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Abstract

From dice to modern complex circuits, there have been many attempts to build increasingly 

better devices to generate random numbers. Today, randomness is fundamental to security and 

cryptographic systems, as well as safeguarding privacy. A key challenge with random number 

generators is that it is hard to ensure that their outputs are unpredictable [1–3]. For a random 

number generator based on a physical process, such as a noisy classical system or an elementary 

quantum measurement, a detailed model describing the underlying physics is required to assert 

unpredictability. Such a model must make a number of assumptions that may not be valid, thereby 

compromising the integrity of the device. However, it is possible to exploit the phenomenon 

of quantum nonlocality with a loophole-free Bell test to build a random number generator that 

can produce output that is unpredictable to any adversary limited only by general physical 

principles [1–11]. With recent technological developments, it is now possible to carry out such 

a loophole-free Bell test [12–14]. Here we present certified randomness obtained from a photonic 

Bell experiment and extract 1024 random bits uniform to within 10−12. These random bits could 

not have been predicted within any physical theory that prohibits superluminal signaling and 

allows one to make independent measurement choices. To certify and quantify the randomness, we 

describe a new protocol that is optimized for apparatuses characterized by a low per-trial violation 

of Bell inequalities. We thus enlisted an experimental result that fundamentally challenges the 

notion of determinism to build a system that can increase trust in random sources. In the future, 
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random number generators based on loophole-free Bell tests may play a role in increasing the 

security and trust of our cryptographic systems and infrastructure.

The search for certifiably unpredictable random number generators is motivated by 

applications, such as secure communication, for which the predictability of pseudorandom 

strings make them unsuitable. Private randomness is required to initiate and authenticate 

virtually every secure communication [15], and public randomness from randomness 

beacons can be used for public certification and resource distribution in many settings 

[16]. To certify randomness, one can perform an experiment known as a Bell test [17], 

which in its simplest form performs measurements on an entangled system located in two 

physically separated measurement stations, with each station choosing between two types 

of measurements. After multiple experimental trials with varying measurement choices, if 

the measurement data violates conditions known as “Bell inequalities,” then the data can be 

certified to contain randomness under weak assumptions.

Our randomness generation employs a “loophole-free” Bell test, which notably is 

characterized by high detection efficiency and space-like separation of the measurement 

stations during each experimental trial. The bits are unpredictable assuming that (1) 

the choices of measurement settings are independent of the experimental devices and 

pre-existing classical information about them and (2) in each experimental trial, the 

measurement outcomes at each station are independent of the settings choices at the other 

station. The first assumption is ultimately untestable, but the premise that it is possible 

to choose measurement settings independently of a system being measured is often tacitly 

invoked in the interpretation of many scientific experiments and laws of physics [18]. The 

second assumption can only be violated if one admits a theory that permits sending signals 

faster than the speed of light, given our trust that the space-like separation of the relevant 

events in the experiment is accurately verified by the timing electronics and that results are 

final when recorded. We also trust that the classical computing equipment used to process 

the data operates according to specification.

Under the above assumptions, the output randomness is certified to be unpredictable with 

respect to a real or hypothetical actor “Eve” in possession of the pre-existing classical 

information, physically isolated from the devices while they are under our control, and 

without access to data produced during the protocol. The bits remain unpredictable to Eve if 

she learns the settings at any time after her last interaction with the devices. If the devices 

are trusted, which is reasonable if we built them, then this may be well before the start of the 

protocol, in which case the settings can come from public randomness [2,10]. In particular, 

one can use an existing public randomness source, such as the NIST random beacon [16], 

to generate much needed private randomness as output. Since the assumptions do not 

constrain the specific physical realization of the devices and do not require specific states 

or measurements, they implement a “device-independent” framework [19] which allows an 

individual user to assure security with minimal assumptions about the devices. If Eve has 

quantum memory, it is possible to ensure that Eve’s side information is effectively classical 

by verifying that the devices have no long-term quantum memory of past interactions 

with Eve. While this introduces weak device-dependence, for the foreseeable future this 
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verification task is comparable to that required to enforce the absence of communication 

from the devices to Eve.

