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The response of proteins to sequences of femtosecond infrared
pulses provides a multidimensional view into their equilibrium
distribution of structures and snapshot pictures of fast-triggered
dynamical events. Analyzing these experiments requires advanced
computational tools for assigning regions in the resulting multi-
dimensional correlation plots to specific secondary-structure ele-
ments and their couplings. A differential sensitivity analysis tech-
nique based on a perturbation of the local (real space) Hamiltonian
is developed to achieve that goal. Application to the amide I region
of a small globular protein reveals regions associated with the
�-helix, �-sheet, and their coupling. Comparison of signals gener-
ated in different directions shows that the double-quantum-
coherence signal has a higher sensitivity to the couplings compared
with the single-quantum-coherence (photon echo) technique.

protein structure determination � two-dimensional infrared

Probing protein structure and folding pathways is one of the
central problems of modern structural biology. Elaborate

NMR pulse sequences are routinely used in the study of milli-
second dynamical events in complex biomolecules with high
spatial resolution (1). Optical response functions are particularly
sensitive to structural features such as bond strengths, backbone
angles, dipole moments, and polarizabilities, as well as the
environmental factors that influence the structure such as
hydrogen bond strengths and electric fields. Femtosecond opti-
cal techniques, thus, offer a good complimentary tool for
monitoring fast protein motions and unraveling the underlying
couplings between functional groups (2) in real time.

Two-dimensional techniques introduced into NMR in the
1970s revolutionized its resolution and utility (1). Similarly,
significant progress has been made over the past decade in
developing 2D infrared (2DIR) spectroscopy, based on the
application of sequences of femtosecond pulses, into a powerful
tool for probing protein structure and providing snapshots of
fast-triggered protein folding events (3–6).

Spreading the information in two dimensions greatly enhances
the resolution. Furthermore, 2DIR carries additional informa-
tion regarding the fluctuations of two-exciton-state frequencies
that is not available from linear (1D) spectra and provides a
direct look at correlations among various segments of the
protein. Cross peaks of 2DIR signals of equilibrated structures
provide new structural constraints analogous to the nuclear
Overhauser effect in 2D NMR. Structural information is ex-
tracted from multidimensional NMR data by using extensive
simulations (7), through ‘‘direct inversion’’ based on constraint
fits guided by simulations or structural optimizations. Their
infrared analogues are less resolved, and anharmonic vibrational
Hamiltonians are much more complex than spin Hamiltonians,
making simulations an even more essential part of the analysis
apparatus. Thanks to the ultrafast time scale, the simulation of
2DIR signals with atomic-level details only requires nanosecond
trajectories, allowing the microscopic interpretation of spectra
and providing a test for the simulated structural trajectories.
Most 2DIR simulations carried out so far focused on small

peptides with �10 residues (8–10), which do not have a unique
stable structure. 2DIR signatures of ideal infinite size secondary
structures were investigated recently (12, 13). Globular proteins
are made of several secondary-structure segments, and relating
their coherent vibrational response to the ideal motifs consti-
tutes an open computational challenge.

In this article, we demonstrate how sensitivity analysis (14), in
conjunction with a local basis Hamiltonian, may be used for
assigning various regions in the spectra of a globular protein to
specific secondary structures, and show how overlapping regions
may be better separated in higher dimensions. This technique
may further be applied for selecting the proper pulse sequence
for specific structure application. We consider two three-pulse
coherent four-wave mixing techniques, whereby three incoming
pulses with propagation wave vectors k1, k2, and k3 interact with
the protein to generate a coherent signal in the directions kI �
�k1 � k2 � k3 and kIII � k1 � k2 � k3. The pulse sequence and
time delays (t1, t2, and t3) are shown in Fig. 1 Top Right Upper.

Both additive and a differential sensitivity analysis techniques
were applied to reveal signatures of couplings among secondary
motifs and assign different spectral regions to the structures. The
former compares the actual spectra with additive spectra ob-
tained by switching off the couplings among different secondary
structure motifs. In the latter, we examine derivatives of the
spectra with respect to various parameters of the local Hamil-
tonian. Our simulations show that 2DIR techniques are much
more sensitive to the couplings and offer better resolution for the
secondary structures and their interactions compared with the
linear absorption. We further demonstrate that (t2, t3) correla-
tion plots of kIII are more sensitive to the couplings compared
with (t1, t3) correlations in kI.

