Skip to main content
. 2024 Sep 16;24:261. doi: 10.1186/s12911-024-02645-6

Table 5.

Performance criteria of machine learning algorithms for predicting relapse of childhood acute lymphoblastic leukemia

Dataset Method Sensitivity Specificity PPV NPV Accuracy AUC
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Train SVM 0.90 0.033 0.84 0.046 0.85 0.031 0.90 0.026 0.87 0.017 0.87 0.018
LS-SVM 0.98 0.011 0.76 0.082 0.81 0.054 0.98 0.015 0.87 0.043 0.87 0.044
ANN 0.89 0.044 0.88 0.032 0.88 0.029 0.89 0.037 0.89 0.031 0.88 0.031
NB 0.92 0.028 0.67 0.047 0.73 0.026 0.90 0.028 0.79 0.023 0.79 0.022
Bagging 0.97 0.019 0.93 0.024 0.93 0.020 0.97 0.017 0.95 0.014 0.95 0.014
Boosting 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
DT 0.94 0.031 0.88 0.048 0.89 0.039 0.94 0.027 0.91 0.023 0.91 0.022
RF 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
LR 0.72 0.048 0.67 0.043 0.69 0.029 0.70 0.030 0.69 0.028 0.69 0.028
LDA 0.74 0.058 0.67 0.049 0.69 0.025 0.73 0.033 0.71 0.026 0.71 0.025
Test SVM 0.87 0.052 0.68 0.094 0.74 0.069 0.83 0.068 0.77 0.046 0.77 0.045
LS-SVM 0.96 0.030 0.62 0.098 0.72 0.063 0.93 0.042 0.79 0.051 0.79 0.049
ANN 0.82 0.060 0.65 0.094 0.70 0.075 0.78 0.073 0.73 0.053 0.74 0.052
NB 0.88 0.052 0.59 0.086 0.69 0.063 0.82 0.068 0.74 0.045 0.74 0.043
Bagging 0.91 0.041 0.66 0.091 0.73 0.062 0.87 0.056 0.79 0.044 0.79 0.045
Boosting 0.97 0.019 0.71 0.081 0.77 0.058 0.96 0.029 0.84 0.042 0.84 0.041
DT 0.86 0.060 0.63 0.088 0.70 0.062 0.82 0.073 0.74 0.045 0.74 0.044
RF 0.64 0.083 0.96 0.025 0.73 0.070 0.94 0.037 0.80 0.050 0.81 0.083
LR 0.70 0.067 0.59 0.096 0.63 0.073 0.66 0.073 0.64 0.047 0.64 0.046
LDA 0.71 0.076 0.59 0.087 0.64 0.064 0.67 0.079 0.65 0.040 0.65 0.039