The only previous experimental production of certified randomness from Bell test data 

was reported in the ground-breaking paper by Pironio et al. [5]. Their Bell test was 

implemented with ions in two separate ion-traps, closing the detection loophole [20] but 

without space-like separation. Indeed, Bell tests achieving space-like separation without 

other experimental loopholes have been performed only recently [12–14, 21]. Under more 

restrictive assumptions than ours, the maximum amount of randomness in principle available 

in the data of Pironio et al. was quantified as 42 bits with an error parameter of 0.01, 

but they did not extract a uniformly distributed bit string from their data. Pironio et al. 

argue that any interaction between measurement stations in their experiment is negligible, 

because they are located in separate ion-traps, each in its own vacuum chamber. However, 

any shielding between the stations is necessarily incomplete; for example they must have 

an open quantum channel to establish entanglement. Mundane physical effects can allow 

local-realistic systems to appear to violate Bell inequalities when shielding is incomplete. 

Relying instead on the impossibility of faster-than-light communication provides stronger 

assurance of the unpredictability of the randomness.

We generated randomness using an improved version of the loophole-free Bell test reported 

in Ref. [13]. Five new data sets were collected, with the best-performing data set yielding 

1024 new random bits uniform to within 10−12. We also obtained 256 random bits from the 

main data set analyzed in Ref. [13], albeit only uniform to within 0.02. The experiment, 

illustrated in Fig. 1, consisted of a source of entangled photons and two measurement 

stations named “Alice” and “Bob”. During an experimental trial, at each station a random 

choice was made between two measurement settings labeled 0 and 1, after which a 

measurement outcome of detection (+) or nondetection (0) was recorded. Each station’s 

implementation of the measurement setting was space-like separated from the other station’s 

measurement event, and no postselection was employed in collecting the data. See the 

Methods section for details. For trial i, we model Alice’s settings choices with the random 

variable Xi and Bob’s with Y i, both of which take values in the set {0, 1}. Alice’s and Bob’s 

measurement outcome random variables are respectively Ai and Bi, both of which take values 

in the set {+, 0}. When referring to a generic single trial, we omit indices. With this notation, 

a general Bell inequality for our scenario can be expressed in the form [22]

∑
abxy

sxy
abℙ(A = a, B = b X = x, Y = y) ≤ β,

(1)

where the sxy
ab are fixed real coefficients indexed by a, b, x, y that range over 

all possible values of A, B, X, Y . The upper bound β is required to be 

satisfied whenever the settings-conditional outcome probabilities are induced by a 

model satisfying “local realism” (LR). LR distributions, which cannot be certified 

to contain randomness, are those for which ℙ(A = a, B = b ∣ X = x, Y = y) is of the 

form ∑λ ℙ(A = a ∣ X = x, Λ = λ)ℙ(B = b ∣ Y = y, Λ = λ)ℙ(Λ = λ) for a random variable Λ
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representing local hidden variables. The Bell inequality is non-trivial if there exists a 

quantum-realizable distribution that can violate the bound β.

It has long been known that experimental violations of Bell inequalities such as Eq. 1 

indicate the presence of randomness in the data. To quantify randomness with respect to 

Eve, we represent Eve’s initial classical information by a random variable E. We formalize 

the assumption that measurement settings can be generated independently of the system 

being measured and Eve’s information with the following condition:

ℙ Xi = x, Y i = y ∣ E = e, pasti = ℙ Xi = x, Y i = y = 1
4 ∀x, y, e,

(2)

where pasti represents events in the past of the i’th trial, specifically including the trial 

settings and outcomes for trial 1 through i − 1. Our other assumption, that measurement 

outcomes are independent of remote measurement choices, is formalized as follows:

ℙ Ai = a ∣ Xi = x, Y i = y, E = e, pasti = ℙ Ai = a ∣ Xi = x, E = e, pasti
ℙ Bi = b ∣ Xi = x, Y i = y, E = e, pasti = ℙ Bi = b ∣ Y i = y, E = e, pasti ∀x, y, e .

(3)

These equations are commonly referred to as the “non-signaling” assumptions, although 

they are often stated without the conditionals E and pasti. Our space-like separation of 

settings and remote measurements provide assurance that the experiment obeys Eqs. 3. 

We remark that if one assumes the measured systems obey quantum physics, stronger 

constraints are possible [23,24].

