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ABSTRACT
Previous systematic literature reviews of rotavirus genotype circulation in Europe and the Middle 
East are limited because they do not include country-specific prevalence data. This study docu
ments country-specific evidence on the prevalence of rotavirus genotypes in Europe and the Middle 
East to enable more precise epidemiological modeling and contribute to the evidence-base about 
circulating rotavirus genotypes in the post-vaccination era. This study systematically searched 
PubMed, Embase and Scopus for all empirical epidemiological studies that presented genotype- 
specific surveillance data for countries in Europe and the Middle East published between 2006 and 
2021. The STROBE checklist was used to assess the quality of included studies. Proportional meta- 
analysis was conducted using the generic inverse variance method with arcsine transformation and 
generalized linear-mixed models to summarize genotype prevalence. Our analysis estimated the 
genotype prevalence by country across three date categories corresponding with rotavirus seasons: 
2006–2010, 2011–2015, 2016–2021. A total of 7601 deduplicated papers were identified of which 88 
studies were included in the final review. Rotavirus genotypes exhibited significant variability across 
regions and time periods, with G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and, to a lesser extent G12P 
[8], being the most prevalent genotypes through different regions and time-periods. Uncommon 
genotypes included G3P[9] in Poland, G2P[6] in Iraq, G4P[4] in Qatar, and G9P[4] as reported by the 
European Rotavirus Network. There was high genotype diversity with routinely identified genotypes 
being G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]; there was high variability across time periods and 
regions. Continued surveillance at the national and regional levels is relevant to support further 
research and inform public health decision-making.

SUMMARY
This study synthesizes data from rotavirus surveillance studies to characterize genotype-specific pre
valence of rotavirus in Europe and the Middle East following the licensure of rotavirus vaccines in 2006. In 
line with previous pan-European studies, results highlight the lack of a single dominant genotype across 
this time period. There was high genotype diversity with G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8] being 
the most commonly identified genotypes through different regions and time-periods.
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Background

Rotavirus infections are one of the world’s leading causes of 
severe diarrhea and dehydration among children under five 
years of age.1 Transmitted through an oral-fecal route, rota
viruses are highly contagious and estimated to infect nearly all 
children by the age of five.1

Rotavirus contains a genome composed of 11 segments of 
double-stranded RNA that encode six structural proteins 
(VP1–VP4 and VP6–VP7) and six nonstructural proteins 
(NSP1–NSP6).2,3 Previous studies estimating the genotype- 
specific prevalence of rotavirus have mainly used glycoprotein 
(G) and protease-sensitive protein (P) type data.4–6 These 

genotype classifications are largely based on two outer viral 
proteins: VP7 and VP4, respectively. G genotypes refer to the 
glycosylated VP7 protein on the virus’s surface whereas 
P genotypes refer to the protease-sensitive VP4 spike protein 
on the virus’s surface.5

Since 2006, two vaccines, Rotarix™ (RV1) and RotaTeq™ 
(RV5), have been available globally. Rotarix™, a monovalent 
vaccine developed by GSK Biologicals, Belgium, is derived 
from a single common genotype of human rotavirus and con
tains G1P[8]. A full course of Rotarix™ consists of two doses 
given orally, 4 weeks apart, between 6 and 24 weeks of age.7 

RotaTeq™ is a pentavalent vaccine developed by Merck & Co., 
Inc., Kenilworth, NJ, USA, containing five human bovine 

CONTACT Cristina Carias dasilvcr@merck.com Merck & Co., Inc., 351 N Sumneytown Pike, North Wales, PA 19454, USA.
Supplemental data for this article can be accessed on the publisher’s website at https://doi.org/10.1080/21645515.2024.2389606

HUMAN VACCINES & IMMUNOTHERAPEUTICS     
2024, VOL. 20, NO. 1, 2389606 
https://doi.org/10.1080/21645515.2024.2389606

© 2024 Merck & Co., Inc., Rahway, NJ, USA. Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the 
posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

https://doi.org/10.1080/21645515.2024.2389606
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21645515.2024.2389606&domain=pdf&date_stamp=2024-09-07


reassortants G1, G2, G3, G4 and P[8].8 RotaTeq™ is adminis
tered orally and consists of three doses between the ages of 6 
and 32 weeks.7

A systematic literature review performed in the early post- 
licensure period synthesized global longitudinal data from 
2006 to 2010, and suggested that, in this period, genotype 
prevalence data did not show any consistent pattern indicative 
of selection pressure resulting from vaccine use and that six 
genotype combinations were mostly responsible for human 
rotavirus infections globally (G1P[8], G2P[4], G3P[8], G4P 
[8], G9P[8] and G12P[8]).5 A more recent review showed 
a transient increase of G2P[4] following recent vaccine 
introduction.6 However, the latter did not present results by 
country.

Since the last country-specific systematic review in 2010,5 

genotyping studies have been published. In this study, we 
synthesized available evidence using meta-analysis to provide 
an updated view of rotavirus genotype circulation in the post- 
licensure period (2006–2021) by country and region. This 
systematic literature review and meta-analysis provides the 
latest rotavirus genotype circulation by country in Europe 
and the Middle East to enable more precise epidemiological 
modeling and contribute to the evidence-base about circulat
ing rotavirus genotypes in the post-vaccination era.

