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Abstract

The treatment of slow and rare transitions in the simulation of complex biomolecular systems 

poses a great computational challenge. A powerful approach to tackle this challenge is the string 

method, which represents the transition path as a one-dimensional curve in a multi-dimensional 

space of collective variables. Commonly used strategies to optimize the pathway have been to 

align the tangent of the string to the local mean force, yielding the minimum free energy path, 

or to the mean drift determined from swarms of short trajectories. Here, a novel strategy is 

proposed, allowing the string to be optimized on the basis of a variational principle involving the 

unidirectional reactive flux expressed in terms of the time-correlation function of the committor. 

The method is illustrated with model systems and probed with the alanine dipeptide as well as a 

coarse-grained model of the barstar-barnase protein complex. It is shown that successive iterations 

variationally refine the trial string toward an optimal transition pathway following the gradient of 

the committor between two metastable states.
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A wide range of computational methods and strategies have been developed to treat slow 

and rare transitions in complex molecular systems1-13. Many key ideas and concepts can be 

established by considering a prototypical model system with two metastable states A and 

B in the context of transition path theory (TPT)14. In particular, one critically important 

quantity is the committor probability that a trajectory initiated at some configuration will 

ultimately reach state B before ever reaching state A15,16. The committor probability is often 

thought to represent an optimal one-dimensional (1D) reaction coordinate (RC) representing 

the progress of the slow A‐B transitions17-19. A number of approaches have been proposed 

to determine the committor probability by shooting trajectories to identify RC in complex 

systems6,8,13,20-25. Alternative strategies to identify the slowest degrees of freedom and 

potentially discover relevant slow coordinates from a set of user-defined collective variables 

(CVs) z also include the time-lagged independent component analysis (TICA)26-28, and 

the spectral gap optimization of order parameters (SGOOP)27,28. More recently, machine 

learning (ML) methodologies appear to provide a promising route to enable the discovery of 

complex RCs that are nonlinear functions of the CVs29-35.

This progress notwithstanding, the lack of sampling can undermine the ability of ML 

methodologies to correctly learn arbitrarily complex nonlinear RCs from high-dimensional 

MD data36,37. To may help circumvent the issue, we sought a way to reduce the 

dimensionality of the problem while preserving its nonlinear character. To this end, a 

powerful framework inspired by the string method is to represent the RC as a 1D curve, 

or chain-of-states, embedded in the high-dimensional space of the CVs7,12,38. According to 

TPT, the “reaction tube” embracing the string is expected to support most of the reactive 

probability current governing the long time relaxation from A to B, and this current is largely 

determined by variations of the committor14. However, present algorithms to optimize a 

string between two metastable states either seek to find the minimum free energy path 
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(MFEP)7, or a path following the local probability current determined from local mean 

drifts calculated from swarms of trajectories12,39. While useful in their own rights, these 

prescriptions to construct the string do not directly provide information about the committor 

probability, and hence, the reactive probability current. Our goal here is to address this 

issue by introducing a novel algorithm to variationally determine an optimal “committor-

consistent” curvilinear string transition pathway in the space of the CVs.

Theoretical Development

Effective dynamical propagator

To reduce the complexity of the problem, one typically seeks to determine the optimal 

pathway between two metastable states within the subspace of reduced dimension spanned 

by a subset of collective variables (CVs), z(x) = (z 1(x), … , zN(x)), i.e., a vector-valued 

function that maps every atomic configuration x of the system on a set of values z(x)39. 

In this context, the string represents the pathway linking states A and B as a discrete “chain 

of states”, i.e., a collection of M images located at positions {z1, … , zM} in the subspace of 

the CVs7,12. Knowledge of the long-time dynamics of the system within the subspace of the 

CVs is critical to characterize the string pathway39. The probability density of the system at 

time t is expressed as ρ(z; t). The forward propagation step (z z′) for the probability density 

from the time t to the time t + τ is,

ρ(z′; t + τ) = ∫ dz Pτ(z′ ∣ z) ρ(z; t),

(1)

where Pτ(z′ ∣ z) is the propagator (also called transfer operator). The dynamics within the 

reduced subspace of the CVs is assumed to be Markovian with a finite lag-time τ, and 

that Pτ obeys the Chapman-Kolmogorov equation, ρ(t + nτ) = Pnτ ⋅ ρ(t), with Pnτ = (Pτ)n. 