In The Vibrational Exciton Hamiltonian and Simulation Pro-
tocol, we introduce the vibrational Hamiltonian and the simu-
lation protocol. The additive sensitivity analysis is presented in
Test of Secondary Structure Additivity of Coherent Spectra, and the
differential analysis is developed in Differential Sensitivity Anal-
ysis. We conclude with a discussion of the results and future
perspectives.

The Vibrational Exciton Hamiltonian and Simulation Protocol
Vibrational motions and spectra are commonly described by
normal modes. These collective coordinates, which provide a
convenient zero-order approximation for the vibrational eigen-
states sand frequencies, are delocalized and do not directly
connect with the structure; it is much easier to trace the
structural origin of spectral features by using local vibrational
coordinates (15).

Our simulations were carried out for the coherent third-order
IR response of a 74-residue protein domain, TB6 (Fig. 1 Top
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Left) (16). TB6 is one of the 11 genetic mutations in TB domains
from human fibrillin 1, which cause the Marfan syndrome. There
are 10 residues in its �-helix section (�), 22 �-sheets (�), and 42
randomly coiled residues (�). This protein was chosen because
it is large enough to have well defined secondary structures, yet
sufficiently small to make the simulations feasible (13).

We start with the vibrational exciton Hamiltonian (11, 12).

Ĥs � �
m

�mB̂m
† B̂m � �

m

�m

2
B̂m

† B̂m
† B̂mB̂m � �

mn

m�n

JmnB̂m
† B̂n

Here, B̂m
† (B̂m) is the creation (annihilation) operator for the mth

amide I mode, localized within the amide units (OACONOH
segments), with frequency �m and diagonal anharmonicity �m.
These operators satisfy the Bose commutation relations [B̂m, B̂n

†]
� �mn. Jmn is the harmonic intermode coupling.

All parameters of the Hamiltonian fluctuate because of
conformational changes of the backbone, and solvent and side-
chain dynamics. The vibrational system is thus perturbed by a
time-dependent electric field causing line broadening and fre-
quency shifts. The present study focuses on the primary peak
pattern. We thus calculated the averaged values of all frequency
shifts and did not model the line broadening microscopically. A
Lorenzian lineshape with a 20-cm�1 homogeneous linewidth was
assumed for all transitions.

The fundamental frequency of each of the 74 local modes is
given by �m(t) � � � ��m(t), where � � 1,707 cm�1 is the
frequency of isolated NMA molecule in the gas phase (17, 18).
The water molecules as well as all protein atoms other than the
amide units are treated as a bath, which generates the fluctuating
electrostatic field responsible for the frequency shift ��m(t). The
instantaneous frequency shift was calculated for each mode by
using the linear correlation formula with the instantaneous
electric potential (19). The point charges of the peptide unit
atoms (OACONOH) were obtained from ref. 19, and those of
the other protein atoms were taken from the CHARMM27 force
field (20). The TIP3 model was used for the water charges and
the simulation. An ensemble of ��m(t) was generated by using the
simulated structural trajectory obtained from a molecular dy-
namics simulation starting with the NMR resolved structure
from the Protein Data Bank (ID code 1APJ), which includes all
of the atoms of one TB6 and 13,608 water molecules. The
simulation was carried out by using the CHARMM package with
the CHARMM27 force field (20). A 10-Å cutoff was used for
nonbonded interactions. The long-range electrostatic interac-
tions were calculated using the Ewald Sum method (21). The
TB6 domain was imbedded in a 76-Å cube of TIP3 water. The
cutoff distance for the Lennard–Jones forces was set to 12 Å. All
water molecules overlapping with the protein were removed. An
adopted basis Newton–Raphson energy minimization (5 � 104

steps) (20) was performed to release the internal tension. In this
and all steps that follow, the protein backbone atom coordinates
were held fixed at the NMR resolved structure. After energy
minimization, the system was heated to 300 K in 20 ps, and a 5-ns
equilibration in NPT (constant number, pressure, and temper-
ature) ensemble (22) with 1-fs time steps was performed to get
the correct density of the system. The extended system method
was used to hold the temperature and pressure constant (22),
and the final box length was 74.67 Å. This was followed by a 10-ns
equilibration of the system in the NVE (constant number,
volume, and energy) ensemble with a 2-fs time step [the SHAKE
algorithm (23) was used in the NVE ensemble equilibration to
constrain the bonds connected with hydrogen atoms]. A 1-ns
NVE dynamics was run with 2-fs time steps. One hundred
snapshots of the frequency shifts ��m(t) were recorded, and the
average value of �m(t) for each amide I mode was then used as �m
in the Hamiltonian Eq. 1.

