a high-dimensional 
space. It has an excellent ability to solve non-linear and 
high-dimensional problems and provides efficient solu-
tions to classification problems without making assump-
tions about the data distribution. However, to achieve 
optimal results, SVM requires careful parameter selec-
tion, particularly with regard to kernel function choice. 

Fig. 1  Classification model building process
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SVM is preferred due to its significant accuracy and low 
computational requirements [40, 42].

Least square support vector machine
The Least square support vector machine (LS-SVM), 
an alternative to SVM, has been developed to address a 
significant limitation of SVM. Specifically, while SVM is 
capable of accurately approximating non-linear relation-
ships between input and output variables, it requires 
the solution of a large quadratic programming problem, 
which can be computationally burdensome. In contrast, 
LS-SVM solves linear equations instead of quadratic pro-
gramming problems, thereby reducing the complexity 
of the optimization process. Consequently, LS-SVM is a 
valuable tool for addressing problems related to non-lin-
ear classification and regression [42, 43].

Artificial neural network
The Artificial Neural Network (ANN) is a machine learn-
ing technique that is inspired by the neurons of the 
human brain. The ANN is commonly utilized for classi-
fication and pattern recognition assignments. The ANN 
has the ability to identify patterns and relationships in 
data, and it is capable of learning from experience. A 
multilayer feed-forward ANN comprises an input layer, 
one or more hidden layers, and an output layer. Neu-
rons in adjacent layers are fully connected and are given 
weights associated with their connections. Information 
flows unidirectionally from input to output through the 
hidden layers. Activation functions facilitate complex 
non-linear mappings between input and output [44, 45]. 
The most important prognostic factors can be found in 
neural networks using Garson’s algorithm [46].

Naïve bayes
The Naïve bayes (NB) algorithm, which utilizes Bayes’ 
theorem and assumes strong independence between 
predictor variables, is a simple algorithm for quickly cat-
egorizing samples. This is achieved by calculating the 
probability that an object belongs to a specific category 
based on both the prior and posterior probabilities. An 
important advantage of the NB method is its ease of 
implementation, strong performance, and its ability to 
generate probabilistic predictions with minimal training 
data. Moreover, it is robust to correlated variables and 
can produce reliable results even when the independence 
assumption is not met. However, it can be computation-
ally expensive for models with many variables [44, 45].

Bagging
Bagging is an ensemble learning technique that com-
bines bootstrapping and aggregation methods. It selects 
B bootstrap samples from the training set and reduces 
noisy observations. As a result, the generated classifiers 

show superior performance compared to the original 
set. Consequently, bagging is a valuable tool for develop-
ing classifiers that can handle noisy observations. these 
B-classifiers leads to better performance than using indi-
vidual classifiers [44, 47].

Boosting
Boosting is a powerful ensemble learning technique that 
combines multiple weak models or base models to create 
a stronger model and make more accurate predictions. In 
other words, a set of weak models is first trained using 
modified versions of the original data. Modifications are 
made to the weights or features of the data to highlight 
examples that were misclassified by the previous mod-
els or where correct classification was difficult. Then, by 
combining the predictions of these weak models, a strong 
model is created that can make more accurate predic-
tions than any single weak model. Boosting algorithm is 
effective in processing complex data sets, dealing with 
noisy or missing data, and reducing the impact of indi-
vidual models’ weaknesses. AdaBoost, Gradient Boost, 
and XG-Boost are three popular boosting algorithms. In 
this study, we used AdaBoost to predict relapse and sur-
vival [48].

Linear discriminant analysis
LDA employs multiple independent variables to classify 
observations into predetermined groups. Among the var-
ious forms of discriminant analysis, LDA is a widely uti-
lized approach that uses a linear amalgam of independent 
variables to optimize the intergroup ratio to intragroup 
changes in discriminant scores [49]. LDA uses the con-
ditional probability of predictors given the outcome class 
to solve the problem. This approach serves to minimize 
the dispersion between cases in the same category and to 
maximize the dispersion between cases in dissimilar cat-
egories [49, 50].