Given Eqs. 2 and 3, our protocol produces random bits in two sequential parts. For the 

first part, “entropy production”, we implement n trials of the Bell test, from which we 

compute a statistic V  related to a Bell inequality (Eq. 1). V  quantifies the Bell violation and 

determines whether or not the protocol passes or aborts. If the protocol passes, we certify 

an amount of randomness in the outcome string even conditioned on the setting string and 

E. In the second part, “extraction,” we process the outcome string into a shorter string of 

bits whose distribution is close to uniform. We used our customized implementation of the 

Trevisan extractor [25] derived from the framework of Mauerer, Portmann and Scholz [26] 

and the associated open source code. We call this the TMPS algorithm, see Supplementary 

Information (SI) S.4 for details.

We applied a new method of certifying the amount of randomness in Bell tests. Previous 

methods for related models with various sets of assumptions [2–8, 27–29] are ineffective 

in our experimental regime (SI S.7), which is characterized by a small per-trial violation of 

Bell inequalities. Other recent works that explore how to effectively certify randomness from 

a wider range of experimental regimes assume that measured states are independent and 

identically distributed (i.i.d.) or that the regime is asymptotic [9–11, 30]. Our method, which 

does not require these assumptions, builds on the Prediction-Based Ratio (PBR) method for 

rejecting LR [31]. Applying this method to training data (see below), we obtain a real-valued 
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“Bell function” T  with arguments A, B, X, Y  that satisfies T(A, B, X, Y ) > 0 with expectation 

E(T) ≤ 1 for any LR distribution satisfying Eq. 2. From T  we determine the maximum value 

1 + m of E(T) over all distributions satisfying Eqs. 2 and 3, where we require that m > 0. 

Such a function T  induces a Bell inequality (Eq. 1) with β = 4 and sxy
ab = T(a, b, x, y). Define 

T i = T Ai, Bi, Xi, Y i  and V = ∏i = 1
n T i. If the experimenter observes a value of V  larger than 1, 

this indicates a violation of the Bell inequality and the presence of randomness in the data. 

The randomness is quantified by the following theorem, proven in the SI S.2. Below, we 

denote all of the settings of both stations with XY = X1Y 1X2Y 2…XnY n, and other sequences 

such as AB and ABXY are similarly interleaved over n trials.

Entropy Production Theorem.

Suppose T  is a Bell function satisfying the above conditions. Then in an experiment of 

n trials obeying Eqs. 2 and 3, the following inequality holds for all ϵp ∈ (0, 1) and vthresh

satisfying 1 ≤ vthresh ≤ (1 + (3/2)m)nϵp
−1:

ℙe ℙe(AB ∣ XY) > δAND V ≥ vthresh ≤ ϵp

(4)

where δ = 1 + 1 − ϵpvthresh
n /(2m) n

 and ℙe denotes the probability distribution conditioned 

on the event E = e , where e is arbitrary. The expression ℙe(AB ∣ XY) denotes the random 

variable that takes the value ℙe(AB = ab ∣ XY = xy) when ABXY takes the value abxy.

In words, the theorem says that with high probability, if V  is at least as large as vthresh, then the 

output AB is unpredictable, in the sense that no individual outcome AB = ab} occurs with 

probability higher than δ, even given the information XYE = xye . The theorem supports a 

protocol that aborts if V  takes a value less than vthresh, and passes otherwise. If the probability 

of passing were 1, then −log2(δ) would be a so-called “smooth min-entropy”, a quantity that 

characterizes the number of uniform bits of randomness that are in principle available in AB
[32, 33]. We show in the SI S.3 that for constant ϵp, − log2(δ) is proportional to the number 

of trials. How many bits we can actually extract depends on ϵfin, the final output’s maximum 

allowed distance from uniform. We also show in the SI that the Entropy Production Theorem 

can still be proved if Eq. 2 is weakened so that settings probabilities need not be known but 

are constrained to be within α of 1/4 with α < 1/4, while still being conditionally independent 

of earlier outcomes given earlier settings. Such a weakening is relevant for experiments 

[12–14] that use physical random number generators to choose the settings, for which the 

settings probabilities cannot be known exactly.

