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ABSTRACT
Objective  Ocular toxoplasmosis (OT) can cause posterior 
uveitis; causes of recurrent OT are not well understood. 
We explored clinical, immunological and genetic properties 
associated with recurrent OT.
Methods and analysis  A recurrent OT patient 
population (n=9) was identified. Clinical history, 
ophthalmological findings and immunological properties 
were assessed. B and T cell immunophenotyping including 
interferon-gamma (IFN-γ) responses were analysed. An 
analysis of 592 immunodeficiency genes was performed.
Results  The patients experienced 2–7 OT episodes 
(average 3.7). The first episode occurred at an average 
of 23.8 (SD 10.1) years of age. All patients had anterior 
uveitis, vitritis and various fundus lesions of OT. The 
patients had lymphocyte maturation abnormalities; the 
proportion of naive CD4+CD45RA+CCR7+ T cells was high 
in 5/9 cases, and the percentage of CD4+CD45RA−CCR7− 
T effector memory cells was reduced in 7/9 cases. An 
increased percentage of CD19+CD38lowCD21low activated 
B cells was observed in 5/9 cases. IFN-γ response was 
reduced in CD4+ (8.45±4.17 vs 21.27±11.0, p=0.025) and 
CD8+ (39.0±9.9 vs 18.1±18.1, p=0.017) T cells. Genetic 
analysis revealed several potentially harmful variants in 
immunologically active ERCC3, MANBA, IRF4, HAVCR2, 
CARMIL2, CD247, MPO, C2 and CD40 genes.
Conclusion  Our recurrent OT cases had deviations 
in lymphocyte maturation and IFN-γ responses possibly 
caused by genetic reasons. However, limitations of 
our study include failure to identify uniform genetic 
mechanisms. In addition, we cannot rule out the possibility 
that the immunological abnormalities can be triggered by 
chronic toxoplasmosis. Despite the limitations, our findings 
contribute to the understanding of ocular immunity and 
development of recurrent OT.

INTRODUCTION
Ocular toxoplasmosis (OT) caused by Toxo-
plasma gondii is a common infectious posterior 
uveitis presenting with focal necrotising reti-
nitis, overlying vitritis and hyperpigmented 
retinochoroidal scarring.1 Macular involve-
ment and large scars may cause permanent 
vision loss or negatively affect vision.2 3 OT 
diagnosis depends on the characteristic 
clinical features in patients with positive 

serological test results. In recurring cases, 
new active retinochoroiditis foci typically 
develop around the scars of previous lesions.4 
The hyperpigmented scar harbours cysts that 
remain inactive until the cyst ruptures and 
releases the parasites to the surrounding 
retina. Although management guidelines of 
OT have been generated, understanding of 
predisposing factors of recurrent OT espe-
cially among immunocompetent patients 
remains incomplete.

Parasite properties and genetic regulation 
of host immune responses are believed to 
influence the OT clinical outcome and risk 
of recurrence.4–6 For example, a recent study 
in a rodent model highlights the importance 
of interferon-gamma (IFN-γ) dependent 
Toxoplasma genes.7 While evaluation of 
toxoplasma virulence remains challenging, 
disease caused by genotype I may be related 
to more invasive disease when compared with 
infection by genotype II.8 Although OT may 
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tions, however, are not well understood.

WHAT THIS STUDY ADDS
	⇒ We found that recurrent OT is associated with devi-
ation in T cell maturation and IFN-γ responses. While 
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recur in immunocompetent patients, compromised T 
cell-mediated immunity caused by advanced HIV infec-
tion may explain the OT activation.9 Proper immune 
responses, including IFN-γ activity, are needed to control 
the toxoplasmosis.5 10 Genetic polymorphism, such as 
IFN-γ +874 T/A, for example, can be associated with OT 
recurrence.11 Recurrence risk can also be elevated among 
patients older than 40 years and those who develop new 
lesions within 1 year after the first episode or have macular 
involvement, chorioretinal lesions greater than 1 disc 
diameter, congenital toxoplasmosis or bilateral disease.4 
Although clinical studies and previous association studies 
of genetic polymorphisms in small patient cohorts have 
been completed,1 5 immunological and genetic mecha-
nisms of OT recurrence are not well understood.