Methods

This systematic literature review was undertaken according to 
the principles of systematic reviews established in the 
Cochrane Handbook and guidance document published by 
the Center for Reviews and Dissemination (CRD) of York 
University, United Kingdom. We used the PRISMA checklist 
and guidelines for systematic reviews to report results.9

Data sources and searches

We systematically searched PubMed, Embase and Scopus for 
all empirical epidemiological studies presenting genotype- 
specific prevalence of rotavirus in countries and regions after 
rotavirus vaccine licensure in 2006 (search strategies in 
Appendix I). We also searched Google and Google Scholar to 
identify gray literature, such as surveillance reports.

The population of interest encompassed all people living in 
Europe and the Middle East (Table 1). The primary outcome 

was the prevalence of circulating genotypes after the licensure 
of rotavirus vaccines. Secondary outcomes included the pre
valence of genotypes by region. Studies were eligible for inclu
sion if they were empirical epidemiological studies, including 
longitudinal studies, and cross-sectional studies from multiple 
time points within the same setting. We included all studies 
meeting these inclusion criteria and that were published 
between January 2006 and up to 25 August 2021. Records in 
languages other than English were eligible for inclusion and 
were translated using Google Translate.10

Studies were excluded if their study design deviated from 
empirical epidemiological research, or they did not provide 
surveillance data on observed genotype circulation. 
Additionally, we excluded editorials, published abstracts, con
ference proceedings, and studies that were inaccessible. For 
feasibility, and to select the most representative studies, we 
excluded studies lacking at least six consecutive months of 
surveillance. To maximize the number of studies included 
while maintaining an acceptable statistical sample,11 we 
excluded studies with fewer than 30 rotavirus positive samples. 
Studies published before 2006 or studies that did not contain 
extractable post-2006 data were also excluded.

Study selection

An initial screening of titles and abstracts was performed by 
one reviewer to eliminate studies that did not mention rota
virus genotype prevalence. To minimize bias, two reviewers 
subsequently evaluated the titles and abstracts of all studies in 
accordance with the established inclusion and exclusion cri
teria. Any titles and abstracts that did not clearly meet our 
exclusion criteria were considered for a full-text review, which 
was carried out independently by two reviewers. Any discre
pancies were resolved through discussion between the two 
reviewers.

Data extraction

A data extraction form was created to collate relevant data, 
including circulating genotypes and age distribution data. The 
form was tested by two researchers on one study to confirm 
that it effectively captured the relevant data. Subsequently, one 
reviewer conducted the data extraction, and a second reviewer 

Table 1. Inclusion and exclusion criteria.

PICOTS Descriptions

Inclusion criteria
Population(s) All populations in Europe and the Middle East
Interventions All rotavirus vaccines
Comparators Not applicable
Outcomes ● Primary outcome: prevalence of rotavirus genotypes after vaccine introduction

● Secondary outcome: genotype dominance by geographic region (i.e. continent or country after vaccination)
Timing All studies with data collection period between 2006 and August 2021
Study design Empirical epidemiological studies (sample serology testing)

Exclusion criteria
Any study with the following 

characteristic
Studies published before 2006 or that did not contain extractable post-2006 data
Less than 30 positive rotavirus samples
Countries not in Europe and the Middle East
Studies lacking at least six consecutive months of surveillance or studies with two cross-sections fewer than not 6 months apart
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independently cross-checked the extracted data. Any discre
pancies were resolved through discussion.

Quality assessment of included studies

The Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) checklist was used to assess the qual
ity of the observational studies included.12 All studies that met 
the inclusion criteria were reviewed with the STROBE check
list for quality appraisal by one reviewer. Each completed 
STROBE checklist was further reviewed by a second indepen
dent reviewer.

Analyses

We examined rotavirus prevalence in five regions. European 
regions were categorized as Western Europe, Eastern Europe, 
Northern Europe, Southern Europe, as defined by the United 
Nations Statistical Division.13 Countries belonging to the 
Middle East were defined as per the United Nations World 
Tourism Organization14 (see Appendix II). To facilitate the 
comparison of data while maintaining a level of granularity, we 
summarized the genotype-specific prevalence of rotavirus both 
at the country and regional levels across three time spans: 
2006–2010, 2011–2015, 2016–2021. For studies with two over
lapping time periods, we categorized the studies based on 
rotavirus seasons. For example, Spring 2006–Summer 2010; 
Autumn 2010–Winter 2015; Spring 2015–25 August 2021.

For each available combination of country (or region), time 
period, and rotavirus genotype, we conducted meta-analyses to 
estimate overall prevalence of the genotype. If there was only 
one prevalence record available, we calculated the overall pre
valence based on that single record. For each study, we 
required information on the total number of samples tested 
and the number of samples positive for each genotype. The 
individual yearly estimates of genotype prevalence were incor
porated into the meta-analysis. In cases where a study 
lacked year- or season-specific data and had data overlapping 
with predefined periods, we assigned the study to the period 
with the most overlapping years of data collection. To avoid 
double counting, because investigators may submit national 
results to regional networks and both may be summarized 
independently, we assessed multi-country pan-European stu
dies and reports using a narrative synthesis and did not include 
the data in our meta-analysis. Additionally, studies that 
reported only G or P types were reported narratively and not 
included in our meta-analysis.