The system is also assumed to be in thermodynamic equilibrium and that detailed balance 

is satisfied, Pτ(z′ ∣ z) ρeq(z) = Pτ(z ∣ z′) ρeq(z′). Under these conditions, the effective transfer 

propagator Pτ(z′ ∣ z) yields a self-consistent representation of the dynamics of the system 

within this subspace (closure of the dynamical propagation).

Committor probabilities for two metastable states

Assuming two metastable states A and B, the forward committor q(z) is the sum of the 

probability over all paths starting at z that ultimately reach the state B before ever reaching 

the state A (see Supporting Information). The probability of each of these paths is expressed 

as a product of discrete propagation steps Pnτ⋯Pnτ with lag-time τ, under the restriction that 

the intermediate states resulting from all these steps are neither ∈ A or B. Summing over all 

possible paths, it follows that q(z) can be written as,

q(z) = ∫ dz′ q(z′) Pτ(z′ ∣ z),

(2)
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with the constraints q(z) = 0 if z ∈ A, and q(z) = 1 if z ∈ B, see Eq. (S2) for details. By 

construction, 0 ≤ q(z) ≤ 1. While the equations for the committor probabilities involve only 

the propagator Pτ(z′ ∣ z) for the lag-time τ, the fundamental validity of these equations is 

predicated upon the necessity to satisfy Markovianity of the dynamics as expressed by the 

Chapman-Kolmogorov equation, Pnτ ≡ (Pτ)n.

Net forward flux from reactive pathways

In the context of TPT, one can express the net forward reactive flux from A to B as14,23,39-42

JAB = 1
2τ∫ dz∫ dz′ (q(z′) − q(z))2Pτ(z′ ∣ z) ρeq(z) .

(3)

Equivalently, JAB can also be expressed as a time-correlation function,

JAB = 1
2τ 〈(q(τ) − q(0))2〉

= 1
τ (〈q(0)q(0)〉 − 〈q(τ)q(0)〉) .

(4)

In the following sections, we refer to 〈q(0)q(0)〉 − 〈q(τ)q(0)〉 = C(τ) as the the committor time-

correlation function. While q(z) is a probability, the committor time-correlation function 

in Eq. (4) can be understood by recalling that the CVs are vector-valued functions that 

maps every microscopic configuration x(t) of the system onto a set of values z[x(t)] along a 

dynamical trajectory. Assuming that the function q(z) is known, we write q(z[x(t)]) as q(t) for 

the sake of simplicity. See Supporting Information for additional details.

Basis set expansion of the committor

The quadratic expression for the reactive flux JAB from Eqs. (3), or equivalently Eq. (4), can 

serve as a robust variational principle to optimize a trial committor q(z′). Minimizing the 

quantity JAB with respect to a trial function q(z), δJAB ∕ δq = 0 recovers Eq. (2) that formally 

defines the committor probability Minimization of the steady-state flux JAB defined by Eq. 

(4) for a trial function q with the constraints q(z) = 0 if z ∈ A, and q(z) = 1 if z ∈ B yields the 

correct committor q(z), as defined by Eq. (2). See Eq. (S13) in Supporting Information for 

additional details.

We seek to express the trial committor q(z) in terms of a basis set expansion. However, the 

construction of this trial function requires special care to handle the constraints imposed 

by the boundary states43,44. For our set of basis functions fi(z), we choose Voronoi cells 

supported by a set of M centroids corresponding to the images of a string connecting 

boundary states A and B. We write the committor as
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q(z(x)) = ℎA(z(x)) qA + ℎI(z(x)) ∑
i = 1

M
bi fi(z(x))

+ ℎB(z(x)) qB,

(5)

where qA = 0 and qB = 1, and ℎA, ℎB, and ℎI are indicator functions correspondingly equal to 1 

when the system is in the A, B, or the intermediate region, respectively, and zero otherwise. 