In this study, we identified recurring HIV-negative OT 
patients in a population with low toxoplasmosis prev-
alence and genotype II T. gondii predominance.12 We 
analysed their clinical presentations and explored their 
peripheral blood immune cell populations first with mass 
cytometry, followed by extensive immunophenotyping 
according to EuroFlow guidelines developed to identify 
inborn error in immunity (IEI) conditions.13 We also 
stimulated peripheral blood T cells in vitro to test their 
IFN-γ response capacity. Further, the presence of delete-
rious mutations in the immunologically relevant genes 
was analysed with whole exome sequencing (WES) to 
search for potential genetic causes of the immunological 
abnormalities.14 Our findings support the view that defec-
tive T cell maturation and IFN-γ response possibly due to 
genetic properties can be associated with OT recurrence.

PATIENT POPULATION AND METHODS
Patients and clinical characteristics
All patients with posterior uveitis or retinitis (n=238) 
at the Oulu University Hospital Ophthalmology clinic 
responsible for tertiary care for a population of approx-
imately 410 000 inhabitants were identified from the 
hospital’s electronic patient database during a 9-year 
period. The International Classification of Diseases 
(ICD-10) diagnostic codes for posterior uveitis (H30.2), 
toxoplasma retinitis (H32.0*B58.0) and retinitis (H30) 
were used. The patients with serologically identified toxo-
plasmosis (n=24) were further evaluated. Recurrent OT 
(n=9) cases, who are negative for HIV infection or any 
other immunosuppressive condition, were recruited for 
clinical, immunological and genetic evaluation. Clinical 
data were gathered from comprehensive ophthalmic 
examination (best-corrected visual acuity, intraocular 
pressure and biomicroscopy) completed during the 
study, and retrospectively from the hospital’s electronic 
patient records. In addition to clinical evaluation, fundus 
imaging was performed during active OT. Information 
about family history was obtained by interviewing the 
participants. The patients did not have evidence of active 
toxoplasmosis and they did not have antimicrobial treat-
ment when their blood samples were collected. For IFN-γ 
in vitro response analysis, healthy age-matched controls 

were recruited from the personnel of the University of 
Oulu and Oulu University Hospital. Although toxoplasma 
antibodies were not analysed, results of comprehensive 
ophthalmic examinations showed no evidence of toxo-
plasma retinal lesions or any other ocular diseases.

Immune cell profiling with mass cytometer
Immune cell populations were first screened and 
compared with healthy age-matched and sex-matched 
controls with the Maxpar Human Immune Monitoring 
Panel Kit (Cat. No. 201324, Fluidigm Corporation, San 
Francisco, California, USA) and analysed with Helios 
mass cytometer (Fluidigm) according to the manufactur-
er’s instructions. Mass cytometry data files were analysed 
using Cytobank (Beckman Coulter, Indiana, USA). The 
results obtained from each OT patient were compared 
with those obtained from healthy age-matched and 
sex-matched control cases. Statistical significance was 
analysed with a paired t-test (IBM SPSS software version 
29).

B and T cell immunophenotyping
B and T cell immunophenotyping at the individual 
level was analysed according to EuroFlow methods13 
and diagnostic protocols developed to identify immu-
nodeficiencies.15 The analysis was completed from fresh 
heparin-blood samples. Four or 10-colour flow cytometry 
panel with monoclonal antibodies against the surface 
antigens IgM, IgD, CD3, CD4, CD8, CD16⁄56, CD19, 
CD21, CD27, CD33, CD34, CD38, CD45, CD56, CD57, 
CD133, HLA-DR, CD62L, CD45RA and CD45RO (BD 
Biosciences). T cell immunophenotyping was studied 
with the antibody panel including anti-CD45, anti-CD3, 
anti-CD4, anti-CD8, anti-CD45RA and anti-CCR7 (R&D 
Systems).

Isolation and culture of peripheral blood mononuclear cells
Peripheral blood mononuclear cells (PBMCs) were 
isolated by Ficoll-Paque gradient centrifugation (lithium 
heparin tubes). The cells were aliquoted in 90% FBS 
(ThermoScientific; SV301800.03) and 10% dimethyl sulf-
oxide (Applichem; A3672,0250) and stored at −140°C. 
Cells were cultured in RPMI 1640 (Sigma Aldrich; 
R0883), supplemented with 100U penicillin and 100 µg/
mL streptomycin, 10 mM HEPES, 2 mM L-glutamine and 
10% FBS (ThermoScientific; SV301800.03) at 37℃ with 
5% CO

2
 in a humidified incubator.