Performance Criteria
The discrimination power of ML methods was evaluated 
using several criteria, including sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), accuracy and area under the curve (AUC), and 
calculated as follows:

	

sensivity = TP
TP+FN

, specif icity = TN
TN+FP

,

PPV = TP
TP+FP , NPV = TN

TN+FN ,

Accuracy = TP +TN
TP +TN+FP+FN

.

where TP (true positive) stands for dead/relapsed pedi-
atric patients with leukemia that were correctly diag-
nosed as dead/relapsed, TN (true negative) stands for 
alive/non-relapsed pediatric patients with leukemia that 
were correctly identified as alive/non-relapsed, FP (false 



Page 6 of 16Mehrbakhsh et al. BMC Medical Informatics and Decision Making          (2024) 24:261 

positive) stands for alive/non-relapsed pediatric patients 
with leukemia that were incorrectly identified as dead/
relapsed, and FN (false negative) stands for dead/relapsed 
pediatric patients with leukemia incorrectly identified as 
alive/non-relapsed [51].

The performance of each method was evaluated using 
cross-validation, in which the data set was randomly 
divided into a test set (30%) and a training set (70%). 
This procedure was repeated 100 times, and the mean 
and standard deviation of the evaluation criteria were 
calculated. In order to prevent over-fitting, the tuning 
parameters in the ML algorithms were selected by 5-fold 
cross-validation. The optimal values of the hyper-param-
eters selected for each of the ML models are reported in 
Table 2.

Software Packages
In the present study, all analyses of ML methods were 
executed using R software version 4.1.1, with the fol-
lowing packages: “e1071” for SVM; “kernlab” for LS-
SVM; “adabag” for bagging and boosting; “nnet” for NN; 
“naivebayes” for NB; “MASS” for LDA “randomForest” 
for RF and variable importance (VIMP) in the RF and 
drawing a partial plot; “rpart” for DT; “caret” determining 
tune parameters and “DMwR” for balancing the dataset.

Results
Data description
Of the 161 participating children with ALL in this study, 
104 (64.6%) children were alive and 57 (35.4%) were 
dead. In addition, more than 90% of the children did not 
relapse. In this study, we used two variables as outcome 
variables, both containing two classes (alive or dead for 
survival status and yes or no for relapse experience).

The demographic, clinical and laboratory characteris-
tics of all study participants are listed in Table 3. Accord-
ing to the results of Table 3, the majority of patients were 
male (57.1%), without central nervous system involve-
ment (96.9%), without mediastinal tumor (91.3%), with 
rheumatoid arthritis signs (54%), without hepatomegaly 
(54.7%), with splenomegaly involvement (52.8%), and 
with lymphadenopathy (56.5%). The mean age of patients 
at diagnosis was 5.77 ± 3.68 years with a range of 0.6 to 
15.9 years. Also, the mean follow-up time of patients was 
68.57 months with a minimum and maximum of 0.1 and 
202.9 months, respectively. In addition, Table 3 shows the 
distributions of the characteristics of the patients who 
were randomly divided into two groups (train 70% and 
test 30%). As can be seen, there were no significant differ-
ences between the training and test data sets: for all vari-
ables p-values > 0.05, except for central nervous system 
involvement (p-value = 0.03).

As shown in Table 3, about 35% of children with ALL 
were classified as dead (minority class) and 65% of them 
as alive (majority class). In fact, the number of children 
who survived (104) was slightly higher than the number 
of children who died [57]. The imbalance ratio (IR) was 
1.82, which means that for every sample of the minority 
class (dead) there were 1.82 samples of the majority class 
(alive). This indicates that the distribution of the samples 
between the two categories was slightly imbalanced. In 
terms of relapse, the majority of children did not relapse 
and the minority did relapse. The ratio of children who 
did not relapse to children who did relapse is 1:9 (IR = 9). 
This shows an extreme imbalance between the two 
classes. Therefore, the SMOTE technique was used to 
correct an imbalanced problem in the main data sets. It 
should be noted that the ratio of dead to live samples and 
the ratio of relapsed to non-relapsed samples was consid-
ered to be 1:1 after SMOTE was used for both train and 
test data.