The average values and variances of �m for the various modes
of each secondary structure type are given in Table 1, and the

Fig. 1. The molecular structure of TB6 and pulse sequence configuration.
(Top Left) The molecular structure of TB6. The Purple sections are the helices,
the yellow sections are the �-strands, and the green and white sections are
randomly coiling structures. (Top Right Upper) Pulse configuration for het-
erodyne four-wave mixing techniques. k1, k2, and k3 are the input pulses, and
ks is the signal generated, which is in the same direction as the detection pulse
k4. (Top Right Lower) The pulse sequence for coherent 2D experiments. ti are
the time intervals between the pulses, and �i is the peak time of pulse i.
(Middle) Red, linear absorption; black, AS(�); green, AS(�); blue, AS(�); purple
dash, the difference of the additive and the actual spectrum. (Bottom) Motif
content of the vibrational eigenstates of TB6. Red, �; green, �; blue, random
coil. The plot is vs. mode number; the (nonuniform) frequency scale is given at
the top.

Table 1. The averages and variances of local mode frequencies

Frequency �� , cm�1 �, cm�1

�m
� (t) 1,684.7 22.71

�m
� (t) 1,667.8 29.83

�m
� (t) 1,681.2 42.09

�m
	 (t) is the frequency of the mth mode of 	 type at time t.
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entire distributions are presented in the supporting information,
which is published on the PNAS web site. The � modes have a
smaller red shift and a narrower distribution than �. The
couplings of nearest covalently bonded modes were obtained
from Tasumi’s (17, 18) ab initio map, and all other couplings
were calculated by using the electrostatic transition dipole
coupling model. The distributions of the couplings Jmn between
various motifs are presented in the supporting information. The
average values and variances are given in Table 2. Note that there
are many very weak couplings (�1 cm�1), which do not affect the
spectra. J�� is the strongest: Over 50% of the J�� couplings are
larger than 1 cm�1, as opposed to 33% for J�� and 10% for J��.
The anharmonicity �m � 16 cm�1 was assumed to be identical
for all residues. The dipole coupling with the optical field E(t) is
�E(t) � �m
m(B̂m

† � B̂m), where 
m is the transition dipole
moment of the m peptide unit (17, 18). All transition dipoles
were taken to have the same magnitude.

Following the procedure used in our previous study (11, 12),
the Hamiltonian matrix was constructed by using a harmonic
basis set that includes the ground state �0	, the 74 one-exciton
excited states B̂m

† �0	, and the 2,774 two-exciton excited states
B̂m

† B̂n
†�0	. Numerical diagonalization of the Hamiltonian yielded

the one-exciton and two-exciton eigenstates. The motif content
of each of the single-exciton vibrational states was calculated by
summing the squares of its expansion coefficients for all of the
modes for each structural type (�, �, and �) in the local basis.
These are displayed in Fig. 1 Bottom. The � region (red) is the
most compact (1,653–1,689 cm�1). The � region (green) is
broader (1,637–1,704 cm�1), and � states are spread all over the
band. Note that both � and � have some states outside the main
regions, reflecting the nonideal, twisted structure of the various
motifs.

Test of Secondary Structure Additivity of Coherent Spectra
The linear and the third-order response function were calculated
by multiple summations over the eigenstates by using equations
2–5 of ref. 15. The rotating wave approximation was used to
select the dominant resonant terms for the response functions of
the kI � �k1 � k2 � k3 and the kIII � k1 � k2 � k3 techniques
(15). The response tensors were rotationally averaged with
respect to the optical field by using equation 13 of ref. 24 (also
see appendix A in ref. 12, and ref. 25). All calculations were
performed for parallel (zzzz) pulse polarizations. The linear
absorption was calculated as the imaginary part of the Fourier
transform of the linear response function. The kI signal was
calculated assuming that pulses k2 and k3 are time coincident
setting t2 � 0. The S(kI) signal was calculated as the absolute
value of the double Fourier transform of the response function
with respect to t1 and t3 and is displayed as the corresponding
conjugate frequency variables �1 and �3 (equation 9 of ref. 12).
the S(kIII) signal was calculated in a similar way for time
coincident pulses k1 and k2 setting t1 � 0 (equation 10 of ref. 12).
It is displayed as �2 and �3, which are the Fourier conjugate to
t2 and t3.