By construction, ℎA + ℎI + ℎB = 1, and all cross products of indicator functions are identically 

zero (ℎAℎI = ℎAℎB = ℎIℎB = 0) because there is no overlap between the three different regions. 

Using the trial function in Eq. (5) we can express the committor time-correlation function as,

〈q(τ) q(0)〉 = ℎI(τ) ∑
i = 1

M
bi fi(τ) + ℎB(τ)

ℎI(0) ∑
j = 1

M
bj fj(0) + ℎB(0) .

(6)

The committor time-correlation function can be expanded as,

C(τ) = 1
2 bt D(0) − D(τ) b + g(0) − g(τ) ⋅ b
+ 〈ℎB(0) ℎB(0)〉 − 〈ℎB(0) ℎB(τ)〉,

(7)

where

Dij(τ) = 〈ℎI(0) ℎI(τ) fi(0) fj(τ)〉
+ 〈ℎI(0) ℎI(τ) fj(0) fi(τ)〉,

(8)

and

gi(τ) = 〈ℎI(τ) ℎB(0) fi(τ)〉 + 〈ℎI(0) ℎB(τ) fi(0)〉 .

(9)

Then, taking the derivative with respect to the basis set coefficients yields the linear system 

of equations,

D(0) − D(τ) b + g(0) − g(τ) = 0,

(10)

with the simple solution,
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b = − D(0) − D(τ) −1 g(0) − g(τ) .

(11)

Substituting the M basis set coefficients {bi} determined from Eq. (11) into Eq. (7) yields 

the optimized committor time-correlation function C(τ) for a given basis set. Because of the 

indicator functions ℎI(0) and ℎI(τ) in D, the basis functions must be chosen such that they 

either fully or at least partially reside in the intermediate region to avoid singularities with 

the matrix inversion. Eq. (11) is a central result of this analysis and enables the optimization 

of a committor-consistent string pathway.

Global optimization of the committor-consistent string

Using the variational principle with the committor time-correlation function, C(τ) it is 

possible to optimize the position of the M images of a string in a committor-consistent 

manner. Adopting a Voronoi basis set expansion, C(τ) depends on the M basis set 

coefficients {b1, … , bM}, and depends also–in a non-linear fashion–on the position of the 

M centroids {z1, … , zM}. Thus, we have the correlation function C(τ; {b1, … , bM; z1, … , zM}). To 

optimize the string according to the variational principle, we must minimize the committor 

time-correlation function with respect to the position of the M images. To this end, we 

have adopted an iterative Monte Carlo procedure, whereby we first determine the basis 

set coefficient via Eq. (11), and then introduce random changes in the position of the 

images that are accepted or rejected on the basis of C(τ; {b1, … , bM; z1, … , zM}). To achieve 

a complete optimization of the pathway and obtain a committor-consistent string, these 

two operations must be repeated iteratively until convergence, i.e., until one cannot further 

minimize C(τ; {b1, … , bM; z1, … , zM}). The optimization process can be initiated with a string 

constructed either from the mean force7, or the mean drift calculated from swarms of 

trajectories12. Further analysis indicates that the resulting pathway is a one-dimensional 

(1D) line going from A to B that follows the committor gradient ∇q(z) in the space of the 

CVs z.