The performance of the ten ML algorithms for predict-
ing mortality and relapse in children with ALL on the 
balanced dataset in terms of sensitivity, specificity, PPV, 
NPV, accuracy and AUC are reported in Tables 4 and 5, 
respectively.

Performance of the ML algorithms in predicting mortality
The results in Table 4 shown that the mean sensitivity in 
the test sets was above 70% for all algorithms except LR 

Table 2  The tuning parameter values of machine learning 
algorithms
Methods Hyperparameters Value for death 

outcome
Value for 
relapse 
outcome

ANN size 5 5
weight decay 0.1 0.1

SVM gamma 0.061 0.074
cost 1 1
kernel radial radial

LS-SVM tau 0.0625 0.0625
sigma 0.099 0.131
kernel rbfdot rbfdot

NB laplace 0 0
use kernel TRUE TRUE
adjust 1 1

RF mtry 7 6
ntree 1000 500

DT minsplit 6 6
minbucket 2 2
cp. 0.02 0.01
maxdepth 4 8

Bagging mfinal 100 50
maxdepth 3 3

Boosting mfinal 100 100
coeflearn Breiman Freund
maxdepth 3 3
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and LDA. The mean specificity for the three algorithms, 
namely LS-SVM, boosting and RF was below (50%) for 
the test sets and between 66 and 86% for the other mod-
els. The mean PPV of the algorithms ranged from 0.59 to 
0.82, with the lowest value for LS-SVM and the highest 
for LDA. Also, the mean NPV performance of all algo-
rithms was greater than (65%) for the test sets. In addi-
tion, the mean accuracy and AUC for four algorithms, 
namely SVM, ANN, NB and bagging were similar (74%) 
for the test sets. The mean accuracy and AUC for the 
ML algorithms for the test sets ranged from 0.64 to 0.74, 
with the lowest values belonging to LS-SVM. In general, 
the performance of all ML methods for the prediction of 
mortality in children with ALL was approximately the 
same in terms of accuracy and AUC. In summary, the 
results shown that ANN and bagging outperformed the 

other ML algorithms in all criteria, especially with a sen-
sitivity of over 80%.

Performance of the ML algorithms in predicting relapse
As can be seen from the results presented in Table 5, the 
mean sensitivity of three of the ML algorithms, namely 
LS-SVM, bagging and boosting, was above 90%, and of 
the remaining algorithms, RF had the lowest mean sen-
sitivity (64%). The mean specificity of all algorithms was 
below (70%) for the test sets, except for the RF algo-
rithms, which achieved 96%. In addition, three ML 
methods, namely NB, LR and LDA had the lowest speci-
ficity (59%) for the test sets among all ML algorithms. 
The mean PPV of the algorithms was moderate and var-
ied from 0.63 to 0.77 for the test sets, with LR and LDA 
having the lowest, and SVM and RF having the highest. 

Table 3  Description of the characteristics of children with acute lymphoblastic leukemia
Variable Total leukemia