We conducted proportional meta-analysis using random 
effects models because we assumed that within each country, 
region, and time-period the true underlying prevalence will 
differ between studies conducted in different populations and 
settings.15 To conduct the meta-analysis, we applied the arc
sine transformation to each proportion (p) (arcsin(√p)), used 
the generic inverse variance method to pool the transformed 
proportions and back-transformed the pooled estimate to the 
original scale.16 We estimated the between-study variance 
using the restricted maximum-likelihood estimator,17 and cal
culated the 95% confidence intervals for the random effects 
estimate using the DerSimonian and Laird method.18 To assess 

the sensitivity of our method, we also conducted a meta- 
analysis using generalized linear-mixed models,16 estimating 
the between-study variance using the maximum-likelihood 
estimator and again calculating the 95% confidence intervals 
for the random effects estimate using the DerSimonian and 
Laird method15,17,18 Heterogeneity was evaluated using the 
I-squared (I2) statistic. We interpreted the I2 statistics follow
ing guidelines in the Cochrane Handbook with 0%–40%, 30%– 
60%, 50%–90% and 75%–100% suggesting unimportant, mod
erate, substantial and considerable heterogeneity respectively.9 

All analyses were conducted using R version 4.2.319 and the 
meta package version 6.5-0.20

Results

Search results

The search of electronic databases identified 7,601 dedupli
cated papers (Figure 1). We excluded 7,479 studies during title 
and abstract screening because they did not include data in the 
country or region of interest or were not empirical epidemio
logical studies reporting observed genotype circulation data. In 
total, 122 records appeared to meet the inclusion criteria dur
ing title and abstract screening of which 119 papers were able 
to be retrieved to proceed with full text screening. Three 
studies could not be retrieved through a review of databases 
and online search engines and were subsequently excluded. 
Other records were excluded following full text screening 
because: 1) small sample size (<30) (n = 8); 2) not empirical 
epidemiological studies reporting observed genotype circula
tion data (n = 8); 3) contained data that could not be extracted 
post 2006 (n = 7); 4) not a full paper (n = 3); 5) wrong setting 
(n = 3); 6) wrong study design (n = 2); 7) less than six months 
consecutive data (n = 1). In total, eighty-seven empirical epi
demiological studies met the inclusion criteria and were 
included in the review in addition to one report identified as 
gray literature (see Appendix III for a visual representation on 
data availability). For ease of readability, we present meta- 
analysis results using the generic inverse variance method 
with arcsine transformation. Results of this method were lar
gely consistent with meta-analysis results using the generalized 
linear-mixed models, which are available upon request.

Eastern Europe

For the period 2006–2010, genotype prevalence data were 
available from 3,114 positive rotavirus samples, taken from 
20 records from eight studies, across seven countries 
(Figure 2a).21–28 Based on within-country meta-analyses, the 
most common rotavirus genotypes in the region were G4P[8] 
and G1P[8], representing 30% (95% CI: 17%, 45%) and 27% 
(95% CI: 17%, 38%) of circulating genotypes, respectively.

G4P[8] was the most prevalent genotype in Belarus and 
Hungary, representing 58% (95% CI: 48%, 68%) and 33% 
(95% CI: 29%, 38%) of genotypes, respectively. In both 
countries G1P[8] was the second most common genotype, 
with a prevalence of 14% (95% CI: 8%, 21%) in Belarus and 
30% (95% CI: 26%, 34%) in Hungary. G1P[8] was the most 
common genotype in the Russian Federation with 42% 
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(95% CI: 20%, 65%), followed by G4P[8] with 38% (95% CI: 
15%, 65%). G1P[8] was also the most dominant in Ukraine 
with 37% (95% CI: 20%, 56%), followed by G3P[8] with 
17% (95% CI: 0%, 50%). G2P[4] was the most prevalent 
genotype in Bulgaria 36% (95% CI: 18%, 57%), followed by 

G1P[8] with 25% (95% CI: 3%, 59%). In Poland, G3P[9] 
was the predominant genotype at 80% (95% CI: 67%, 90%). 
G9P[8] was most common in Romania with 34% (95% CI: 
30%, 39%), followed by G4P[8] with 26% (95% CI: 
22%, 30%).

Figure 1. PRISMA flow diagram.

a. 2006-2010 b. 2011-2015 c. 2016-2021 

Figure 2. Prevalence of the most common rotavirus genotypes in Eastern Europe.
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For the period 2011–2015, genotype prevalence data were 
available from 2,887 positive rotavirus samples available from 
21 records from eight studies, across four countries 
(Figure 2b).21,22,25,26,29–32 Based on this data, the most com
mon rotavirus genotype in the region was G4P[8], represent
ing 56% of circulating genotypes (95% CI: 46%, 66%), followed 
by G1P[8], with 16% prevalence (95% CI: 11%, 23%).