IFN-γ response in vitro
IFN-γ response capacity of stimulated CD3+CD4+ and 
CD3+CD8+ T cells was tested in vitro by comparing each 
OT case to their age-matched and sex-matched control. 
PBMCs were plated at 3×106/mL density and allowed to 
rest overnight. Protein transport inhibitors (Invitrogen; 
00–4980) were added to unstimulated cells, or the cells 
were stimulated for 5 hours with Phorbol-12-myristate-
13-acetate/Cell Stimulation Cocktail (PMA/ionomycin) 
with protein transport inhibitors (Invitrogen; 00-4975-
93). After stimulation, the cells were collected, washed 
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twice, permeabilised with Cytofix/Cytoperm (BD Biosci-
ences; 554714) for 20 min at +4°C, washed twice with cold 
Perm-Wash (BD Biosciences; 554714) and stained with 
IFN-γ antibody for 35 min at +4°C and analysed by flow 
cytometry (BD LSRFortessa, Becton Dickinson). The 
results obtained from each OT patient were compared 
with the results obtained from age-matched and sex-
matched control cases. Statistical significance was 
evaluated with a paired t-test (IBM SPSS software).

Genetic analysis
Sequencing was performed at the Institute for Molec-
ular Medicine Finland Technology Centre. Libraries 
were prepared from DNA samples extracted from blood 
with NimbleGen SeqCap EZ MedExome kit (Roche 
Nimblegen, Madison, Wisconsin, USA) or Agilent Sure-
Select ClinicalResearchExome kit (Agilent, Santa Clara, 
California, USA) according to the manufacturer’s 
instructions. WES libraries were sequenced with Illu-
mina HiSeq1500 system, with paired-end reads 2×100 bp. 
Bioinformatic analysis of raw data was performed with a 
variant calling pipeline. Reads were trimmed and there-
after aligned to the GRCh37 reference genome with 
BWA-MEM. GATK Base Recalibrator was used to clean 
the alignment and duplicates were removed using Picard 
MarkDuplicates and GATK IndelRealigner for indel sites. 
Variants were called with the use of Mpileup from the 
SAMTOOLS package7.

We aimed to explain the observed immunological defi-
ciencies by analysing 592 genes (online supplemental 
material) involved in IEI.14 Variants identified in selected 
genes were filtered using VariantInterpreter software 
(V.2.17.0.60, Illumina) and alleles absent from or with 
minor allele frequency <0.01 in GnomAD (V.2.1.1) were 
included. Remaining variants were interpreted based on 
allele frequencies in the reference population (GnomAD 
V.2.1.1, https://gnomad.broadinstitute.org/; SISu, 
https://sisuproject.fi/), in silico predictions (Polyphen, 
SIFT, MutationTaster, CADD, REVEL) and ACMG guide-
lines.16 Public disease databases (Clinvar, OMIM) were 
used in the analysis and known non-pathogenic variants 
were excluded. All remaining variants were visualised 
using Integrative Genomics Viewer (V.2.16.2). For the 
observed rare genetic variants with an in silico prediction 
of being potentially harmful or deleterious, any associ-
ations with immune deficiencies were evaluated using 
FinnGen data (FinnGen Freeze 9 database, https://r9.​
finngen.fi/).

RESULTS
Clinical parameters
The patients or their family members had no history 
of secondary immunodeficiency, consanguinity, gener-
alised infection susceptibility or any other evidence of 
IEI conditions.14 The average age of the patients with 
recurrent OT was 23.8 (SD 10.1) years at the time of the 
first OT episode. The average number of recurrences 
was 3.7 (SD 2.2, range 2–7). All patients had anterior 

uveitis, vitritis, and 4 (44%) had toxoplasma lesions in 
the macula, 4 (44%) had lesions next to the optic disc, 
and 4 (44%) in the peripheral retina. Three patients 
(33%) had papillitis or retinal haemorrhages. Only two 
out of nine patients (22%) had a permanent decrease 
in visual acuity after OT episodes, but none was visually 
impaired. Ophthalmic findings of OT are summarised in 
online supplemental table 1.