Train set Test set P-value
N % N % N %

All 161 100 112 69.6 49 30.4
Sex
  Female 69 42.9 46 41.1 23 46.9 0.489
  Male 92 57.1 66 58.9 26 53.1
Survival status
  Alive 104 64.6 69 61.6 35 71.4 0.231
  Dead 57 35.4 43 38.4 14 28.6
Relapse
  No 145 90.1 100 89.3 45 91.8 0.619
  Yes 16 9.9 12 10.7 4 8.2
CNS
  No 156 96.9 111 99.1 45 91.8 0.030
  Yes 5 3.1 1 0.9 4 8.2
Mediastinal Tumor
  No 147 91.3 102 91.1 45 91.8 0.874
  Yes 14 8.7 10 8.9 4 8.2
RA
  No 74 46 50 44.6 24 49 0.611
  Yes 87 54 62 55.4 25 51
Hepatomegaly
  No 88 54.7 59 52.7 29 59.2 0.446
  Yes 73 45.3 53 47.3 20 40.8
Splenomegaly
  No 76 47.2 51 45.5 25 51 0.521
  Yes 85 52.8 61 54.5 24 49
lymphadenopathy
  No 70 43.5 49 43.8 21 42.9 0.916
  Yes 91 56.5 63 56.3 28 57.1
Age(year): Mean ± SD 5.77 ± 3.68 5.94 ± 3.82 5.40 ± 3.34 0.675
Hemoglobin 7.33 ± 2.32 7.52 ± 2.47 6.89 ± 1.89 0.114
WBC 37208.69 ± 77582.98 39787.76 ± 87369.78 31313.82 ± 48583.08 0.464
Time 68.57 ± 47.73 67.07 ± 49.60 72.01 ± 43.45 0.485
platelets 89809.32 ± 127372.21 91983.04 ± 136193.17 84840.82 ± 105589.39 0.851
CNS: Central Nervous Involvement, RA: Rheumatoid arthritis signs, WBC: White Blood Cell
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However, the values of the mean NPV of the algorithms 
ranged from 0.66 to 0.96, with the LR algorithm having 
the lowest value and the boosting algorithm having the 
highest value. In addition, the mean accuracy of all algo-
rithms for the test sets was greater than (70%), except for 
the two algorithms LR (64%) and LDA (65%). The AUC 
of the ML algorithms ranged from 0.64 to 0.84 for the 
test sets, with the lowest values obtained by LR and LDA, 
and the highest by RF and boosting. In general, of all ML 
methods, boosting and RF performed well in terms of 
accuracy and AUC criteria, whereas LR and LDA per-
formed poorly.

The relative importance of variables in predicting mortality 
and relapse
The results indicated that ANN and bagging were the 
two best classifiers to predict mortality, while RF and 
boosting were the two best classifiers to predict relapse. 
Therefore, for a more detailed investigation, the relative 
importance of the prognostic factors was extracted based 
on these algorithms.

Hence, the relative importance of each prognostic fac-
tors in the prediction of mortality was calculated by ANN 
and bagging based on the Garson algorithm and the Gini 
index, respectively (see Fig. 2). As shown in Fig. 2, WBC 
was identified as the most important and influential vari-
able affecting patient mortality based on the two algo-
rithms. In addition, using ANN method, three variables 
of clinical side effects, namely splenomegaly, hepatomeg-
aly and lymphadenopathy were found to be important 
variables for predicting mortality of children. Neverthe-
less, age, hemoglobin and platelets were detected as the 
most critical and important factors using the bagging 
algorithm.

As well, the relative importance of each prognostic fac-
tors in predicting relapse was calculated using RF and 
boosting based on the Gini index (see Fig.  3). As illus-
trated in Fig. 3, the two algorithms overlap in determin-
ing the significance of the prognostic factors. According 
to Fig.  3, based on the Gini index, age at diagnosis and 
three laboratory factors such as WBC, hemoglobin and 
platelets were identified as the four most important and 
influential prognostic factors to predict relapse in both 
algorithms. Interestingly, age at diagnosis was identified 
as the first and second most important prognostic factors 
in RF and boosting, respectively.

The partial dependence plots for the four most influ-
ential prognostic factors affecting the predicted mortal-
ity and relapse probabilities in children with ALL based 
on a bagging classifier and a random forest classifier are 
shown in Figs. 4 and 5.

As can be seen, the non-linear relationships between 
the importance predictors and the probability of mortal-
ity and relapse were evident. For example, the probability 

of death in children was high at the beginning and then 
decreased until the age of eight, while it increased again 
in children over the age of eight until the age of 14 and 
then decreased again (see Fig. 4). There was an increasing 
relationship between relapse and hemoglobin (g/dL) until 
reaching 6.5 and then the relationship was declined; such 
that the probability of relapse decreased as the hemoglo-
bin (g/dL) increases up to 11, followed by an increasing 
trend and then decreasing trend (see Fig.  5). Also, the 
probability of relapse increased for children under the 
age of five, but decreased for children over the age of five.