G4P[8] was the most prevalent genotype in the Russian 
Federation and Ukraine with 63% (95% CI: 50%, 76%) and 
59% (95% CI: 47%, 70%) prevalence, respectively. G1P[8] was 
the second most common genotype in both countries, repre
senting 20% (95% CI: 9%, 33%) of genotypes in the Russian 
Federation and 13% (95% CI: 7%, 21%) in Ukraine. In Belarus, 
G3P[8] was the most prevalent genotype with 43% (95% CI: 
7%, 85%), followed by G4P[8] with 39% (95% CI: 12%, 71%). 
In Hungary G9P[8] was the most dominant genotype with 
43% (95% CI: 38%, 48%), followed by G1P[8] with 34% (95% 
CI: 30%, 39%).

Lastly, for the period 2016–2021, genotype prevalence data 
were available from two countries, representing 3,663 positive 
rotavirus samples available from 8 records from six studies 
(Figure 2c).30,33–37 Based on this data, the most common 
rotavirus genotypes in the region were G1P[8] and G9P[8], 
showing similar regional prevalences of 25% (95% CI: 10%, 
44%) and 21% (95% CI: 9%, 37%), respectively. G1P[8] was the 
most dominant genotype in Czechia with 57% (95% CI: 38%, 
75%), followed by G9P[8] with 10% (95% CI: 2%, 21%). G9P 
[8] was the most dominant genotype in the Russian Federation 
with 30% (95% CI: 13%, 51%), followed by G4P[8] with 27% 
prevalence, respectively (95% CI: 11%, 46%).

The Russian Federation was the only country included in 
meta-analyses across all three time periods. During these per
iods the dominant genotype varied. In 2006–2010, it was G1P 
[8] and G4P[8] with 42% and 38% prevalence, respectively. 
From 2011–2015, G4P[8] emerged as the dominant genotype 
with 63% prevalence, followed by G1P[8] with 20%. While 
from 2016–2021, G9P[8] emerged as the most prevalent geno
type with 30% prevalence, followed by G4P[8] with 27%.

Northern Europe

For the period 2006–2010, genotype prevalence data were 
available from 1,525 positive rotavirus samples, taken from 

11 records from six studies, across four countries 
(Figure 3a).38–43 Based on this data, the most common rota
virus genotypes in the region were G1P[8] and G2P[4], repre
senting 49% (95% CI: 30%, 69%) and 13% (95% CI: 3%, 28%) 
of genotypes, respectively.

G1P[8] had the highest prevalence in three countries, with 
58% prevalence (95% CI: 24%, 89%) in Finland, 68% (95% CI: 
51%, 82%) in Ireland and 49% (95% CI: 3%, 97%) in Sweden. 
G2P[4] was the second most common genotype in Sweden 
with a prevalence of 23% (95% CI: 0%, 84%). In Estonia, G2P 
[4] was the most common genotype with a prevalence of 43% 
(95% CI: 1%, 94%), followed by G4P[8] with 19% (95% CI: 
0%, 68%).

For the period 2011–2015, genotype prevalence data were 
available from 4,232 positive rotavirus samples, taken from 15 
records from eight studies, across eight countries 
(Figure 3b).39,44–50 Based on this data, the most common 
rotavirus genotypes across all eight countries were G2P[4] 
and G1P[8], with a pooled prevalence across all analyzed 
samples of 25% (95% CI: 14%, 38%) and 23% (95% CI: 15%, 
31%), respectively.

G1P[8] was the most prevalent genotype in Denmark and 
Finland, with prevalences of 42% (95% CI: 39%, 46%) and 30% 
(95% CI: 24%, 35%), respectively. In Denmark, the second 
most common genotypes were G4P[8] and G9P[8], each with 
a prevalence of 17% (95% CI: 15%, 20%). In Finland, G2P[4] 
was the second most common genotype with a prevalence of 
22% (95% CI: 17%, 26%). G4P[8] was the most prevalent 
genotype with a prevalence of 44% (95% CI: 39%, 50%) in 
Estonia, 43% (95% CI: 27%, 61%) in Ireland, and 60% (95% CI: 
56%, 65%) in Latvia. The second most prevalent genotype in 
both Estonia and Ireland was G1P[8] with prevalences of 30% 
(95% CI: 25%, 35%) and 35% (95% CI: 20%, 53%), respectively. 
In the United Kingdom of Great Britain and Northern Ireland, 
G1P[8] and G2P[4] were the most prevalent genotype with 
20% (95% CI: 8%, 35%) and 16% (95% CI: 4%, 34%) preva
lence, respectively. In Sweden, G2P[4] was the most prevalent 
genotype with a prevalence of 56% (95% CI: 34%, 77%).

From 2016 to 2021, genotype prevalence data were avail
able from 1,810 positive rotavirus samples, taken from 
15 records from eight studies, across five countries 
(Figure 3c).39,44–46,48,51–53 Based on this data, the most com
mon rotavirus genotypes in the region were G2P[4] and G1P 

a. 2006-2010 b. 2011-2015 c. 2016-2021 

Figure 3. Prevalence of the most common rotavirus genotypes in Northern Europe.
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[8], with a prevalence of 23% (95% CI: 12%, 35%) and 18% 
(95% CI: 8%, 30%), respectively.