To extract the available randomness in AB, we use the TMPS algorithm to obtain an 

extractor, specifically a function Ext that takes as input the string AB and a length d “seed” 

bit string S, where S is uniform and independent of ABXY. Its output is a length t bit string. 

S can be obtained from d additional instances of the random variables Xi, so Eq. 2 ensures 

the needed independence and uniformity conditions on S. In order for the output to be within 
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a distance ϵfin of uniform independent of XY and E, the entropy production and extractor 

parameters must satisfy the constraints given in the next theorem, proven in the SI S.5. In the 

statement of the theorem, the measure of distance used is the “total variation (TV) distance,” 

expressed by the left side of Eq. 6, and “pass” is the event that V  exceeds vthresh.

Protocol Soundness Theorem.

Let 0 < ϵext, κ < 1. Suppose that ℙ(pass) ≥ κ and suppose that that the protocol parameters 

satisfy

t + 4 log2t ≤ − log2δ + log2κ + 5 log2ϵext − 11 .

(5)

Then the output U = Ext(AB, S) of the function obtained by the TMPS algorithm satisfies

1
2 ∑

u, xyse
ℙ(U = u, XYSE = xyse ∣ pass) − ℙunif(U = u)ℙ(XYE = xye ∣ pass)ℙunif(S = s) ≤ ϵp/ℙ(pass) + ϵext,

(6)

where ℙunif denotes the uniform probability distribution.

The number of seed bits d required satisfies d = O log(t)log nt/ϵext
2 , and SI S.4 gives an 

explicit bound.

The theorem provides several options for quantifying the uniformity of the randomness 

produced. A goal is for the protocol to be nearly indistinguishable according to TV 

distance from an ideal protocol, where in an ideal protocol the randomness is perfectly 

uniform conditional on passing. For this, the ideal protocol can be chosen to have the same 

probability of passing with behavior matching that of the real protocol when aborting. The 

theorem implies that the unconditional distribution of the protocol is within TV distance 

max ϵp + ϵext, κ  of that of an ideal protocol (SI S.5). For this distance, if the probability 

of passing is comparable to κ, then the conditional TV distance from uniform, given in 

Eq. 6, could be large. It is desirable that even for the worst case probability of passing, 

the conditional TV distance be small. Accordingly, we quantify the uniformity for our 

implementation with ϵfin = max ϵp/κ + ϵext, κ . Then, for any probability of passing greater than 

ϵfin, conditionally on passing, the TV distance from uniform is at most ϵfin.

We applied our protocol to five data sets using the setup based on that described in Ref. 

[13] with improvements described in the Methods section. Each data set was collected in 

five to ten minutes, improving on the approximately one month duration of data acquisition 

reported in Ref. [5]. Before starting the protocol, we set aside the first 5 × 106 trials of each 

data set as training data, which we used to choose parameters needed by the protocol. With 

the training data removed, the number n of trials used by the protocol was between 2.5 × 107 

and 5.5 × 107 for each data set. We used the training data to determine a Bell function T  with 
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statistically strong violation of LR on the training data according to the PBR method [31]; 

see SI S.3. The function T  obtained for the fifth data set, which was longest in duration and 

produced the most randomness, is given in Table 1 as an example. We computed thresholds 

vthresh so that a sample of n i.i.d. trials from the distribution inferred from the training data 

would have a high probability for exceeding vthresh.

For the fifth data set, a sample of n i.i.d. trials from the distribution inferred from the 

training data would have approximately 0.99 probability of exceeding a threshold of 

vthresh = 1.5 × 1032. This would allow the extraction of 1024 bits uniform to within ϵfin = 10−12, 

using ϵp = κ2 = × 9.025 × 10−25 and ϵext = 5 × 10−14. These values were chosen based on a 

numerical study of the constraints on the number t of bits extracted for fixed values of 

ϵfin = 10−12. Running the protocol on the remaining 55, 110, 210 trials with these parameters, 

the product ∏i = 1
n T i exceeded vthresh, and so the protocol passed. Applying the extractor to the 

resulting output string AB with a seed of length d = 315, 844, we extracted 1024 bits, certified 

to be uniform to within 10−12, the first ten of which are 1110001001. Figure 2 displays the 

extractable bits for alternative choices of ϵfin for all five data sets.