Equilibrium average and enhanced sampling

The committor time-correlation function C(τ) should be averaged over equilibrium initial 

conditions. In practice, it is likely that enhanced sampling techniques would be necessary to 

have an accurate result in the presence of large free energy barriers. An effective strategy 

to improve the conformational sampling relevant to a slow A‐B transition is to introduce a 

biasing potential along a progress path collective variable (PCV) s [z] function, expressed as 

a differentiable function of the CVs z38. Once this enhanced sampling along s [z] is achieved, 

we can generate unbiased trajectories initiated from specific regions at t = 0 according to the 

value of s [z]. The unbiased committor time-correlation function C(τ) can then be expressed 

as,

C(τ) = ∫
0

1
ds ρeq(s) 〈q(τ) q(0)〉(s),
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(12)

where 〈q(τ)q(0)〉(s) is the time-correlation function calculated from an unbiased trajectory 

initiated with s [z(t)] = s at t = 0, and ρeq(s) is the equilibrium probability starting of starting at 

s. See Eqs. (S24) and (S25) for details.

RESULTS AND DISCUSSION

Illustration with one-dimensional double-well potential

We first illustrate the variational framework in the case of a simple one-dimensional double 

well. A simple set of discrete one-hot indicator functions was used. The widths of the one-

hot indicators were automatically assumed by even spacing across the intermediate region. 

The result in Figure 1 shows that the exact committor (black dashed line) is essentially 

reproduced by solving Eq. (11) for the basis functions. An example with Gaussian functions 

is given in Supp Info (Figure S1) to illustrate how basis set and hyperparameter choices 

affect the committor probability.

Illustration with two-dimensional potential

We now illustrate the usefulness of the proposed framework in finding a string that follows 

the dominant reaction pathway in a multi-dimensional space. As a prototypical two-state 

system, we used the two-dimensional (2D) potential shown in Figure 2 that was previously 

studied by Berezhkovskii and Szabo to examine the effect of anisotropic diffusion on the 

reaction rate17. This 2D potential, which we will refer to as the 2D-BS potential, was 

previously used by Tiwary and Berne to illustrate the SGOOP method45 and by Roux to 

illustrate the committor variational principle39. Here, the string is assumed to be a straight 

line with one-hot indicator functions evenly spacing across the intermediate region. The 

amplitude of the basis set coefficients is determined by solving Eq. (11).

To demonstrate the effect of anisotropic diffusion, we considered three conditions: 

Dy ∕ Dx = δ = 0.1, 1, and 10. In each case, a different optimal reaction direction about the 

saddle region was discovered (depicted by the dashed lines in Figure 2, top left). For the 

analysis and computation of the committors, a lag time τ of 1 time step was selected. The 

boundary conditions for where q = 0 or 1 were defined by ellipses at the well minima such 

that the trajectory spends approximately 50% of the time within the ellipses and the other 

50% of the time outside of the region.

Considering first a straight pathway, the committor time-correlation function is computed by 

Eq. (7) as a function of the angle of the path with respect to the x-axis (Figure 2 A). The 

minimum correlation function value is taken to be the best angle for the reaction pathway 

through the saddle point (Figure 2 C). From a Voronoi tessellation of the 2D space built 

from the images of the straight pathway, the estimated committor for δ = 1 is determined 

(Figure 2 B). Considering now a curvilinear pathway, we determined the optimized string 

for the three diffusion cases (Figure 3). The positions of the images of the curvilinear 

string were optimized by variationally minimizing the committor correlation function using 

Monte Carlo sampling, solving Eq. (11) and evaluating Eq. (7) at every iteration. The 
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curvilinear strings cross the transition state region differently depending on the parameter δ. 

The minimum free energy path (MFEP), used as initial string, is shown in black. This path is 

valid only in the case of isotropic diffusion with δ = 1. When δ ≠ 1, the committor-consistent 

optimized string departs from the MFEP.

The string method aims to determine a curvilinear RC linking state A and B. However, 

the criterion to determine the most relevant curve is not immediately clear. Should the best 

choice of RC be the 1D coordinate that yields the correct transition rate? Or should it 

be the 1D coordinate that captures the most representative events at the kinetic bottleneck 

for a productive transition? In fact, identifying the most relevant and useful RC is not 

straightforward, even with knowledge of the committor q(z) and the reactive forward flux, 

JAB 17, or extensive information about the transition path ensemble6,8,13,14,20-25,46. The 2D-

BS potential provides a great opportunity to illustrate these fundamental issues. Depending 

on the assumptions about the local tangent of the string at z, different curvilinear pathways 

can be constructed to link states A and B. For example, the tangent to the string may follow 

the mean force (the gradient of the PMF), − ∇W (z). This prescription generates the MFEP7. 