Discussion
In the present study, we aimed to demonstrate the poten-
tial of different ML algorithms to predict mortality and 
relapse in children aged seven months to sixteen years 
treated at Taleghani Hospital in Gorgan, north of Iran. 
Given the significantly increased risk of mortality asso-
ciated with childhood ALL relapse after treatment, accu-
rate prediction of treatment outcomes is essential for 
the development of effective treatment plans. However, 
there is currently no clinical screening tool that can pre-
dict mortality and relapse with high accuracy [33]. In this 
context, the eight machine learning models LR, DT, RF, 
SVM, LS-SVM, LDA, ANN, NB, bagging and boosting 
as well as the two classical methods LR and LDA were 
applied and their performance in predicting survival and 
relapse in children with ALL was compared. The find-
ings indicated that ANN and bagging were effective in 
predicting mortality, while boosting and RF algorithms 
excelled in predicting relapse.

Based on the accuracy measures obtained from our 
experiments over 100 repetitions, our findings indicated 
that all the classification algorithms performed similarly 
in their ability to predict mortality of the patients, with 
results ranging from 64 to 74%. Similarly, for relapse clas-
sification, the algorithms demonstrated accuracy results 
that varied from 64 to 84% on test data sets (over 100 
repetitions). AUC of ML algorithms for mortality and 
relapse were above 64%. The ANN and bagging outper-
formed the other ML algorithms in all criteria, especially 
with a sensitivity of over 80% and boosting and RF per-
formed well in terms of accuracy and AUC criteria.

To the best of our current understanding, the vast 
majority of previous work in this area has relied predomi-
nantly on gene expression, molecular and blood smear 
image datasets to diagnose acute leukemia, determine 
survival status and predict relapse [27–30]. Nevertheless, 
a limited number of studies have used ML algorithms to 
predict mortality and relapse using laboratory and clini-
cal data. For instance, Pan et al. used four ML algorithms 
based on clinical prognostic factors to predict relapse 
in ALL patients, with model accuracy ranging from 79 
to 83% and AUC ranging from 79 to 90%. Based on the 
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evaluation criteria, the RF was identified as the best algo-
rithm for predicting relapse in patients in their study [33]. 
In another study, Kashfi et al. used seven ML algorithms 
to predict survival in children with ALL. SVM with an 
accuracy of 94.90% (95% CI: 88.49–98.32) and XG-Boost 
with an accuracy of 88.5% (95% CI: 82.3–94.0) were iden-
tified as the superior algorithms compared to classifiers 
in their study [4]. Feature selection plays a vital role in 
ML, as irrelevant features can result in lower accuracy, 
reduced interpretability, and overfitting in classification 
analysis. Additionally, it is crucial for clinicians to iden-
tify the most predictive prognostic factors for treatment 
outcomes in order to personalize treatment plans [33]. 
However, the selection of prognostic factors could lead 
to bias. To objectively identify the strongest predictors 

of mortality and relapse, we used the cross-validation 
method.

Our research findings revealed that WBC, age at diag-
nosis, hemoglobin, platelets, splenomegaly, hepatomegaly 
and lymphadenopathy emerged as the most significant 
prognostic factors for predicting mortality. Furthermore, 
age at diagnosis, hemoglobin, WBC and platelets were 
recognized as the critical variables for predicting relapse 
according to the two most effective algorithms identified. 
Consistent with our findings, in the study conducted by 
Pan et al., age, WBC, hemoglobin, and platelets were rec-
ognized as important predictors for relapse by RF [33]. 
Also, in a retrospective study by Bhojwani et al. age at 
diagnosis, WBC, platelets, and hemoglobin levels were 
significant predictors of both overall survival and relapse. 

Fig. 2  Variable importance (VIMP) for predicting mortality of childhood acute lymphoblastic leukemia based on Gini Index and Garson algorithm using 
two machine learning algorithms: (a) bagging and (b) artificial neural network
WBC: White Blood Cell, RA: Rheumatoid arthritis signs, CNS: Central Nervous Involvement
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The study also found that the presence of central nervous 
system involvement at diagnosis and early response to 
treatment were significant prognostic factors of relapse, 
while sex and race were not significant prognostic factors 
of either overall survival or relapse [52]. In another study 
by Hunger et al., age, sex, WBC, and immunophenotype 
were significant prognostic factors of event free survival, 
while age, sex and WBC were significant prognostic fac-
tors of overall survival. Contrary with us, in this study 
platelets and hemoglobin were not found to be significant 
prognostic factors of survival [53].