G2P[4] was the most common genotype in Ireland, the 
United Kingdom of Great Britain and Northern Ireland and 
Sweden, with prevalences of 29% (95% CI: 15%, 46%), 45% 
(95% CI: 41%, 48%) and 56% (95% CI: 34%, 77%), respectively. 
In Ireland and Sweden, the second most common genotype 
was G1P[8] with a prevalence of 27% (95% CI: 12%, 46%) and 
14% (95% CI: 2%, 36%), respectively. In the United Kingdom 
of Great Britain and Northern Ireland the second most com
mon genotype was G9P[8] with a prevalence of 18% (95% CI: 
16%, 21%). In Estonia, G9P[8] was the most common geno
type with 41% (95% CI: 32%, 51%). In Finland, G12P[8] was 
the most prevalent genotype with 28% (95% CI: 7%, 55%), 
followed by G9P[8] with a prevalence of 20% (95% CI: 
15%, 25%).

Three countries, Estonia, Ireland and Finland, were 
included in meta-analyses across all three time periods. In 
Estonia, G2P[4] was the dominant genotype from 2006 to 
2010 with 43% prevalence, followed by G4P[8] with 19% pre
valence. From 2011–2015, G4P[8] emerged as the dominant 
genotype at 44% prevalence followed by G1P[8] with 30% 
prevalence. Between 2016–2021, G9P[8] was the most com
mon genotype, with 41%, followed by G4P[4] with 12% pre
valence. In Finland, G1P[8] was the most prevalent genotype 
from 2006 to 2010 at 58% prevalence. Although remaining the 
most prevalent, the dominance of G1P[8] decreased during 
2011–2015 to 30%, while and G2P[4] increased to 22% as 
the second most prevalent genotype. During 2016–2021, 
G12P[8] was the most observed genotype at 28%, followed by 
G9P[8] at 20%. In Ireland, G1P[8] was the most prevalent 
genotype from 2006 to 2010, with a prevalence of 68%. From 
2011 to 2015, G1P[8] dropped to second most prevalent at 
35%, behind G4P[8] with a 43% prevalence. From 2016–2021, 
G2P[4] led with a 29% prevalence.

Southern Europe

For the period 2006–2010, genotype prevalence data were avail
able from 5,628 positive rotavirus samples, taken from 26 
records from 14 studies, across five countries (Figure 4a).54–67 

Based on this data, the most common rotavirus genotypes in the 
region were G1P[8] and G9P[8], showing 42% (95% CI: 33%, 
52%) and 14% (95% CI: 7%, 23%) prevalence.

In Albania, G1P[8] and G4P[8] were the most prevalent 
genotypes with 37% (95% CI: 31%, 44%) and 37% (95% CI: 
25%, 51%) prevalence, respectively. G1P[8] was also the most 
prevalent genotype in Italy and Slovenia with 47% (95% CI: 
39%, 56%) and 66% (95% CI: 46%, 84%) prevalence. In Greece, 
G4P[8] was the most prevalent genotype with 49% prevalence 
(95% CI: 10%, 88%), followed by G1P[8] with 22% (95% CI: 
4%, 50%). While in Spain, G9P[8] was the most prevalent 
genotype with 44% (95% CI: 15%, 75%) prevalence, followed 
by G1P[8] with 38% (95% CI: 14%, 65%).

For the period 2011–2015, genotype prevalence data were 
available from 4,929 positive rotavirus samples, taken from 
16 records from nine studies, across four countries 
(Figure 4b).56,60,64,68-73 Based on this data, the most common 
rotavirus genotypes in the region were G1P[8] and G4P[8], 
with prevalences of 42% (95% CI: 30%, 55%) and 12% (95% 
CI: 5%, 21%), respectively.

In Croatia and Italy, G1P[8] was the most common geno
type with a prevalence of 63% (95% CI: 59%, 66%) and 46% 
(95% CI: 31%, 61%), respectively. The second most common 
genotype was G2P[4] in Croatia with 20% prevalence (95% CI: 
17%, 23%) and G4P[8] in Italy with 13% (95% CI: 6%, 21%). In 
Greece, G4P[8] was the most prevalent genotype with 59% 
(95% CI: 50%, 67%), followed by G1P[8] with 14% (95% CI: 
9%, 22%). In Spain, G12P[8] was the most common genotype 
with a prevalence of 36% (95% CI: 2%, 83%), followed by G1P 
[8] with 26% (95% CI: 17%, 35%) prevalence.

Italy was the only country in Southern Europe with data for 
the period 2016–2021. Genotype prevalence data were available 
from 2,429 positive rotavirus samples, taken from five records 
from three studies64,74,75 (4C). During this period, G1P[8] was 
the most prevalent genotype with 29% (95% CI: 19%, 40%), 
followed by G12P[8] with 27% (95% CI: 15%, 41%) prevalence.

Italy was the only country in Southern Europe to be 
included in the meta-analyses for all three time periods. 
Through the different time-periods, G1P[8] became less domi
nant, with the relative proportion of this genotype declining 
from 47% during 2006–2010, to 46% in 2011–2015, and 29% in 

a. 2006-2010 b. 2011-2015 c. 2016-2021 

Figure 4. Prevalence of the most common rotavirus genotypes in Southern Europe.
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2016–2021. The second most prevalent genotype varied from 
G9P[8] in 2006–2010, to G4P[8] from 2011–2015, and G12P 
[8] with a prevalence of 27%, from 2016–2021.