Alternatively, the tangent to the string could follow the gradient of the committor, ∇q(z), the 

reactive flux density JAB(z) = D∇q(z), or the mean drift from swarms of trajectories 〈Δz(τ)〉12.

To examine the different pathways across the saddle point, we express the potential near 

the top of the barrier in terms of the Hessian matrix, V (see Supplementary Information for 

more details). Fig. 4 illustrates the principal directions computed for these different cases. 

The two principal axes of the 2D potential defining the tangent of the MFEP are determined 

from the right-eigenvector of the matrix V. The gradient of the committor and the reactive 

flux JAB follows the right-eigenvector of the matrices DV and VD, respectively47. The tangent 

of committor-consistent optimized string points in the direction of ∇q(z). This is a natural 

outcome of constructing Voronoi cells basis functions from the images along the string used 

as centroids because it yields isocommitor surfaces that are essentially orthogonal to the 

local tangent. Interestingly, the mean drift from the swarms of trajectories 〈Δz(τ)〉 (blue 

arrow) and the reactive flux JAB = D∇q(z) (purple arrow) both point in the direction of the 

right-eigenvector of the matrix DV at the saddle point.

While these different pathways provide different information about the mechanism of 

the reaction, they do not yield an effective 1D RC. For instance, in the case of a 

multidimensional activated process controlled by diffusion, using a 1D coordinate parallel to 

the gradient of the committor at the saddle point yields a result that is consistent with the 

multidimensional Kramers-Langer rate theory17,48. Projection onto any other 1D coordinate 

leads to an incorrect result. Furthermore, it was shown recently that ∇q(z†) indeed represents 

the best choice to determine the direction of an effective 1D reaction coordinate19. An 

alternative strategy to determine the committor is to monitor the outcome of multiple 

shooting trajectories initiated from different positions near the transition state8,13,21,22. See 

Supplementary Information for more details.

He et al. Page 8

J Phys Chem Lett. Author manuscript; available in PMC 2024 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alanine dipeptide and enhanced sampling

The simulation used for the study of the 2D-BS potential was sufficiently long to provide 

an equilibrium sampling. However, this may not always be feasible due to the long-lived 

timescales of many systems of interest and compounded by the large computational 

overhead in order to simulate the rare events. Here we apply the committor-consistent 

string method to the N-acetyl-N-methyl-L-alanylamide molecule, commonly known as the 

alanine dipeptide (or dialanine), to study the conformational transition between C7eq and C7ax

in vacuum at room temperature.

To initiate the pathway optimization, enhanced sampling was performed with an adaptive 

biasing force acting along an initial string, used to define the progress collective variable 

(PCV) s38. Two different strings were considered to define the PCV in the ϕ − ψ plane: the 

MFEP from a 5 μs unbiased trajectory and the mean drifts from swarms of trajectories12. 

Nevertheless, these two strings are fairly similar qualitatively, and also yield similar values 

of ΔG (2.3 kcal/mol for the black string and 1.9 kcal/mol for the red string shown in Supp. 

Fig. S5). Then, defining the variable s between the strings from the above two methods, 

a reaction tube of starting points was chosen from the biased trajectories to run additional 

unbiased simulations for the computation of q (Supp. Fig. S6). The optimized string after 20 

iterations is shown in Fig. 5.

Because of the isotropic nature of the ϕ and ψ dihedral angles, the committor-consistent 

string remained close to the initial MFEP string. The committor q(z) calculated along the 

optimized string from Eqs. (7) and (11) is very similar to that calculated from the PMF along 

the PCV. In particular, the halfway crossing at q(z) = 0.5 agrees relatively well, although with 

a somewhat steeper slope. Compared to the committor calculated from the PCV by the string 

method with swarms of trajectories, the top of the free energy barrier is slightly shifted, 

which is expected since the initial strings were different.