We also applied the protocol to data from the experiment of Ref. [13]. This experiment 

was more conservative in taking additional measures to ensure that it was loophole-free, 

including space-like separation of the measurement choices from both the downconversion 

event and the remote measurement outcomes. We extracted 256 bits at ϵfin = 0.02 from the 

best data set, XOR 3, reported in Ref. [13]. The distance from an ideal protocol as explained 

after the Protocol Soundness Theorem was 4.00 × 10−4, without accounting for possible bias 

in the random source used. For details see SI S.6.

For the data set producing 1024 new near random bits, our protocol used 1.10 × 108 uniform 

bits to choose the settings and 3.16 × 105 uniform bits to choose the seed. Because the 

extractor used is a “strong” extractor, the seed bits are still uniform conditional on passing, 

so they can be recovered at the end of the protocol for uses elsewhere. This is not the case 

for the settings-choice bits because the probability of passing is less than 1. To reduce the 

entropy used for the settings, our protocol can be modified to use highly biased settings 

choices [5]. Reducing settings entropy is not a priority if the settings and seed bits come 

from a public source of randomness, in which case the output bits can still be certified to be 

unknown to external observers such as Eve and the current protocol is an effective method 

for private randomness generation [2, 10].

For future work, we hope to take advantage of the adaptive capabilities of the Entropy 

Production Theorem (SI S.2) to dynamically compensate for experimental drift during run 

time. In view of advances toward practical quantum computing it is desirable to study the 

protocol in the presence of quantum side information, which may require more conservative 

randomness generation. We also look forward to technical improvements in experimental 

equipment for larger violation and higher trial rates. These will enable faster generation of 

random bits with lower error and support the use of biased settings choices.
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Existing randomness generation systems rely on detailed assumptions about the specific 

physics underlying the devices. With the advent of loophole-free Bell tests, it is now 

possible to build quantum devices that exploit quantum nonlocality to remove many of 

the device-dependent assumptions in current technological implementations. Our device-

independent random number generator is an example of such a system. Such generators 

can provide the best method currently known for physically producing randomness, thereby 

improving the security of a wide range of applications.

Methods

We used polarization-entangled photons generated by a nonlinear crystal pumped by a 

pulsed, picosecond laser at approximately 775 nm in a configuration similar to that 

reported in Ref. [13], but with several improvements to increase the rate of randomness 

extraction. The laser’s repetition rate was 79.3 MHz, and each pulse that entered the 

crystal had a probability of ≈ 0.003 of creating an entangled photon pair in the state 

ψ ≈ 0.982 HH + 0.191 V V  at a center wavelength of 1550 nm. By pumping the crystal 

with approximately five times as much power, and using a 20 mm long crystal, we were 

able to substantially increase the per-pulse probability of generating a downconversion event 

compared with Ref. [13] while maintaining similar overall system efficiencies. The two 

entangled photons from each pair were separately sent to one of the two measurement 

stations (187±1) m apart. At Alice and Bob, a Pockels cell and polarizer combined to 

allow the rapid switching of measurement bases and measurement of the polarization state 

of the incoming photons. Each Pockels cell operated at a rate of 100 kHz, allowing us 

to perform 100,000 trials per second (the driver electronics on the Pockels cells sets this 

rate). The photons were then detected using fiber-coupled superconducting single-photon 

nanowire detectors, with Bob’s detector operating at approximately 90% efficiency and 

Alice’s detector operating with approximately 92% efficiency [34]. For this experiment, the 

total symmetric system heralding efficiency was (75.5 ± 0.5%), which is above the 71.5% 

threshold required to close the detection-loophole for our experimental configuration after 

accounting for unwanted background counts at our detectors and slight imperfections in our 

state preparation and measurements components.