Western Europe

For the period 2006–2010, genotype prevalence data were 
available from 3,561 positive rotavirus samples from 12 
records from seven studies, across four countries 
(Figure 5a).76–82 Across all rotavirus samples retrieved for 
this region, the most common rotavirus genotypes were G1P 
[8] and G2P[4], with a prevalence of 39% (95% CI: 27%, 53%) 
and 16% (95% CI: 7%, 28%), respectively. G2P[4] was the most 
prevalent genotype observed in Austria with 43% (95% CI: 
24%, 64%) prevalence and Belgium with 43% (95% CI: 34%, 
54%) prevalence. G1P[8] was the second most prevalent geno
type in both countries with 26% (95% CI: 11%, 46%) preva
lence in Austria, and 27% (95% CI: 13%, 45%) in Belgium. G1P 
[8] was most dominant in France with 59% prevalence (95% 
CI: 54%, 64%), followed by G9P[8] with 21% (95% CI: 15%, 
28%). In Germany, G3P[8] was the most common genotype 
with a prevalence of 24% (95% CI: 0%, 100%), followed by G1P 
[8] with 19% (95% CI: 0%, 64%).

For 2011–2015, genotype prevalence data were available 
from 4,989 positive rotavirus samples from six records from 
three studies, across two countries, Austria and France 
(Figure 5b).78,82,83 Based on within-country meta-analyses or 
individual prevalence records, the most common rotavirus 
genotypes were G1P[8] and G9P[8], showing a prevalence of 
57% (95% CI: 44%, 68%) and 14% (95% CI: 6%, 23%), respec
tively. In France, G1P[8] had a prevalence of 61% (95% CI: 
53%, 69%), followed by G9P[8] with 15% (95% CI: 7%, 26%). 
G2P[4] was the most prevalent genotype in Austria with 
a prevalence of 68% (95% CI: 43%, 87%), followed by G1P[8] 
with 21% (95% CI: 6%, 46%).

For the period 2016–2021, genotype prevalence data were 
available from 1,202 positive rotavirus samples in two records 
from one study in France (Figure 5c).83 Based on this data, the 

dominant rotavirus genotype was G9P[8] with 72% (95% CI: 
59%, 84%) prevalence. G1P[8] was the second most common 
genotype at only 12% (95% CI: 3%, 24%) prevalence.

One country, France, was included in meta-analyses 
across all three time periods. G1P[8] was the dominant 
genotype from 2006 to 2010, representing 59% (95% CI: 
54%, 64%) of genotypes and 61% (95% CI: 53%, 69%) 
from 2011 to 2015. However, from 2016 to 2021, G9P[8] 
emerged as the dominant genotype with a prevalence of 72% 
(95% CI: 59%, 84%), with G1P[8] genotype prevalence 
decreasing to 12%.

Middle East

For the period 2006–2010, genotype prevalence data were 
available from 957 positive rotavirus samples, taken from 
seven records from seven studies, across seven countries 
(Figure 6a).84–90 Across these samples, the most common 
rotavirus genotypes reported were G1P[8] and G2P[4], with 
prevalences of 35% (95% CI: 14%, 59%) and 14% (95% CI: 2%, 
36%), respectively.

G1P[8] was the most prevalent genotype in three countries: 
Jordan, Saudi Arabia and United Arab Emirates, representing 
82% (95% CI: 76%, 87%), 59% (95% CI: 49%, 68%), and 59% 
(95% CI: 52%, 65%) of genotypes, respectively. G2P[4] was the 
most prevalent genotype in Oman and Yemen, with preva
lences of 56% (95% CI: 47%, 66%) and 59% (95% CI: 46%, 
71%). In Iraq, G2P[6] was the most prevalent genotype with 
43% (95% CI: 31%, 55%) prevalence. In Lebanon, G4P[8] was 
the most prevalent genotype with a prevalence of 36% (95% CI: 
28%, 45%), followed by G1P[8] with a prevalence of 27% (95% 
CI: 20%, 35%).

For the period 2011–2015, genotype prevalence data were 
available from 687 positive rotavirus samples, taken from five 
records from five studies, across four countries (Figure 6b).90–94 

For these samples, the most common rotavirus genotypes were 
G1P[8] and G9P[8], showing prevalences of 36% (95% CI: 22%, 
51%) and 20% (95% CI: 14%, 28%).

a. 2006-2010 b. 2011-2015 c. 2016-2021 

Figure 5. Prevalence of the most common rotavirus genotypes in Western Europe.
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G1P[8] and G9P[8] were the most prevalent genotypes in 
Lebanon, Saudi Arabia and Yemen. G1P[8] and G9P[8] pre
valence was 36% (95% CI: 31%, 41%) and 26% (95% CI: 22%, 
31%) in Lebanon, 62% (95% CI: 52%, 71%) and 17% (95% CI: 
10%, 25%) in Saudi Arabia, and 36% (95% CI: 18%, 57%) and 
32% (95% CI: 15%, 54%) in Yemen, respectively. In Egypt, G3P 
[8] was the most prevalent genotype with a prevalence of 26% 
(95% CI: 8%, 50%), followed by G1P[8] at 22% (95% CI: 
15%, 30%).