The calculated linear absorption is displayed in Fig. 1 Middle
(red solid line). To investigate its sensitivity to the couplings
between secondary structures, we have calculated the additive
spectrum for each secondary structure separately [AS(�), AS(�),
and AS(�)] by turning off all inter-secondary-structure cou-
plings. The total additive spectrum, AS(�) � AS(�) � AS(�),
and its deviation from the actual spectrum (purple dash line)
depicted in the figure illustrate that the linear absorption is
pretty much additive and is hardly affected by intermode cou-
plings among different motifs.

S(kI) and S(kIII) are shown in Fig. 2. 2DIR clearly improves the
resolution compared with the linear absorption: The kI spectrum
shows some new features, but the resolution is greatly enhanced
for kIII, which reveals several well separated peaks. The coher-
ences obtained in the two techniques can be understood by using
the double-sided Feynman diagrams (11, 12) shown in Fig. 3 that
represent the evolution of the vibrational density matrix in the
various time intervals. Three Feynman diagrams i, ii, and iii
contribute to kI. In all of these diagrams, the density matrix is in
a single quantum coherence �0	
e� between the ground state and
the singly excited state during t1. During t3 it is in the conjugate
coherence �e	
0� for i and ii, and in a coherence between the one
and two exciton manifolds �f	
e� for iii. During both time inter-
vals, the density matrix is in a single quantum coherence, which
induces the correlations along the �1 and �3 axis. kIII is described
by two Feynman diagrams, iv and v, and shows two-quantum
coherences between ground state and the two-exciton band �f	
0�
during the t2 interval. During t3, we have a single quantum
coherence �e�	
0� for iv and �f	
e�� for v. The (�2, �3) frequency
correlation plots will then show double quantum coherences
along �2. The improved resolution of kIII stems from the absence
of the diagonal peaks that dominate the kI signal and obscure the
off-diagonal (cross) peaks, and from doubling the frequency
bandwidth of two-quantum coherences. We have anticipated
these advantages of kIII based on the analogy with corresponding
NMR pulse sequences (26–28). The additive third-order spectra
are also displayed in Fig. 2. To gain a better insight into the
additivity, we had further calculated the relative difference
spectra (RDS), defined as the difference between the actual and
the additive spectrum divided by the intensity of the strongest
peak in the actual spectrum. The RDS for kI and kIII are shown
in Fig. 4 Top. Several peak-shift features, indicated by adjacent
positive (red or yellow) and negative (blue) peak pairs, can be
observed for kIII but not for kI. The relative magnitudes of the
highest RDS peak (0.039 for the linear absorption, 0.19 for kI,
and 0.65 for kIII) indicate that the linear spectrum is pretty much
additive, whereas the nonlinear techniques kI and kIII are
increasingly nonadditive and consequently much more sensitive
to the couplings among secondary structures.

Differential Sensitivity Analysis
Dissecting 2D spectra into the various motif regions is essential
for their effective use for probing folding dynamics. Exami-
nation of the additive spectra AS(	) (Fig. 2 Right) is the
simplest way to accomplish that goal. However, this may be too
crude when interstructure couplings are strong and the spec-
trum is highly nonadditive. In this case, the additive spectrum
does not provide a good zero-order reference because the
vibrational eigenstates are delocalized across the various
motifs and are not well represented by the localized eigenstates
used in the additive spectra. A more gentle way to characterize
the regions in the spectra and assign them to different sec-
ondary structures is provided by the differential sensitivity
analysis (DS): We make a small shift �	 to the energies �m

	 of
all modes belonging to the 	th motif (�	 should be much
smaller than all Jmn). The difference of the perturbed and the
unperturbed spectrum ref lects its sensitivity to this perturba-
tion, and its spectral region can then be assigned to the

Table 2. The averages and variances of the absolute value of the
couplings

Coupling �J��, cm�1 �(�J�), cm�1

J�� 3.13 3.88
J�� 1.78 3.32
J�� 0.60 1.43
J�� 0.47 1.32
J�� 0.92 1.97
J�� 0.46 1.31
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structure of type 	. Obviously, DS(	) of each motif depends on
the couplings with other motifs. This is an inevitable conse-
quence of the nonadditivity of the spectra when various
segments interact strongly. DS(	) may, thus, not be viewed as
the ‘‘pure’’ spectrum of motif 	 but rather as the spectral
feature which is strongly affected by that motif.