WBC, platelets, and hemoglobin are significant prog-
nostic factors of both mortality and relapse in children 
with ALL because they are indicators of the extent of 
bone marrow infiltration by leukemic cells and the degree 
of bone marrow suppression caused by the disease and 
its treatment. Higher WBC and lower platelets and 
hemoglobin levels are associated with more advanced 
and aggressive disease, which can lead to a higher risk of 
relapse and poorer overall survival. Therefore, monitor-
ing these hematological parameters can help clinicians 

to identify patients at higher risk of relapse and poorer 
overall survival and may also guide treatment decisions 
to optimize patient outcomes [53–55].

One of the strengths of this study is the inclusion of 
161 subjects, which appears to be a sufficient sample size 
for evaluating the performance of different ML meth-
ods. Although there are no universal recommendations 
for the optimal sample size for ML methods, Rajput et 
al. have shown that increasing the sample size improves 
both effect size and model accuracy. This means that 
models with larger data sets can detect patterns more 
effectively. Furthermore, their study showed that the vari-
ability of effect size and model accuracy decreases with a 
sample size above 100. Therefore, our sample size of 161 
individuals is likely sufficient for robust analysis and reli-
able results [56].

Another strength of the present study is that we 
repeated the ML algorithms 100 times, which provides 
better insight into the performance of different algo-
rithms in predicting patient mortality and relapse of 
ALL in children. Additionally, this study includes partial 

Fig. 3  Variable importance (VIMP) for predicting relapse of childhood acute lymphoblastic leukemia based on Gini Index using two machine learning 
algorithms: (a) random forest and (b) boosting
WBC: White Blood Cell, RA: Rheumatoid arthritis signs, CNS: Central Nervous Involvement
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dependence plots to investigate non-linear, monotonic, 
or more complex relationships between outcomes (mor-
tality and relapse) and prognostic factors. By identifying 
the most important prognostic factors for relapse and 
mortality and depicting non-linear relationships of risk 
factors, clinicians can better tailor treatment protocols 
and monitoring strategies to optimize patient outcomes 
and reduce the risk of relapse or death. However, one 
limitation of this study is its retrospective design, as the 
data was obtained from the patients’ medical records. 
This approach makes the analysis susceptible to possible 
bias in the estimates of measures such as sensitivity. In 
addition, some prognostic factors that may need to be 
considered in future prediction models for these patients 
were not recorded in the medical records. It is suggested 
that a future prospective cohort study be designed to 
include prognostic factors that may impact patient sur-
vival and relapse. In addition, the study was conducted 
at a single center, which could limit the generalizability 
of the results to other centers. It is therefore suggested 
that a multicenter study should be conducted for further 
investigation.

Recently, fuzzy-based clustering methods have gained 
attention for identifying important prognostic factors 
related to disease outcome. It is suggested that future 
research should explore the integration of clustering 
techniques with machine learning algorithms to predict 
survival and relapse in children with ALL. These clus-
tering techniques help to identify subgroups of patients 
with similar prognostic factors. By using these models, 
researchers can uncover hidden patterns in the data, 
ultimately leading to more personalized treatment strat-
egies. In addition, clustering approaches have the poten-
tial to improve the accuracy and reliability of predictions, 
thereby contributing to more effective management of 
ALL [57].

Conclusion
The focus of this study was to evaluate the performance 
of eight machine learning techniques and two classical 
methods in predicting mortality and relapse in patients 
with ALL. Our results showed that ANN and the bagging 
method were the best algorithms for predicting mortality 

Fig. 4  Partial dependence plots for the four most influential variables on mortality in acute lymphoblastic leukemia data based on a bagging classifier
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while boosting and RF were the most effective algorithms 
for predicting relapse in ALL patients in this study.

In conclusion, these findings have significant clinical 
implications, as they provide valuable insights into the 
prognostic factors associated with mortality and relapse 
in children with ALL. This information can help inform 
treatment decisions and ultimately enhance patient 
outcomes.
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