Qatar was the only country which included data for the 
period 2016–2021. Genotype prevalence data were available 
from 231 positive rotavirus samples, taken from one record in 
one study.95 In Qatar, G3P[8] was the most prevalent genotype 
with a prevalence of 31% (95% CI: 25%, 37%). G2P[8] and G4P 
[8] were the second most prevalent genotypes, each represent
ing 12% (95% CI: 8%, 17%).

Studies excluded from meta-analysis

Twelve studies were excluded from the meta-analysis because 
they: 1) reported only G or P types separately;96–102 2) did not 
report the number of samples;103 3) were pan-European 
studies;104–106 and 4) included data from gray literature.107

Among seven studies that reported only G types, G1 was the 
most identified type in three European settings from 2006– 
2010, including Denmark, Norway and Spain with reported 
prevalences of 39%, 55%, and 50%, respectively.96,97,99 G12 was 
most commonly identified in one study in Spain, representing 
30% of genotypes reported from 2010 to 201898 and G4 was 
most commonly identified in one study in Greece with 
a prevalence of 60% from 2008 to 2010.100 Two studies report
ing G and P types separately also showed P[8] as the predo
minant P type, with prevalences of 85% and 75% from 2006 to 
2010, respectively.97,100 In the Middle East, G1 was the most 
commonly identified genotype in two studies in Egypt, with 
prevalence varying from 44% from 2008 to 2010 to 55%.101,102 

One study, which was excluded from the meta-analysis for not 
reporting the number of samples reported that G1P[8], G2P 

[4], G4P[8] and G9P[8] represented 84–96% of genotypes 
from 2005 to 2013.103

Three pan-European peer-reviewed studies in addition to 
the 2019 EuroRotaNet annual report were included for narra
tive synthesis. The EuroRotaNet surveillance network was 
established in 2007 and monitors rotavirus genotype diversity 
and year-to-year to identify genotype fluctuations across 
Europe. Two of the manuscripts summarized early results 
from member countries of EuroRotaNet;104,105 the third 
manuscript examined data from Czechia, Germany, Italy, 
Poland, Spain and the United Kingdom.106 In the two studies 
investigating data from EuroRotaNet member countries, G1P 
[8] was the most prevalent aggregated genotype in every year 
from 2006 to 2009. Iturriza-Gómara 2009 showed G1P[8] 
accounted for 43% of genotypes from 2005 to 2006, 42% 
from 2006 to 2007, and 62% from 2007 to 2008.104 Iturriza- 
Gómara 2010 showed G1P[8] accounted for 43% of genotypes 
from 2006 to 2007, 53% from 2007 to 2008, and 46% from 2008 
to 2009.105 The third study, using data from European coun
tries from 2005–2007, showed that genotype distribution var
ied between countries.106 G9P[8] was the most common type 
in Poland and Spain, G1P[8] was predominant in Czechia and 
Italy, and G4P[8] and G1P[8] were both prevalent in Germany. 
The 2019 EuroRotaNet annual report summarized informa
tion from all previous seasons and showed that G1P[8] was the 
most common identified genotype until 2015/2016.107 In 2018/ 
2019, G1P[8] was identified in 9% of samples, and G3P[8], 
G9P[8] and G2P[4] were detected in 19%–25% of samples. 
Seven genotypes circulated with a prevalence > 1%, including 
G1P[8], G4P[8], G2P[4], G9P[8], G3P[8], G12P[8], and G9P 
[4]. The report also shows that dominance of a single genotype 
has become rarer in recent years, while the relative proportion 
of less common genotypes has increased.107

Discussion

We performed a meta-analysis of rotavirus genotypes circulat
ing in Europe and the Middle East between 2006 and 2021, 

a. 2006-2010 b. 2011-2015 c. 2016-2021 

Figure 6. Prevalence of the most common rotavirus genotypes in the Middle East.
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providing an update to previously published systematic 
reviews and providing data for countries not included in 
EuroRotaNet. Our results highlight the lack of a single domi
nant genotype across time period, with G1P[8], G2P[4], G3P 
[8], G4P[8], and G9P[8] frequently identified as the most 
prevalent genotypes. Because our results summarized indivi
dual country results, they can be used to characterize genotype 
circulation by country and are complementary to EuroRotaNet 
data.

Results from our meta-analysis are consistent with surveil
lance reports and pan-European studies,104–107 which charac
terize emerging genotype diversity across time in the post- 
licensure period and the decrease in prevalence of G1P[8]. 
According to EuroRotaNet annual report, G1P[8] genotype 
was consistently the most prevalent genotype between 2006– 
2007 and 2014–2015, ranging from a maximum of 62% in 
2007–2008 to 31% in 2014–2015.107 From 2015–2016, G9P 
[8] was found in 34% of single genotype infections character
ized. In subsequent years, dominant genotypes also included 
G3P[8] and G2P[4].107

Our study included two EuroRotaNet member countries 
that had data across all three time periods: France and 
Finland. Consistent with EuroRotaNet data, our analysis 
shows G1P[8] was the most prevalent genotype in France 
from 2006–2015, whereas from 2016 to 2021, G9P[8] emerged 
as the most prevalent genotype. Similarly, in Finland 
a decrease of G1P[8] was observed from 2011 to 2021, as the 
prevalence of G2P[4], G9P[8], and G12P[8] increased. Lastly, 
our results for the Middle East are consistent with a recent 
review in the Middle East and North Africa, which showed that 
G1P[8], G9P[8], and G2P[4] were the most common geno
types from 1980 to 2019.108 Of note, our analysis shows G3P[8] 
as the most prevalent genotype from 2016 to 2021 in Qatar.