The lower six panels of kI in Fig. 2 show that for kI, the DS and
AS peak positions are very close. This is because the couplings
between different amide I modes are not very strong. However,
the DS spectra have additional peaks. Also, because the AS
represent the spectra of the isolated structures and the DS
include their couplings with other parts of the protein, we
observe peak shifts. Consequently, the two overlapping peaks in
AS for � are well separated in DS. Similar trends are observed
in the kIII spectra shown in Fig. 2. We have operationally defined
the frequency regime bounded by the 35% contour of the highest
peak of DS(�) in Fig. 2 as the � regime. This is shown by the black
contour in the middle panels of Fig. 4. The � regime defined
similarly is given by the red contour. These two regions are
clearly better separated in kIII than in kI.

This differential sensitivity analysis can also be used to identify
the regions corresponding to inter-secondary-structure cou-
plings: By perturbing the off-diagonal elements in the local
Hamiltonian, it should be possible to probe directly the effect of
couplings on the spectra. This should identify the spectral
domains that are sensitive to real-space interactions, and to
molecular structure. Fig. 4 Bottom shows that the DS of the kIII

technique with respect to J�� is clearly more localized than kI.
Because of the large variance of the couplings, we applied a
different perturbation protocol, whereby all J�� were multiplied
by a factor 1.001. A comparison of Fig. 4 Middle with Fig. 4
Bottom shows that for both techniques, the strong peaks of DS
with respect to J�� appear around the region where the � and �
features overlap. The peak intensity is determined by the ratio
of the coupling and the energy difference of the two local modes.
When the coupling is much weaker than the energy difference
(the weak coupling limit), the changes of the eigenstate energies
are also small and the difference spectrum is weak. The differ-
ence spectrum signal will increase as this ratio increases. In the
strong coupling limit, the eigenstates will have similar contribu-

Fig. 2. Two-dimensional coherent vibrational spectra of TB6. (Left) Sensitivity analysis for kI. In the left column is shown the total simulated spectrum S(kI) and
its derivatives with respect to the various secondary structures, DS(�), DS(�), and DS(�). In the right column is shown the additive spectrum obtained by neglecting
inter secondary structure couplings AS(kI), and the contributions of each motifs to the spectrum [AS(�), AS(�), and AS(�)]. (Right) Sensitivity analysis for kIII. In
the left column is shown the total simulated spectrum S(kIII) and its derivatives with respect to the various secondary structures, DS(�), DS(�), and DS(�). In the
right column is shown the additive spectrum obtained by neglecting inter secondary structure couplings, AS(kIII), and the contributions of each motifs to the
spectrum [AS(�), AS(�), and AS(�)].
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tions from both local modes and should lie within the overlap-
ping region of � and �.

Discussion
We have demonstrated how sensitivity analysis of simulations
carried out by using a Hamiltonian expanded in local vibrational
coordinates may be used to dissect 2DIR spectra of globular
proteins and identify the regions that contain signatures of
different secondary structures or specific couplings. This tool,
which is widely used for inverting data to obtain optimal model
parameters (14), could help in the design of new pulse sequences.
In TB6, the � and � regions of kI strongly overlap, and the cross
peaks are congested and buried under strong and broad diagonal
peaks. The kIII technique shows a higher sensitivity to inter-
secondary-structure couplings and a better resolution. The
effects of random coil (�) are strong because it is the dominant
structure content. However, the average J�� and J�� are much
stronger than J��, and we expect � and � features to dominate
the 2DIR spectra for other proteins where they are more
abundant. The � feature may be filtered out, for example, by
isotope labeling of all of the random coil units of a protein with
known structure.