Lymphocyte immunophenotyping
PBMCs were first screened and compared with healthy 
age-matched controls using the mass cytometer method. 
The results of screening demonstrated that total B and 
T cell counts were comparable in OT and control cases. 
Comparison of proportions of cytotoxic T cells (CD3+C-
D8+CD45+TCRgd−) among the recurrent OT patients 
and healthy age-matched and sex-matched controls did 
not reach the level of confirmed statistical significance 
(p=0.05, figure  1A). PBMCs were further evaluated 
for specific subpopulations in each individual patient 
with flow cytometric analysis according to protocols 
developed to identify primary or secondary immunode-
ficiencies (online supplemental table 2).15 In CD19+ B 
cell compartment, two cases (patients 1 and 5) presented 
with reduced total CD19+ count (online supplemental 
table 2). Activated CD38lowCD21low B cell population was 
elevated in six cases indicating B cell activation possibly 
caused by abnormalities in genetic regulation of the 
immune system or chronic infection.17 Within CD3+ T 
cell compartment, reduced CD4+ and CD8+ counts were 
observed in two cases (patients 3 and 6). Evidence of T 
cell maturation abnormalities was found especially in 
CD3+CD4+ populations; the percentage of naive CD3+C-
D4+CD45RA+CCR7+ T cells was high in five cases (5/9) 
and CD3+CD4+CD45RA−CCR7− T effector memory cells 
were reduced in seven cases (7/9) (online supplemental 

Figure 1  (A) Peripheral blood cytotoxic T cells 
(CD3+CD8+CD45+TCRgd−) in recurrent toxoplasmosis (Toxo) 
patients and healthy controls. (B) Interferon-gamma (IFN-γ+) 
response in CD3+CD4+ (8.45±4.17 vs 21.27±11.0, p=0.025) 
and (C) CD3+CD8+ (39.0±9.9 vs 18.1±18.1, p=0.017) T cells 
obtained from the recurrent OT patients and their healthy 
age-matched controls after PMA/ionomycin stimulation 
in vitro. The statistical significance of the recurrent OT 
patient cohort compared with control cohort was calculated 
with paired t-tests (IBM SPSS software). OT, ocular 
toxoplasmosis; PMA, phorbol-12-myristate-13-acetate.

https://dx.doi.org/10.1136/bmjophth-2024-001769
https://dx.doi.org/10.1136/bmjophth-2024-001769
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https://dx.doi.org/10.1136/bmjophth-2024-001769
https://dx.doi.org/10.1136/bmjophth-2024-001769
https://dx.doi.org/10.1136/bmjophth-2024-001769
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table 2). Natural killer cell count was below normal level 
in three individuals.

IFN-γ response in vitro
The proportion of IFN-γ-positive T cells after PMA/
ionomycin stimulation in vitro was lower in the patient’s 
CD3+CD4+ T cells when each OT case was compared 
with their own age-matched and sex-matched control 
cases (8.45±4.17 vs 21.27±11.0, p=0.025) (figure  1B). 
Proportions of IFN-γ-positive cells were also reduced in 
CD3+CD8+ T cell populations when each OT case was 
compared with age-matched and sex-matched control 
cases (39.0±9.9 vs 59.5±18.1, p=0.017) (figure 1C). Statis-
tical significance was tested with a paired t-test (IBM SPSS 
software).

Genetic analysis
Consistent with a limited history of infection suscep-
tibility, confirmed pathogenic IEI mutations were not 
found.14 However, most patients were positive for rare, 
damaging or possibly damaging heterozygous variants 
in immunologically relevant genes (table 1). Potentially 
harmful variants in immunologically active genes C2, 
CARMIL2, CD247, CD40, ERCC3, HAVCR2, IRF4, MANBA 
and MPO were found. Only one rare genetic variant 
c.580G>T, p.(Asp194Tyr) in HAVCR2 was shared by two 
patients (P5 and P6). HAVCR2 encodes a T cell immuno-
globulin and mucin-domain containing-3 (TIM-3), which 
is involved in regulation of T cell activation and cytokine 
signalling in T. gondii infection.18

As some of the variants were too common to cause a 
dominantly inherited IEI, or the phenotype was not 
consistent with the previously described condition, we 
continued to test the role of the variants at the popula-
tion level by using the FinnGen project data (https://r9.​
finngen.fi/). Interestingly, three of the variants observed 
in OT patients were associated with immune disorders: 
the IRF4 c.263C>A variant is associated with autoimmune 
diseases and allergic contact dermatitis (p=1.34×10−6 and 
p=5.68×10−5), the HAVCR2 c.580G>T with immunodefi-
ciencies (p=0.006), and the CD247 c.162+2T>G variant 
with toxoplasmosis (p=0.0067), suggesting a putative 
predisposing role.