While we have not captured vaccination data in our review, 
we find that the prevalent genotypes remain consistent 
through 2006–2021, with routinely identified genotypes 
being G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and, to 
a smaller extent, G12P[8], with their relative dominance and 
prevalence varying from year to year. Consistent with 
EuroRotaNet data, our analysis demonstrates high genotype 
diversity, with lack of dominance by a particular genotype over 
all time-periods. Our meta-analysis reveals two uncommon 
genotypes, G3P[9] and G2P[6], in Poland and Iraq, respec
tively. However, these findings were derived from small sam
ple sizes and should be interpreted cautiously (68 samples in 
Poland and 98 samples in Iraq). Of note, G9P[4] has also been 
identified by EuroRotaNet;109 since the inception of the net
work (from 2006–2007 season to 2020–2021), its overall pre
valence has been 1%.

This is important for rotavirus vaccination policy as it 
suggests that vaccination programs have had limited or no 
impact on the the prevalence of uncommon strains from the 
pre-vaccination period. Additionally, to date, limited to no 
evidence of vaccine induced selective pressure has been 
found, with a recent review noting a, potentially transient, 
increased prevalence of G2P[4] in post-introduction 
scenarios.5 The findings echo those of an earlier systematic 
review, which did not find a consistent pattern indicative of 
vaccine related selective prevention, while indicating the need 

to monitor the increased detection rate of G2P[4] genotype in 
some countries following RV1 vaccination.6 Of note, rotavirus 
vaccines have long been observed to possess cross-protective 
effects, with RV1 being suggested to be marginally less effective 
against fully heterotypic G2P[4].6,110–112

G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8] 
have frequently been identified worldwide.5 Of note, strains 
uncommon in Europe and the Middle East have been identi
fied elsewhere. Data from 2001 to 2017 in Latin America show 
G9P[4] was identified in Colombia with a prevalence of ~15%, 
while G1P[4] was identified in Nicaragua with a prevalence of 
13%;113 in Africa, G2P[6] (4.2%) and G3P[6] (3.7%) were 
identified Ethiopia, Zambia and Zimbabwe through a study 
across Eastern and Southern Africa from 2010 to 2015;114 

while in Asia G12P[6] was identified in various surveillance 
studies from 2001 to 2021, including Bangladesh (no preva
lence specified), Nepal (41%–45%) and India (30%), 
respectively.115,116

Our analysis is limited by the uneven representation of 
countries across different timeframes and variation in the 
number of samples per region and time period. Some coun
tries, such as the Russian Federation, Estonia, Finland, Ireland, 
and France are consistently represented, allowing for more 
comprehensive temporal analyses. In contrast, other countries 
appear only in certain periods, making trend analyses 
challenging.

Additionally, this study included any country regardless 
of vaccination introduction or uptake. Our analysis did not 
differentiate between countries where vaccines were avail
able through national immunization plans or only through 
the private market and did not include the type of vaccine 
available in each country. In 2016, it was reported that 17 
countries in Europe had introduced the universal rotavirus 
vaccines and 11 countries in the Eastern Mediterranean 
Region, with the vaccine type varying across countries.117 

In many studies, where vaccination was only available 
through the private market, vaccination uptake rates were 
below 10%.25,42,72,74,76,78,83,118,119 By contrast, in countries 
with vaccination available through national immunization 
plans, multiple studies reported coverage levels above 
90%.45–47,79 We did not analyze how varying coverage rates 
impacted rotavirus genotype circulation. However, the 
results from the current study can be compared with geno
type prevalence in the pre-licensure data.5,120 As mentioned, 
results are consistent with those reported by EuroRotaNet, 
and suggest that, while the relative prevalence of genotypes 
varies in any given year (either during the pre and post 
licensure area), no new genotypes emerged in the post- 
licensure era.

Lastly, this study did not include sub-group analyses of 
genotype prevalence among specific age groups due to con
siderable variation of reporting in the included studies. 
Previous studies have shown genotype diversity was higher in 
older age groups121 and it is possible that we may be reporting 
results that apply to specific age-groups in some countries. Of 
note, EuroRotanet results are aggregated by country, regard
less of age-group.

Finally, we did not include changes in the “DS-1-like” or 
“Wa-like” genotype constellation of the strains as that 
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information is not widely reported. However, a recent study in 
Belgium has noted an increase in G3P[8] (traditionally asso
ciated with a “Wa-like” constellation) with a DS-1-like con
stellation post-vaccine introduction.122 Such changes warrant 
further consideration in future studies.

Going forward, rotavirus genotype surveillance studies 
would be complemented by reporting comprehensive infor
mation on genotype constellations, and genetic diversity of 
rotavirus in vaccinated and non-vaccinated individuals over 
time.

Conclusion

Results show high variability among dominant genotypes in 
Europe and the Middle East in the post-licensure period, with 
G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8] being 
the most commonly identified genotypes. Consistent with 
EuroRotaNet data, there was high temporal and regional varia
bility, with dominant genotypes varying by period and coun
try, even among neighboring countries.
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