In our simulations, kIII shows better separation of peaks
compared with kI. The advantages of kIII stem from the absence
of coherences between ground and one exciton states along the
�2 axis and the expanded frequency range, which improves the

frequency resolution (26–28). kIII has strong ‘‘diagonal’’ peaks
created by four interactions with the same transition dipole.
These peaks, which could overlap with the cross peaks, carry
direct information about anharmonicity (peak shift), which is an
additional ingredient in resolving the structure. This ingredient
is hidden in the amplitude of the diagonal peak in kI. One
advantage of kI (also known as the photon echo) is its capacity
to eliminate certain types of inhomogeneous broadening (static
frequency fluctuations), thus generating narrower lineshapes
than kIII. This was recently demonstrated for ruthenium dicar-
bonyl complex (29).

In the present study, because of the high computational cost,
we have only included homogeneous broadening by adding a
20-cm�1 linewidth to all transitions. The lineshapes of cross
peaks resulting from overtones and combination bands are
directly related to fluctuations of energy gaps between one- and
two-exciton states, which may have arbitrary correlations with
the fluctuations of fundamental frequencies. The cross peaks in
kI and peaks in kIII can have contributions from a slow (inho-
mogeneous), fast (homogeneous), or intermediate type of fluc-
tuations. Below, we briefly discuss the possible algorithms for
incorporating line broadening microscopically. A high-level,
second-order cumulant expansion of Gaussian fluctuations
(CGF) approach based on the Brownian oscillator model (12)
can calculate the line broadening functions directly from mo-
lecular dynamics trajectories. This approach does not require
repeated diagonalization of the Hamiltonian because Gaussian
fluctuations can be introduced analytically in the time domain.
Because of the large number of required linebroadening func-
tions, this approach has so far been applied only to short peptides
and NMA (8–10). Slow fluctuations may be accounted for by
performing an inhomogeneous averaging over many configura-

Fig. 3. Double-sided Feynman diagrams for the two-pulse sequences simu-
lated in this work. By varying the time delays and signal direction, we can
selectively probe desired vibrational coherences in the system. i–iii are the
Feynman diagrams for the kI technique, where pulses k2 and k3 are coincident
and we vary the intervals t1and t3. The 2D signals are given by the absolute
value of the double Fourier transform with the conjugate frequencies �1 and
�3, respectively. iv and v are the Feynman diagrams for kIII, where pulses k1 and
k2 are time coincident, we vary the intervals t2 and t3, and �2 and �3 are the
conjugate frequencies. The excitonic level scheme shown in vi has the ground
state, �0	, single-exciton manifold, �e	, and two-exciton states, �f	.

Fig. 4. Characteristic regions in the 2DlR for various secondary structures in
TB6. (Top) RDS of kI (Left) and kIII (Right). (Middle) The main regions of 2DIR
spectra for � (black) and � (red) structures in kI (Left) and kIII (Right). (Bottom)
Differential sensitivity spectra with respect to J�� for kI (Left) and kIII (Right).
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tions. The bottleneck will be the repeated Hamiltonian diago-
nalizations and carrying out the multiple summations over
eigenstates.

Full-scale inhomogeneous averaging over 100 configurations
in TB6 will require 1,000 machine hours on an AMD Opteron
244. The present sensitivity analysis will require repeating this
calculation 40 times. The nonlinear exciton equations (11, 12)
provide the most promising method for large-scale inhomoge-
neous averaging. They use a single-exciton basis and view the
nonlinear response in terms of scattering between excitons
(quasi-particles) rather than transitions among eigenstates. The
expensive computation of multiple exciton states is totally
avoided. The bottleneck in this calculation is the calculation of
a tetradic frequency-dependent exciton scattering matrix. Our
recent calculations show that useful approximations that exploit

the short-range nature of exciton couplings may reduce compu-
tational cost and will scale very favorably with protein size.

Sensitivity analysis can further be applied to connect chirally
sensitive techniques such as vibrational IR circular dichroism
and Raman optical activity (30) to structure, and to analyze
hydrogen bonding networks. Once the various regions and cross
peaks have been assigned, it should be possible to use pulse
shaping learning algorithms (11, 31, 32) to selectively magnify or
suppress the contributions of desired motifs, to study them
separately. This could be particularly useful for probing protein
folding pathways.
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