With this configuration, Bob completed his measurement (294.4 ± 3.7) ns before a 

hypothetical switching signal travelling at light speed from Alice’s Pockels cell could arrive 

at his station. Similarly, Alice completed her measurement (424.2 ± 3.7) ns before such 

a signal from Bob’s Pockels cell could arrive at her location. Each trial’s outcome values 

were obtained by aggregating the photon detection or non-detection events from several 

short time intervals lasting 1024 ps, each of which is timed to correspond to one pulse of 

the pump laser. If any photons were detected in the short intervals, the outcome is “+”, 

and if no photons were detected, the outcome is “0”. The experiment of Ref. [13] used 

at most 7 short intervals, but here we were able to include 14 intervals while maintaining 

space-like separation, which further increased the probability of observing a photon during 

each trial. For demonstration purposes, Alice and Bob each used Python’s random.py 

module with the default generator (the Mersenne twister) to pick their settings at each 

trial. This pseudorandom source is predictable, and for secure applications of the protocol 

in an adversarial scenario, such as if the photon pair source or measurement devices are 
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obtained from an untrusted provider, settings choices must be based on random sources that 

are effectively not predictable. However, based on our knowledge of device construction, we 

know that our devices have no physical resources for predicting pseudo-random numbers 

and expect that measurement settings were effectively independent of relevant devices so 

that Eqs. 2 and 3 still hold. We remark that the settings choices for the XOR 3 data set were 

based on physical random sources.

With the improved detection efficiency, the higher per-trial probability of for Alice and Bob 

to detect a photon, and a higher signal-to-background counts ratio we are able to improve 

both the magnitude of our Bell violation as well as reduce the number of trials required to 

achieve a statistically significant violation by an order of magnitude.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The locations of the Source (S), Alice (A) and Bob (B).
Each trial, the source lab produces a pair of photons in the non-maximally polarization-

entangled state ψ ≈ 0.982 HH + 0.191 V V , where H(V ) denotes horizontal (vertical) 

polarization. One photon is sent to Alice’s lab while the other is sent to Bob’s lab to 

be measured as shown in inset (b). Alice’s computed optimal polarization measurement 

angles, relative to a vertical polarizer, are a = − 3.7o, a′ = 23.6o  while Bob’s are 

b = 3.7o, b′ = − 23.6o . Both Alice and Bob use a fast Pockels cell (PC), two half-waveplates 

(HWP), a quarter-waveplates (QWP), and a polarizing beam displacer to switch between 

their respective polarization measurements. A pseudorandom number generator (RNG) 

governs the choice of each measurement setting every trial. After passing through the 

polarization optics, the photons are coupled into a single-mode fiber and sent to a 

superconducting nanowire detector. The signals from the detector are then amplified and 

sent to a time tagger where their arrival times are recorded and the measurement outcome is 

fixed. A 10 MHz oscillator keeps Alice and Bob’s timetagger clocks locked. Alice and Bob 

are (187 ± 1) m apart. At this distance, Alice’s measurement outcome is space-like separated 

from the triggering of Bob’s Pockels cell and vice-versa.
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Figure 2: Extractable bits as a function of error.
The figure shows the tradeoff between final error ϵfin and number of extractable bits t
for values of vthresh pre-chosen to yield estimated passing probabilities exceeding 95%. 

These thresholds were met in each case. For all data sets we set ϵp = κ2 = 0.95 ϵfin
2

and ϵext = 0.05 ϵfin, a split that was generally found to be near-optimal when numerically 

maximizing t in Eq. 5 for fixed values of ϵfin.
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Table 1:
Bell function T  obtained from Data Set 5.

We used a numerical method based on maximum likelihood to infer a non-signaling distribution based on the 

raw counts of the training trials, namely the first 5×106 trials. We then determined the function T  that 

maximizes E(lnT) according to this distribution, subject to the constraints that E(T)LR ≤ 1 for all LR 

distributions and T(0, 0, x, y) = 1 for all x, y. The latter constraint improves the signal-to-noise for our data. The 

function T  yields m = 0.0100425, and E(T) = 1.000003931 for the non-signaling distribution inferred from the 

training data. One can also interpret the numbers below as the coefficients sxy
ab in Eq. 1, which defines a Bell 

inequality with β = 4. The values of T  are rounded down at the tenth digit.

ab = + + ab = + 0 ab = 0 + ab = 00
xy = 00 1.0243556353 0.9704647804 0.9735507658 1

xy = 01 1.0256127409 0.9491951243 0.9960775334 1

xy = 10 1.0227274988 0.9962782754 0.9461091383 1

xy = 11 0.9273040563 1.0037217225 1.0039224645 1
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