Coarse-grained model of barstar-barnase binding

The committor-consistent string method was used to examine the kinetics of protein–protein 

association and dissociation in the context of the barstar-barnase complex. The simulations 

are based on a coarse-grained (CG) model of the complex developed previously49. Briefly, 

the CG representation used in a previous study maps each amino acid residue as a single 

bead with its mass and position corresponding to the Cα carbon atom. Attractive Lennard-

Jones 6-12 potentials are used to represent four pairwise contacts of the native complex 

to simulate the protein-protein association. Using a long Langevin dynamics simulation 

generated previously49, the string was optimized within a subspace of two order parameters, 

namely, the center-of-mass (COM) distance and the root-mean-square deviation (RMSD) of 

the contact residues. The optimization was initiated by starting from a straight path as shown 

in Fig. 6. Monte Carlo with random moves over the two order parameters (0.05 × 0.05) was 

carried out for a total of 10 iterations until convergence. Supp. Table S1 gives the rates of 

association and dissociation computed for different lag times τ. The rate constants kon and 

koff estimated from the steady-state reactive flux with the committor-consistent string at a 

lag time τ of 15 ns are 2.41 × 1013Å3 s−1 and 3.47 × 107 s−1, respectively, which are close to 
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the rates of 2.31 × 1013Å3 s−1 and 2.70 × 107 s−1 from the MSM and Perron-cluster cluster 

analysis (PCCA) analysis with the six order parameters at the optimal MSM lag time of 

12 ns49. The kon and koff values here are also close the MSM rates of 2.36 × 1013Å3 s−1 and 

2.74 × 107 s−1, respectively, with two order parameters at an optimal lag time of 12 ns.

CONCLUSION

An extension of the string method that produces an optimal reaction pathway following 

the gradient of the committor by variationally minimizing a committor time-correlation 

function was proposed. By representing the RC as a 1D curvilinear path embedded in the 

space of the CVs, the string provides a natural framework that simultaneously reduces 

the high dimensionality of the problem while retaining nonlinearity. By virtue of the 

Voronoi tessellation, the tangent of the optimized path from the committor-consistent string 

method follows the gradient of the committor ∇q. The committor probability is broadly 

viewed as an ‘ideal’ RC18. Furthermore, transition path analysis of two-state systems 

showed that the ideal 1D RC in a reduced subspace of coordinates is directed along the 

gradient of the committor ∇q19, a choice that is also consistent with the multidimensional 

Kramers-Langer theory17,48. This illustrates the clear advantage of a committor-consistent 

string over a more conventional MFEP-based string following the local mean force7. The 

images of the committor-consistent curvilinear string can be optimized by a Monte Carlo 

annealing method. In this algorithm, the string images are moved randomly in the CVs 

space and accepted or rejected based on the difference in likelihood. The present framework 

bears some similarities with previous methods8,20-22,50,51. It is closest in spirit with the 

nonlinear RC analysis proposed by Bolhuis and coworkers whereby a string pathway is 

optimized via a maximum likelihood criterion to model the committor data obtained from 

a path sampling simulation13. It might be possible to combine the two approaches in a 

unifying framework to determine an optimal committor-based pathway. Moreover, recent 

developments in ML techniques may help discovering the optimal multidimensional space 

of CVs29-35. Additional developments shall also consider the treatment of systems with 

more than two metastable states. Efforts in this direction would address the question as to 

whether we can predict the correct order of states through which the string should pass, and 

whether we can discover more than one important reaction pathway.