DISCUSSION
The immune system in most healthy individuals can 
control the primary T. gondii infection.19 However, clin-
ical history of recurrent OT in our patient cohort in the 
absence of HIV infection or any other known immuno-
suppressive condition may be suggestive of deficient host 
immunity as indicated by our findings of immune cell 
phenotyping and T cell IFN-γ responses. These patients 
or their families had no consanguinity, they had no 
history of unusual presentations of infections or known 
IEI conditions suggesting that OT recurrence suscepti-
bility can be highly selective. Toxoplasmosis activity in 
these patients is evident only in their eyes demonstrating 

the anatomical and immunological vulnerability of the 
eye.

Results of our immune cell phenotyping as well as in 
vitro analysis of stimulated T cells demonstrate that the 
capacity for producing IFN-γ responses is reduced in 
patients with recurrent OT. Importantly, our findings 
are based on protocols designed to recognise IEI condi-
tions.13 15 We found, for example, low proportions of 
CD4+CD45RA−CCR7− T lymphocytes, a T cell population 
active in IFN-γ responses, when compared with healthy 
age-matched controls. Previously, similar findings have 
been described in association with susceptibility to 
mycobacterial infections, for example.20 Such immuno-
logical properties can also share features with advanced 
HIV-infected patients among whom poor CD3+CD4+ 
immunity and frequent activation of toxoplasmosis is 
observed.9 IFN-γ response in vitro was compromised 
not only in CD3+CD4+ but also in CD3+CD8+ T cells; this 
observation is also consistent with previous findings of 
toxoplasma immunity.21 Although our immunological 
findings can be caused by genetics, we cannot rule out 
the possibility that chronic toxoplasmosis may trigger 
similar T cell abnormalities by transcription factor 
BLIMP-1 or PD-1-mediated mechanisms.21 22 Further, we 
found that the proportion of activated CD38lowCD21low B 
cells is elevated in recurrent OT patients consistent with, 
for example, chronic infection or genetically defective 
B cell maturation as observed among common variable 
immunodeficiency (CVID) patients.17 Our patients do 
not, however, have a low percentage of switched memory 
B cells and their serum immunoglobulin concentrations 
are normal suggesting that CVID phenotype may not 
explain the OT recurrences.23 24

Despite the genetically isolated study population, our 
analysis did not identify a uniform genetic cause for 
the deviation in B or T cell maturation, the low IFN-γ 
production or the recurrent OT. Two patients, however, 
shared a rare and potentially deleterious HAVCR2 
c.580G>T variant. HAVCR2 gene encodes for T cell 
immunoglobulin and mucin-domain containing-3 (TIM-
3), a type I transmembrane receptor that was initially 
identified as a marker for IFN-γ secreting T cells.25 
While homozygous TIM-3 deficiency has previously 
been connected with subcutaneous panniculitis-like T 
cell lymphoma, haemophagocytic lymphohistiocytosis, 
lupus nephritis and autoinflammatory myocarditis,26–28 
recent findings support disease-causing potential also 
for a heterozygous HAVCR2 mutation.29 Additionally, the 
deleterious-predicted IRF4 c.263C>A missense variant is 
associated with autoimmune diseases and allergic contact 
dermatitis (p=1.34×10−6 and p=5.68×10−5) in the FinnGen 
cohort. Intriguingly, both HAVCR2 and IRF4 gene expres-
sions are in response to toxoplasmosis.18 30 Further, 
potentially harmful genetic variants in immunologically 
active CD247, CARMIL2, C2, CD40 and ERCC3 genes 
identified in our study are known to regulate immune 
responses or to participate in development of toxoplasma 
immunity.31–35
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In summary, we found evidence supporting the view 
that defective T cell immunity and IFN-γ responses 
possibly caused by genetic mechanisms may at least partly 
predispose to recurrent OT among HIV-negative individ-
uals without additional features of infection susceptibility. 
Although we failed to show a common monogenic caus-
ative mechanism of OT susceptibility, several genetic 
variants with a potential of disturbing the T cell matu-
ration or IFN-γ production were identified. Despite the 
advances in the understanding of OT, large gaps still exist 
in the knowledge concerning the host biological prop-
erties of this common and potentially blinding disease. 
Although our findings are highly suggestive of impaired 
T cell-mediated immunity, research in larger patient 
cohorts is needed to elucidate the biological mechanisms 
and clinical significance of our observations. Further 
scientific questions may also arise from the potential of 
IFN-γ treatment in sight-threatening OT cases.36
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