Methods

Brownian dynamics simulations were performed for the 1-dimensional double well and 

the Berezhkovskii-Szabo potential using in-house scripts. The NAMD software52 was used 

to run Langevin dynamics and perform PCV in vacuum for alanine dipeptide and CG 

barstar-barnase. The CHARMM force field53 was used in both cases. For alanine dipeptide, 

an unbiased Langevin dyanmics simulation was performed for a simulation time 5 μs with a 

time step of 0.5 fs to generate an initial MFEP path. Then, 4000 trajectories were generated 

using PCV at a time step of 0.5 fs for 100 ps. For the CG barstar-barnase, 25 independent 

trajectories were generated of 1 μ each with a time step of 1 fs. The PyEMMA software54 

was used to build the 2-dimensional MSM for comparison with our string method. The 
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nearest-neighbor regression algorithm in Scikit-learn55 was used to produce a continuous 

range of q’s on the potential surface of Figs. 3 and 4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of a one-dimensional double well using using ten one-hot indicator functions and 

the resulting committor probability. The boundaries near the well minima where q = 0 or 1 

were defined to be within 1 kBT  of the well depth, or at x = − 5.31 and x = 5.31. The black 

dashed line is the exact committor calculated numerically from the double well potential.
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Figure 2: 
Berezhkovskii-Szabo potential and correlation functions. (A) The 2D-BS potential surface 

with dashed lines showing the angle of the optimal reaction pathway for the diffusion 

cases obtained using a basis set of 9 Voronoi in the intermediate region: θ = 6° for δ = 10, 

θ = 28° for δ = 1, and θ = 73° for δ = 0.1. (B) Voronoi tessellation of the straight pathway for 

δ = 1. The Voronoi cells are colored by the value of the committor, sequentially increasing 

from q = 0 (blue, bottom left) to q = 0 (white, middle region) to q = 1 (red, top right). (C) 

Dependence of the time-correlation function on the angle θ for δ = 10 (left), δ = 1 (middle), 

δ = 0.1 (right). The minimum of the correlation function of each diffusion case is indicated 

by the blue dot and taken to be the angle of the optimal reaction pathway at the saddle point.
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Figure 3: 
String obtained by variationally minimizing the correlation function with Monte Carlo 

sampling and the resulting committor probability for three diffusion conditions: (A) for 

δ = 0.1, (B) for δ = 1, and (C) for δ = 10. For all three cases, optimization was performed 

by starting from the MFEP string shown as a black curve; a box of size 0.05 × 0.05 was 

used to sample around each image position in the 2D plane. One Monte Carlo iteration cycle 

comprises moving the image, and then computing the committor-correlation function. Once 

a move is accepted for a new image position that results in a lower committor-correlation 

function value, then the Monte Carlo sampling for that image stops and proceeds to the 

next image. If after 1000 moves none were accepted, then that image in the iteration cycle 

is assumed to be converged and we proceed to sample for the next image. For δ = 0.1, 1, 

and 10, the Monte Carlo procedure required 56, 25, and 42 iterations, respectively, to reach 

convergence.
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Figure 4: 
Comparison of selected eigenvectors computed from the diffusion matrix and Hessian. (A) 

δ = 0.1. (B) δ = 1. (C) δ = 10. For each diffusion condition, we show the directions of the 

principal component of the Hessian matrix V (green), the overall reactive flux JAB (purple), 

the mean drift 〈Δz(τ)〉 (blue), and ∇q(z) (red).
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Figure 5: 
Variational string method implemented for the dialanine. The initial string (black) consists 

of straight paths connecting the local minima while the final string (red) is obtained by 

variationally minimizing the committor-correlation function. The committor probability of 

this final string (red) increases from 0 to 1 with a steep curve at the transition barrier. The 

position of the images was optimized by minimizing the committor time-correlation function 

using the iterative Monte Carlo procedure with random moves over a box 1.0° × 1.0°. The 

Monte Carlo optimized string and q is compared with results from PCV using a string 

following the mean force (blue) and string method with swarms of trajectories (gray).
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Figure 6: 
Variational string method implemented for the barnase-barstar complex. Left: The initial 

string (black) consists of straight paths connecting the local minima while the final string 

(red) is obtained by variationally minimizing the committor-correlation function. Right: The 

committor probability of the string increases from 0 to 1 relatively smoothly.
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